1 |
BUKOWSKI R, GUO X, LU Y, et al.. Construction of the third-generation Zea Mays haplotype map [J]. Gigascience, 2018, 7(4): 1-12.
|
2 |
KIMURA M. Evolutionary rate at the molecular level [J]. Nature, 1968, 217(5129): 624-626.
|
3 |
XIAO Y, LIU H, WARBURTION L, et al.. Genome-wide association studies in maize: praise and stargaze [J]. Mol. Plant, 2017, 10(3): 359-374.
|
4 |
LIU J, FERNIE A R, YAN J. The past, present, and future of maize improvement: domestication, genomics, and functional genomic routes toward crop enhancement [J/OL]. Plant Commun., 2020, 1(1): 100010 [2022-05-15]..
|
5 |
CHEN Q, LI W, TAN L, et al.. Harnessing knowledge from maize and rice domestication for new crop breeding [J]. Mol. Plant, 2021, 14(1): 9-26.
|
6 |
LIANG Y, LIU H J, YAN J, et al.. Natural variation in crops: realized understanding, continuing promise [J]. Annu. Rev. Plant Biol., 2021, 72: 357-385.
|
7 |
WEI X, QIU J, YONG K, et al.. A quantitative genomics map of rice provides genetic insights and guides breeding [J]. Nat. Genet., 2021, 53(2): 243-253.
|
8 |
ZUO W, CHAO Q, ZHANG N, et al.. A maize wall-associated kinase confers quantitative resistance to head smut [J]. Nat. Genet., 2015, 47(2): 151-157.
|
9 |
YANG Q, LI Z, LI W, et al.. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(42): 16969-16974.
|
10 |
TIAN J, WANG C, XIA J, et al.. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields [J]. Science, 2019, 365(6454): 658-664.
|
11 |
CHEN W, CHEN L, ZHANG X, et al.. Convergent selection of a WD40 protein that enhances grain yield in maize and rice [J/OL]. Science, 2022, 375(6587): eabg7985 [2022-05-15]. .
|
12 |
WALLACE J G, RODGERS-MELNICK E, BUCKLER E S. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics [J]. Annu. Rev. Genet., 2018, 52(1): 421-444.
|
13 |
HENN B M, BOTIGUE L R, BUSTAMANTE C D, et al.. Estimating the mutation load in human genomes [J]. Nat. Rev. Genet., 2015, 16(6):333-343.
|
14 |
LYNCH M. Rate, molecular spectrum, and consequences of human mutation [J]. Proc. Natl. Acad. Sci. USA, 2010, 107(3): 961-968.
|
15 |
ROESSLER K, MUYLE A, DIEZ C M, et al.. The genome-wide dynamics of purging during selfing in maize [J]. Nat. Plants, 2019, 5(9): 980-990.
|
16 |
ZHU M, CHENG Y, WU S, et al.. Deleterious mutations are characterized by higher genomic heterozygosity than other genic variants in plant genomes [J/OL]. Genomics, 2022, 114(2): 110290 [2022-05-15]. .
|
17 |
ZHOU Q, TANG D, HUANG W, et al.. Haplotype-resolved genome analyses of a heterozygous diploid potato [J]. Nat. Genet., 2020, 52(10): 1018-1023.
|
18 |
RAMU P, ESUMA W, KAWUKI R, et al.. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation [J]. Nat. Genet., 2017, 49(6): 959-963.
|
19 |
RODGERS-MELNICK E, BRADBURY P J, ELSHIRE R J, et al.. Recombination in diverse maize is stable, predictable, and associated with genetic load [J]. Proc. Natl. Acad. Sci. USA, 2015, 112(12): 3823-3828.
|
20 |
KREMLING K A G, CHEN S Y, SU M H, et al.. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize [J]. Nature, 2018, 555(7697): 520-523.
|
21 |
MEZMOUK S, ROSS-IBARRA J. The pattern and distribution of deleterious mutations in maize [J]. G3 (Bethesda), 2014, 4(1): 163-171.
|
22 |
王向峰, 才卓.中国种业科技创新的智能时代——"玉米育种4.0"[J]. 玉米科学, 2019, 27(1): 1-9.
|
|
WANG X F, CAI Z. Era of maize breeding 4.0 [J]. J. Maize Sci., 2019, 27(1): 1-9.
|
23 |
WATSON A, GHOSH S, WILLIAMS M J, et al.. Speed breeding is a powerful tool to accelerate crop research and breeding [J]. Nat. Plants, 2018, 4(1): 23-29.
|
24 |
LI Y, LIN Z, YUE Y, et al.. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize [J]. Nat. Plants, 2021, 7(12): 1579-1588.
|
25 |
ZHONG Y, LIU C, QI X, et al.. Mutation of ZmDMP enhances haploid induction in maize [J]. Nat. Plants, 2019, 5(6): 575-580.
