中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (1): 24-30.DOI: 10.13304/j.nykjdb.2021.0490
收稿日期:
2021-06-15
接受日期:
2021-08-23
出版日期:
2022-01-15
发布日期:
2022-01-25
通讯作者:
张洪亮
作者简介:
马小倩 E-mail:maxq@cau.edu.cn;
基金资助:
Xiaoqian MA1(), Tao YANG2, Quan ZHANG2, Hongliang ZHANG2(
)
Received:
2021-06-15
Accepted:
2021-08-23
Online:
2022-01-15
Published:
2022-01-25
Contact:
Hongliang ZHANG
摘要:
水稻是我国主要粮食作物之一,提高水稻产量、改善品质一直是水稻育种研究的重要目标。育种技术的改进有利于育种效率的提高,随着科学技术的迅猛发展,水稻育种技术也在逐步完善。对分子标记育种、转基因育种、基因编辑育种和分子设计育种等目前水稻育种中广泛使用的育种技术进行了总结,并进一步展望了不同育种方法的发展前景,以期为水稻种业发展奠定基础。
中图分类号:
马小倩, 杨涛, 张全, 张洪亮. 水稻新型育种技术研究现状与展望[J]. 中国农业科技导报, 2022, 24(1): 24-30.
Xiaoqian MA, Tao YANG, Quan ZHANG, Hongliang ZHANG. Development Status and Prospect of Rice New Breeding Technology[J]. Journal of Agricultural Science and Technology, 2022, 24(1): 24-30.
编辑系统 Editing system | ZFN | TALENs | CRISPR |
---|---|---|---|
识别模式 Pattern of recognition | 蛋白质-DNA Protein-DNA | 蛋白质-DNA Protein-DNA | RNA-DNA |
靶向元件 Targeted element | ZF array 蛋白 ZF array protein | TALE array 蛋白 TALE array protein | sgRNA 蛋白 sgRNA protein |
切割元件 Cutting element | FokI 蛋白 FokI protein | FokI 蛋白 FokI protein | Cas9 蛋白 Cas9 protein |
识别长度 Length of recognition/bp | 18~36 | 24~40 | 20 |
识别序列特点Characteristics of recognition sequence | 以3 bp为单位 Units of 3 bp | 5’前一位为T The front base of 5’ is T | 3’ 序列为NGC The end sequence of 3’ is NGG |
优点 Advantage | 技术成熟,效率高 Technology mature, high efficiency | 设计较ZFN简单、特异性高Simpler than ZFN in design,more specific | 靶向精确、脱靶率低、较廉价、细胞 毒性低 Accurate targeting,low miss rate, low cost,low cytotoxicity |
缺点 Disadvantage | 设计依赖上下游序列、脱靶率高、具有细胞毒性 Design dependent,high miss rate,cytotoxicity | 具有细胞毒性,过程繁琐, 成本高 Cytotoxicity complicated process high cost | 靶点前无PAM不能进行切割,特异性不高 PAM recognition sites,low specificity |
RNA编辑 RNA editing | 不可以 No | 不可以 No | 可以 Yes |
表1 三种基因编辑系统的比较
Table 1 Comparison of three gene-editing techniques
编辑系统 Editing system | ZFN | TALENs | CRISPR |
---|---|---|---|
识别模式 Pattern of recognition | 蛋白质-DNA Protein-DNA | 蛋白质-DNA Protein-DNA | RNA-DNA |
靶向元件 Targeted element | ZF array 蛋白 ZF array protein | TALE array 蛋白 TALE array protein | sgRNA 蛋白 sgRNA protein |
切割元件 Cutting element | FokI 蛋白 FokI protein | FokI 蛋白 FokI protein | Cas9 蛋白 Cas9 protein |
识别长度 Length of recognition/bp | 18~36 | 24~40 | 20 |
识别序列特点Characteristics of recognition sequence | 以3 bp为单位 Units of 3 bp | 5’前一位为T The front base of 5’ is T | 3’ 序列为NGC The end sequence of 3’ is NGG |
优点 Advantage | 技术成熟,效率高 Technology mature, high efficiency | 设计较ZFN简单、特异性高Simpler than ZFN in design,more specific | 靶向精确、脱靶率低、较廉价、细胞 毒性低 Accurate targeting,low miss rate, low cost,low cytotoxicity |
