1 |
王林惠,兰玉彬,刘志壮,等.便携式柑橘虫害实时检测系统的研制与试验[J].农业工程学报,2021,37(9):282-288.
|
|
WANG L H, LAN Y B, LIU Z Z, et al.. Development and experiment of the portable real-time detection system for citrus pests [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(9):282-288.
|
2 |
CHEN W, ZHOU Y, CHEN Y. The environmental impacts of citrus residue management in China: a case study in the three gorges reservoir region [J]. Waste Manage., 2021, 133(6):80-88.
|
3 |
TANG Y, CHEN M, WANG C, et al.. Recognition and localization methods for vision-based fruit picking robots: a review [J/OL]. Front. Plant Sci., 2020, 11:510 [2022-12-14]. .
|
4 |
YE L, DUAN J, YANG Z, et al.. Collision-free motion planning for the litchi-picking robot [J/OL]. Comput. Electron. Agric., 2021,185: 106151 [2022-12-14]. .
|
5 |
赵德安,吴任迪,刘晓洋,等.基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J].农业工程学报,2019,35(3):164-173.
|
|
ZHAO D A, WU R D, LIU X Y, et al.. Apple positioning based on YOLO deep convolutional neural network forpicking robot in complex background [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(3):164-173.
|
6 |
许德刚,王露,李凡.深度学习的典型目标检测算法研究综述[J].计算机工程与应用,2021,57(8):10-25.
|
|
XU D G, WANG L, LI F. Review of typical object detection algorithms for deep learning [J]. Comput. Eng. Appl., 2021,57(8):10-25.
|
7 |
易诗,李俊杰,张鹏,等.基于特征递归融合YOLOv4网络模型的春见柑橘检测与计数[J].农业工程学报,2021,37(18):161-169.
|
|
YI S, LI J J, ZHANG P, et al.. Detecting and counting of spring-see citrus using YOLOv4 network model and recursive fusion of features [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(18):161-169.
|
8 |
杨婷婷,郭志勋,雷定湘,等.机器视觉技术在农业中的应用[J].安徽农学通报,2021, 27(18):110-111.
|
|
YANG T T, GUO Z X, LEI D X, et al.. Application of machine vision technology in agriculture [J]. Anhui Agric. Sci. Bull., 2021,27(18):110-111.
|
9 |
WANG C, LEE W S, ZOU X, et al.. Detection and counting of immature green citrus fruit based on the Local Binary Patterns (LBP) feature using illumination-normalized images [J]. Precis. Agric., 2018,19(6):1062-1083.
|
10 |
LU J, LEE W S, HAO G, et al.. Immature citrus fruit detection based on local binary pattern feature and hierarchical contour analysis [J]. Biosys. Eng., 2018,171:78-90.
|
11 |
GAN H, LEE W S, ALCHANATIS V, et al.. Active thermal imaging for immature citrus fruit detection [J]. Biosys. Eng., 2020,198:291-303.
|
12 |
韩文,魏超宇,刘辉军.基于Tiny-YOLOv3的田间绿色柑橘目标检测方法[J].中国计量大学学报, 2020, 31(3):349-356, 392.
|
|
HAN W, WEI C Y, LIU H J. Green citrus detection based on Tiny-YOLOv3 in field [J]. J. China Metrol. Univ., 2020,31(3):349-356, 392.
|
13 |
ZHENG Z, XIONG J, LIN H, et al.. A method of green citrus detection in natural environments using a deep convolutional neural network [J/OL]. Front. Plant Sci., 2021, 12:705737 [2022-12-28]. .
|
14 |
陈文康,陆声链,刘冰浩,等.基于改进YOLOv4的果园柑橘检测方法研究[J].广西师范大学学报(自然科学版),2021,39(5):134-146.
|
|
CHEN W K, LU S L, LIU B H, et al.. Real-time citrus recognition under orchard environment by improved YOLOv4 [J]. J. Guangxi Norm. Univ. (Nat. Sci.), 2021,39(5):134-146.
|
15 |
黄彤镔,黄河清,李震,等.基于YOLOv5改进模型的柑橘果实识别方法[J].华中农业大学学报,2022,41(4):170-177.
|
|
HUANG T B, HUANG H Q, LI Z, al.el. Citrus fruit recognition method based on the improved model of YOLOv5 [J]. J. Huazhong Agric. Univ., 2022,41(4):170-177.
|
16 |
杨长辉,刘艳平,王毅,等. 自然环境下柑橘采摘机器人识别定位系统研究[J].农业机械学报,2019,50(12):14-22.
|
|
YANG C H, LIU Y P, WANG Y, et al.. Research and experiment on recognition and location system for citrus picking robot in natural environment [J]. Trans. Chin. Soc. Agric. Mach., 2019,50(12):14-22.
|
17 |
JIE H, LI S, GANG S, et al.. Squeeze-and-excitation networks [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . IEEE, 2018:7132-7141.
|
18 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:13713-13722.
|
19 |
ZHANG H, WANG Y, DAYOUB F, et al.. Varifocalnet:A n iou-aware dense object detector [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE,2021:8514-8523.
|
20 |
WANG C Y, LIAO H Y M, WU Y H, et al.. CSPNet:A new backbone that can enhance learning capability of CNN [J/OL]. 2019, 1911: 11929 [2022-12-28]. .
|
21 |
LIN T, DOLLAER P, GIRSHICK R, et al.. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:936-944.
|
22 |
LIU S, QI L, QIN H, et al.. Path aggregation network for instance segmentation [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,2018:8759-8768.
|
23 |
ZHENG Z H, WANG P, LIU W, et al.. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression [C]// Proceedings of The Thirty-Fourth AAAI Conference on Artificial Intelligence 2017: 12993-13000..
|
24 |
宋中山,刘越,郑禄,等.基于改进YOLOV3的自然环境下绿色柑橘的识别算法[J].中国农机化学报,2021,42(11):159-165.
|
|
SONG Z S, LIU Y, ZHENG L, al.el. Identification of green citrus based on improved YOLOV3 in natural environment [J]. J. Chin. Agric. Mechan., 2021,42(11):159-165.
|
25 |
刘芳,刘玉坤,林森,等.基于改进型YOLO的复杂环境下番茄果实快速识别方法[J].农业机械学报,2020,51(6):229-237.
|
|
LIU F, LIU Y K, LIN S, et al.. Fast Recognition method for tomatoes under complex environments based on improved YOLO [J]. Trans. Chin. Soc. Agric. Mach., 2020,51(6):229-237.
|