缺点 Disadvantage | 设计依赖上下游序列、脱靶率高、具有细胞毒性 Design dependent,high miss rate,cytotoxicity | 具有细胞毒性,过程繁琐, 成本高 Cytotoxicity complicated process high cost | 靶点前无PAM不能进行切割,特异性不高 PAM recognition sites,low specificity |
RNA编辑 RNA editing | 不可以 No | 不可以 No | 可以 Yes |
性状 Trait | 基因名称 Gene name | 突变体表型 Phenotype of mutant | 编辑系统 Editing system | 参考文献 Reference |
---|---|---|---|---|
抗性 Resistance | Pita | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ |
Pi21 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
ERF922 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
bsr-d1 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
EPSPS | 抗草甘膦Resistance to glyphosate | CRISPR/Cas9 | [ | |
ALS | 抗除草剂Herbicide resistance | CRISPR/Cas9 | [ | |
品质 Quality | Wx | 糯性提高Glutinous improve | CRISPR/Cas9 | [ |
Badh2 | 香味增加Fragrance increases | CRISPR/Cas9 | [ | |
SBEIIb | 直链淀粉含量升高Amylose content increased | CRISPR/Cas9 | [ | |
产量 Yield | OsCKX2 | 大穗Big panicle | TALENs | [ |
GS3 | 粒长增加Increase grain length | CRISPR/Cas9 | [ | |
IPA1 | 分蘖增多/减少Tiller increase/decrease | CRISPR/Cas9 | [ | |
Gn1a | 穗粒数增多Grain number per panicle increase | CRISPR/Cas9 | [ | |
DEP1 | 穗子直立变密Erect and denser | CRISPR/Cas9 | [ | |
GS9 | 粒长增加Grain length increase | CRISPR/Cas9 | [ | |
抽穗期 Heading stage | Hd2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
Hd4 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd5 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd6 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd16 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd17 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd18 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Dth2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
表2 水稻利用基因编辑育种涉及的部分基因
Table 2 Related genes in rice breeding using gene editing
性状 Trait | 基因名称 Gene name | 突变体表型 Phenotype of mutant | 编辑系统 Editing system | 参考文献 Reference |
---|---|---|---|---|
抗性 Resistance | Pita | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ |
Pi21 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
ERF922 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
bsr-d1 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
EPSPS | 抗草甘膦Resistance to glyphosate | CRISPR/Cas9 | [ | |
ALS | 抗除草剂Herbicide resistance | CRISPR/Cas9 | [ | |
品质 Quality | Wx | 糯性提高Glutinous improve | CRISPR/Cas9 | [ |
Badh2 | 香味增加Fragrance increases | CRISPR/Cas9 | [ | |
SBEIIb | 直链淀粉含量升高Amylose content increased | CRISPR/Cas9 | [ | |
产量 Yield | OsCKX2 | 大穗Big panicle | TALENs | [ |
GS3 | 粒长增加Increase grain length | CRISPR/Cas9 | [ | |
IPA1 | 分蘖增多/减少Tiller increase/decrease | CRISPR/Cas9 | [ | |
Gn1a | 穗粒数增多Grain number per panicle increase | CRISPR/Cas9 | [ | |
DEP1 | 穗子直立变密Erect and denser | CRISPR/Cas9 | [ | |
GS9 | 粒长增加Grain length increase | CRISPR/Cas9 | [ | |
抽穗期 Heading stage | Hd2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
Hd4 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd5 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd6 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd16 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd17 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd18 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Dth2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
1 | 王健康,李慧慧,张学才,等.中国作物分子设计育种[J].作物学报,2011,37(2):191-201. |
WANG J K, LI H H, ZHANG X C, et al.. Molecular design breeding in crops in China [J]. Acta. Agron Sin., 2011, 37(2):191-201. | |
2 | 陈欢,张文英,樊龙江.作物育种方法研究进展与展望[J].科技通报,2011,27(1):61-65. |
CHEN H, ZHANG W Y, FAN L J. Methodology of crop breeding: progress and prospect [J]. Bull. Sci. Technol., 2011, 27(1):61-65. | |
3 | 陈文艺.作物育种方法研究进展与展望[J].科技展望,2015,13. |
4 | 贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1995,29(4):1-10. |
JIA J Z. Molecular germplasm diagnostics and molecular marker assisted breeding [J]. Sci. Agric. Sin., 1995, 29(4):1-10. | |
5 | 王亚琦,孙子淇,郑峥,等.作物分子标记辅助选择育种的现状与展望[J].江苏农业科学,2018,46(5):6-12. |
6 | HUANG X H, WEI X H, SANG T, et al.. Genome-wide association studies of 14 agronomic traits in rice landraces [J]. Nat. Genet., 2010, 42(11):961-967. |
7 | 吴俊,庄文,熊跃东,等.导入野生稻增产QTL育成优质高产杂交稻新组合Y两优7号[J].杂交水稻, 2010, 25(4):20-22. |
WU J, ZHUANG W, XIONG Y D, et al.. Breeding of new hybrid rice combination Y liangyou 7 with high yield and good quality by introducing yield-increase QTLs of wild rice [J]. Hybrid Rice, 2010, 25(4):20-22. | |
8 | 周屹峰,赵霏,任三娟,等.具中等支链淀粉含量的籼型优质不育系浙农3A的选育[J]. 杂交水稻,2010,25(4):14-17. |
ZHOU Y F, ZHAO F, REN S J, et al.. Breeding of good quality indica CMS line Zhenong 3A with intermediate amylose content [J]. Hybrid Rice, 2010, 25(4):14-17. | |
9 | 王岩,付新民,高冠军,等.分子标记辅助选择改良优质水稻恢复系明恢63的稻米品质[J].分子植物育种,2009,7(4):661-665. |
WANG Y, FU X J, GAO G J, et al.. Improving the grain quality of Minghui63, a restorer line of rice with good quality through marker-assisted selection [J]. Mol. Plant Breed., 2009, 7(4):661-665. | |
10 | 刘巧泉,蔡秀玲,李钱峰,等.分子标记辅助选择改良特青及其杂交稻米的蒸煮与食味品质[J].作物学报,2006,32(1):64-69. |
LIU Q Q, CAI X L, LI Q F, et al.. Molecular marker-assisted selection for improving cooking and eating quality in Teqing and its hybrid rice [J]. Acta. Agron. Sin., 2006, 32(1):64-69. | |
11 | LIU S P, LI X, WANG C Y, et al.. Improvement of resistance to rice blast in Zhenshan97 by molecular marker-aided selection [J]. Acta Botan. Sin., 2003, 45(11):1346-1350. |
12 | 杨子贤,姜恭好,徐才国,等.利用分子标记辅助选择改良93-11对白叶枯病和螟虫抗性[J].分子植物育种,2004,2(4):473-480. |
YANG Z X, JIANG G H, XU C G, et al.. Simultaneously improvement of resistance to bacterial blight and stem borer of 93-11 by molecular marker-assisted selection [J]. Mol. Plant Breed., 2004, 2(4):473-480. | |
13 | 陈学伟,李仕贵,马玉清,等.水稻抗稻瘟病基因Pi-d(t)1、Pi-b、Pi-ta2的聚合及分子标记选择[J].生物工程学报,2004,20(5):708-714. |
CHEN X W, LI S G, MA Y Q, et al.. Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t)1, Pi-b, Pi-ta2, in rice [J]. Chin. J. Biotech., 2004, 20(5):708-714. | |
14 | 倪大虎,易成新,李莉,等.利用分子标记辅助选择聚合水稻基因Xa21和Pi9(t)[J].分子植物育种,2005,3(3):329-334. |
NI D H, YI C X, LI L, et al.. Pyramiding Xa21 and Pi9(t) in rice by marker-assisted selection [J]. Mol. Plant Breed., 2005, 3(3):329-334. | |
15 | 官华忠,陈志伟,潘润森,等.通过标记辅助回交育种改良优质水稻保持系金山B-1的稻瘟病抗性[J].分子植物育种,2006,4(1):49-53. |
GUAN H Z, CHEN Z W, PAN R S, et al.. Improving the resistance of Jinshan B-1, a male sterile persistence line of rice with good quality, to rice blast via marker-assisted backcross breeding [J]. Mol. Plant Breed., 2006, 4(1):49-53. | |
16 | 董巍,李信,晏斌,等.利用分子标记辅助选择改良培矮64S的稻瘟病抗性[J].分子植物育种,2010,8(5):853-860. |
DONG W, LI X, YAN B, et al.. Improving the blast resistance of Peiai64S through marker-assisted selection [J]. Mol. Plant Breed., 2010, 8(5):853-860. | |
17 | 陈英之,陈乔,孙荣科,等.改良水稻对稻褐飞虱的抗性研究[J].西南农业学报,2010,23(4):1099-2007. |
CHEN Y Z, CHEN Q, SUN R K, et al.. Improvement of rice resistance to brown planthoppers [J]. S.W. Chin. J. Agric. Sci., 2010, 23(4):1099-2007. | |
18 | 刘斌.紧跟世界科技发展前沿,水稻分子育种初见成效——广东省农业科学院水稻分子育种进展[J].广东农业科学,2020,47(12):12-23. |
LIU B. Following the frontier of scientific and technological development, significant progress has been made in molecular rice breeding—a brief introduction to the work in molecular rice breeding of rice research institute of Guangdong academy of agricultural sciences [J]. Guangdong Agric. Sci., 2020, 47(12):12-23. | |
19 | 黎裕,王健康,邱丽娟,等.中国作物分子育种现状与发展前景[J].作物学报,2010,36(9):1425-1430. |
LI Y, WANG J K, QIU L J, et al.. Crop molecular breeding in China: current status and perspectives [J]. Acta. Agron. Sin., 2010, 36(9):1425-1430. | |
20 | 于志晶,张文娟,李淑芳,等.水稻抗虫转基因研究进展[J].吉林农业科学,2010,35(6):16-20. |
YU Z J, ZHANG W J, LI S F, et al.. Advances in studies on insect resistant transgenic rice [J]. J. Jilin Agric. Sci., 2010, 35(6):16-20. | |
21 | 冯道荣,许新萍,卫剑文,等.使用双抗真菌蛋白基因提高水稻抗病性的研究[J].植物学报,1999,41(11):1187-1191. |
FENG D R, XU X P, WEI J W, et al.. Enhancement of rice disease resistance by two antifungal protein genes [J]. Acta Botan. Sin., 1999, 41(11):1187-1191. | |
22 | 翟文学,李晓兵,田文忠,等.由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种[J].中国科学,2000,30(2):200-207. |
23 | 刘利丹,于磊,赵明杰.扑朔迷离的转基因安全之争[J].医学与哲学,2014,35(11A):13-18. |
LIU L D, YU L, ZHAO M J. The bewildering dispute about safety of transgenically modified foods [J]. Med. Phil., 2014, 35(11A):13-18. | |
24 | 玛丽莲,郭龙彪,钱前.转基因水稻安全性评价的内容[J].中国稻米,2004,5. |
25 | 张白雪,孙其信,李海峰.基因修饰技术研究进展[J].生物工程学报,2015,31(8):1162-1174. |
ZHANG B X, SUN Q X, LI H F. Advances in genetic modification technologies [J]. Chin. J. Biotech., 2015, 31(8):1162-1174. | |
26 | 刘浩,张国良,许仁良,等.基因编辑技术在水稻分子育种上的应用[J].淮阴工学院学报,2018,27(5):31-37. |
LIU H, ZHANG G L, XU R L, et al.. Application of gene editing technology in rice molecular breeding [J]. J. Huaiyin Inst. Technol., 2018, 27(5):31-37. | |
27 | CAO H X, WANG W, LE H T, et al.. The power of CRISPR-Cas9-induced genome editing to speed up plant breeding [J/OL]. Int. J. Genomics, 2016, 2016:5078796 [2021-06-26]. . |
28 | SHAN Q W, WANG Y P, CHEN K L, et al.. Rapid and efficient gene modification in rice and brachypodium using TALENs [J]. Mol. Plant, 2013, 6(4):1365-1368. |
29 | GAO C. Genome editing in crops: from bench to field [J]. Natl. Sci. Rev., 2015, 2(1):13-15. |
30 | 徐鹏,王宏,涂燃冉,等.利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J].中国水稻科学,2019,33(4):313-322. |
XU P, WANG H, TU R R, et al.. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system [J]. Chin. J. Rice. Sci., 2019, 33(4):313-322. | |
31 | LI W T, ZHU Z W, CHERN M S, et al.. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance [J]. Cell, 2017, 170(1):114-126. |
32 | 刘畅媛,孙一丁,马继琼,等.水稻抗稻瘟病基因Bsr-d1的SNP区域在地方品种中的变异分析[J].分子植物育种,2021,19(7):2097-2102. |
LIU C Y, SUN Y D, MA J Q, et al.. SNP fragment variations analysis of resistant gene Bsr-d1 to rice blast in rice landraces [J]. Mol. Plant Breed., 2021, 19(7):2097-2102. | |
33 | LI J, MENG X B, YUAN Z, et al.. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9 [J]. Nat. Plants, 2016, 2(10):16139-16148. |
34 | 戴焱,赵德刚.抗草甘膦水稻突变体osgr-1EPSPS基因克隆及生物信息学分析[J].种子,2018,37(3):1-7. |
DAI Y, ZHAO D G. Bioinformatic analysis of EPSPS gene from the rice resistant mutant osgr-1 of glyphosate [J]. Seed, 2018, 37(3):1-7. | |
35 | SUN Y W, ZHANG X, WU C Y, et al.. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase [J]. Mol. Plant, 2016, 9(4):628-631. |
36 | LI H, LI X F, XU Y, et al.. High-efficiency reduction of rice amylose content via CRISPR/Cas9-mediated base editing [J]. Rice Sci., 2020, 27(6):445-448. |
37 | 范美英,梅法庭,朱义旺,等.利用CRISPR/Cas9技术创制糯稻新材料[J].福建农业学报,2019,34(5):503-508. |
FAN M Y, MEI F T, ZHU Y W, et al.. Greating new glutinous rice by CRISPR/Cas9-targeted mutagenesis in rice [J]. J. Fujian Agric. Sci., 2019, 34(5):503-508. | |
38 | 邵高能,谢黎虹,焦桂爱,等.利用CRISPR/Cas9技术编辑水稻香味基因Badh2 [J].中国水稻科学,2017,31(2):216-222. |
SHAO G N, XIE L H, JIAO G A, et al.. CRISPR/Cas9-mediated editing of the fragrant gene Badh2 in rice [J]. Chin. J. Rice. Sci., 2017, 31(2):216-222. | |
39 | 祁永斌,张礼霞,王林友,等.利用CRISPR/Cas9技术编辑水稻香味基因Badh2 [J].中国农业科学,2020,53(8):1501-1509. |
QI Y B, ZHANG L X, WANG L Y, et al.. CRISPR/Cas9 targeted editing for the fragrant gene Badh2 in rice [J]. Sci. Agric. Sin., 2020, 53(8):1501-1509. | |
40 | SUN Y W, JIAO G A, LIU Z, et al.. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes [J]. Front. Plant Sci., 2017, 8:298-313. |
41 | SHEN L, WANG C, FU Y P, et al.. QTL editing confers opposing yield performance in different rice varieties [J]. J. Integr. Plant Biol., 2018, 60(2):89-93. |
42 | LI M R, LI X X, ZHOU Z J, et al.. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system [J]. Front. Plant Sci., 2016, 7:377-390. |
43 | ZHAO D S, LI Q F, ZHANG C Q, et al.. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality [J]. Nat. Commun., 2018, 9(1):1240-1254. |
44 | 周文甲,田晓杰,任月坤,等.利用CRISPR/Cas9创造早熟香味水稻[J].土壤与作物,2017,6(2):146-152. |
ZHOU W J, TIAN X J, REN Y K, et al.. Breeding of early maturatity and fragrant rice via CRISPR/Cas9 mediated genome editing [J]. Soils Crops, 2017, 6(2):146-152. | |
45 | LI X F, SUN Y Q, TIAN X J, et al.. Comprehensive identification of major flowering time genes and their combinations, which determined rice distribution in Northeast China [J]. Plant Growth Regul., 2018, 84(3):593-602. |
46 | 范守山,邹德堂.水稻抽穗期的光周期调控[J].遗传育种,2011,2:12-15. |
47 | HORI K, OGISO TANAKA E, MATSUBARA K, et al.. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response [J]. Plant J., 2013, 76(1):36-46. |
48 | MATSUBARA K, OGISO TANAKA E, HORI K, et al.. Natural variation in Hd17, a homolog of ArabidopsisELF3 that is involved in rice photoperiodic flowering [J]. Plant Cell Physiol., 2012, 53(4):709-716. |
49 | SHIBAYA T, HORI K, OGISO TANAKA E, et al.. Hd18, encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in Rice [J]. Plant Cell Physiol., 2016, 57(9):1828-1838. |
50 | WU W X, ZHENG X M, LU G W, et al.. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(8):2775-2780. |
51 | LI X F, ZHOU W J, REN Y, et al.. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing [J]. J. Genet. Genomics, 2017, 44(3):175-178. |
52 | 刘欣欣,李赫,卜庆云,等.CRISPR/Cas9系统在水稻分子育种中的应用[J].土壤与作物,2021,10(1):18-26. |
LIU X X, LI H, BU Q Y, et al.. Application of CRISPR/Cas9 system in rice molecular breeding [J]. Soils Crops, 2021, 10(1):18-26. | |
53 | JAGANATHAN D, BOHRA A, THUDI M, et al.. Fine mapping and gene cloning in the post-NGS era: advances and prospects [J]. Theor. Appl. Genet., 2020, 133(5):1791-1810. |
54 | 万建民.作物分子设计育种[J].作物学报,2006,32(3):455-462. |
WAN J M. Perspectives of molecular design breeding in crops [J]. Acta. Agron. Sin., 2006, 32(3):455-462. | |
55 | WANG J K, WAN X Y, LI H H, et al.. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach [J]. Theor. Appl. Genet., 2007, 115(1):87-100. |
56 | BAI S W, YU H, WANG B, et al.. Retrospective and perspective of rice breeding in China [J]. J. Genet Genomics, 2018, 45(11):603-612. |
57 | WANG J K, WAN X Y, LI H H, et al.. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach [J]. Theor. Appl. Genet., 2007, 115(1):87-100. |
58 | 顾铭洪,刘巧泉.作物分子设计育种及其发展前景分析[J].扬州大学学报,2009,30(1):64-68. |
GU M H, LIU Q Q. Prospects of crop breeding by molecular design [J]. J. Yangzhou Univ., 2009, 30(1):64-68. | |
59 | TIAN Z X, QIAN Q, LIU Q Q, et al.. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities [J]. Proc. Natl. Acad. Sci. USA, 2009, 106(51):21760-21765. |
60 | ZENG D L, TIAN Z X, RAO Y, et al.. Rational design of high-yield and superior-quality rice [J/OL]. Nat. Plants, 2017, 3(4):17031 [2020-06-15]. . |
[1] | 习敏, 许有尊, 孙雪原, 吴文革, 周永进. 氮素穗肥对水稻垩白籽粒灌浆影响及与加工品质的关系[J]. 中国农业科技导报, 2021, 23(9): 144-151. |
[2] | 吴子帅, 李虎, 黄秋要, 陈传华, 罗群昌, 周新明, 吴佳桔, 刘广林. 施氮量和栽插密度对桂育11号产量和稻米品质的影响[J]. 中国农业科技导报, 2021, 23(8): 154-162. |
[3] | 罗友谊, 王慰亲, 郑华斌, 刘功义, 巢英, 徐彩, 郑志刚, 李雪倩, 韦银兰, 唐启源. 不同机械有序种植方式对水稻生长特性及产量的影响[J]. 中国农业科技导报, 2021, 23(7): 162-171. |
[4] | 刘源, 张秀妍, 徐妙云, 郑红艳, 邹俊杰, 张兰, 王磊. 水稻干旱胁迫的small RNA转录组分析[J]. 中国农业科技导报, 2021, 23(6): 23-32. |
[5] | 姜树坤, 王立志, 杨贤莉, 迟力勇, 李忠杰, 李明贤, 张喜娟, 赵茜, 李锐, 姜辉, 李文华. 不同生育时期增温对寒地水稻产量和品质的影响[J]. 中国农业科技导报, 2021, 23(6): 130-139. |
[6] | 霍川, 王世全, 沈俊宏, 曾鸿燕. 水稻高节位分蘖的形态特征及遗传行为[J]. 中国农业科技导报, 2021, 23(5): 35-43. |
[7] | 伏荣桃,陈诚,王剑,陈雪娟,卢代华*. 植保无人机对水稻病虫害防治条件与防效的研究[J]. 中国农业科技导报, 2021, 23(4): 103-109. |
[8] | 殷春渊,王书玉*,刘贺梅,孙建权,胡秀明,王和乐,田芳慧,马朝阳,张栩,张瑞平. 水稻食味品质性状间相关性分析及其与叶片光合作用的关系[J]. 中国农业科技导报, 2021, 23(4): 119-127. |
[9] | 王文玉,万思宇,张雪松,王旭,李佳硕,郑桂萍*. 不同耕作模式下施硅量对垦粳7号抗倒伏性能的影响[J]. 中国农业科技导报, 2021, 23(4): 145-153. |
[10] | 刘芳1,王摸云1,杨睿祺1,杨钊楠1,张平2,姚焱1*. 重金属铊胁迫下水稻(Oryza sativa L.)根系草酸含量与铊吸收的关系[J]. 中国农业科技导报, 2021, 23(3): 34-40. |
[11] | 吴天琦1,刘浪1,卞传飞1,谭景艾2,石绪根2*,李保同1*. 栽培方式与氮肥运筹对江西双季晚粳稻稻曲病及产量的影响[J]. 中国农业科技导报, 2021, 23(2): 159-169. |
[12] | 石英尧§, 马赛§, 曾威§, 郝芷圻, 李思敏, 王文生, 黎珉. 后基因组时代基于选择导入系的水稻设计育种策略[J]. 中国农业科技导报, 2021, 23(11): 25-35. |
[13] | 李婷, 胡敏骏, 徐君, 蒋玉根, 闫慧莉, 虞轶俊, 何振艳. 镉低积累水稻品种选育研究进展[J]. 中国农业科技导报, 2021, 23(11): 36-46. |
[14] | 郭阳, 许贝贝, 陈桂鹏, 丁建, 严志雁, 梁华, 吴昌华. 基于卷积神经网络的水稻虫害识别方法[J]. 中国农业科技导报, 2021, 23(11): 99-109. |
[15] | 梁琴, 周泽弘, 马雪清, 漆燕, 蒋进, 韩文斌, 全紫曼, 莫坤, 李胜, 曹卫东. 绿肥翻压与氮肥减施对水稻产量、品质及土壤肥力的影响[J]. 中国农业科技导报, 2021, 23(10): 124-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||