|
26 |
KOURANOV A, ARMSTRONG C, SHRAWAT A, et al.. Demonstration of targeted crossovers in hybrid maize using CRISPR technology [J]. Commun. Biol., 2022, 5(1): 53.
|
27 |
TAAGEN E, BOGDANOVE A J, SORRELLS M E. Counting on crossovers: controlled recombination for plant breeding [J]. Trends Plant Sci., 2020, 25(5): 455-465.
|
28 |
WANG C, LIU Q, SHEN Y, et al.. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes [J]. Nat. Biotechnol., 2019, 37(3): 283-286.
|
29 |
ZHANG D, WU S, AN X, et al.. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the zmms7 gene encoding a phd-finger transcription factor [J]. Plant Biotechnol. J., 2018, 16(2): 459-471.
|
30 |
KACSER H, BURNS J A. The control of flux [J]. Symp. Soc. Exp. Biol., 1973, 27: 65-104.
|
31 |
ZHOU J, THEESFELD C L, YAO K, et al.. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk [J]. Nat. Genet., 2018, 50(8): 1171-1179.
|
32 |
ZHOU J, PARK C Y, THEESFELD C L, et al.. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk [J]. Nat. Genet., 2019, 51(6): 973-980.
|
33 |
LIU J, LI J, WANG H, et al.. Application of deep learning in genomics [J]. Sci. China Life Sci., 2020, 63(12): 1860-1878.
|
34 |
WANG H, CIMEN E, SINGH N, et al.. Deep learning for plant genomics and crop improvement [J]. Curr. Opin. Plant Biol., 2020, 54: 34-41.
|
35 |
WASHBURN J D, MEJIA-GUERRA M K, RAMSTEIN G, et al.. Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence [J]. Proc. Natl. Acad. Sci. USA, 2019, 116(12): 5542-5549.
|
36 |
WANG Y, ZHANG P, GUO W, et al.. Adeep learning approach to automate whole-genome prediction of diverse epigenomic modifications in plants [J]. New Phytol., 2021, 232(2): 880-897.
|
37 |
JENKO J, GORJANC G, CLEVELAND M A, et al.. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs [J/OL]. Genet. Sel. Evol., 2015, 47: 55 [2022-05-15]. .
|
38 |
JOHNSSON M, GAYNOR R C, JENKO J, et al.. Removal of alleles by genome editing (RAGE) against deleterious load [J/OL]. Genet. Sel. Evol., 2019, 51(1): 14 [2022-05-15]. .
|
39 |
RODRIGUEZ-LEAL D, LEMMON Z H, MAN J, et al.. Engineering quantitative trait variation for crop improvement by genome editing [J]. Cell, 2017, 171(2): 470-480.
|
40 |
LIU L, GALLAGHER J, AREVALO E D, et al.. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes [J]. Nat. Plants, 2021, 7: 287-294.
|
41 |
SONG X, MENG X, GUO H, et al.. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size [J/OL]. Nat. Biotechnol., 2022 [2022-05-15]. .
|
42 |
LU Y, WANG J, CHEN B, et al.. Adonor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice [J]. Nat. Plants, 2021, 7(11): 1445-1452.
|
43 |
GAO H, GADLAGE M J, LAFITTE H R, et al.. Superior field performance of waxy corn engineered using CRISPR-Cas9 [J]. Nat. Biotechnol., 2020, 38(5): 579-581.
|
44 |
BEPLER T, BERGER B. Learning the protein language: evolution, structure, and function [J]. Cell Syst., 2021, 12(6): 654-669.
|
45 |
ESVELT K M, CARLSON J C, LIU D R. Asystem for the continuous directed evolution of biomolecules [J]. Nature, 2011, 472(7344): 499-503.
|
46 |
RAVIKUMAR A, ARZUMANYAN G A, OBADI M K A, et al.. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds [J]. Cell, 2018, 175(7): 1946-1957.
|
47 |
ENGLISH J G, OLSEN R H J, LANSU K, et al.. Vegas as a platform for facile directed evolution in mammalian cells [J]. Cell, 2019, 178(3): 748-761.
|
48 |
BADRAN A H, GUZOV V M, HUAI Q, et al.. Continuous evolution of bacillus thuringiensis toxins overcomes insect resistance [J]. Nature, 2016. 533(7601): 58-63.
|
49 |
INAMOTO I, SHEORAN I, POPA S C, et al.. Combining rational design and continuous evolution on minimalist proteins that target the E-Box DNA site [J]. ACS Chem. Biol., 2021, 16(1): 35-44.
|
50 |
POPA S C, INAMOTO I, THURONYI B W, et al.. Phage-assisted continuous evolution (PACE): a guide focused on evolving protein-DNA interactions [J]. ACS Omega, 2020, 5(42): 26957-26966.
|
51 |
RICHTER M F, ZHAO K T, ETON E, et al.. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity [J]. Nat. Biotechnol., 2020, 38(7): 883-891.
|
52 |
THURONYI B W, KOBLAN L W, LEVY J M, et al.. Continuous evolution of base editors with expanded target compatibility and improved activity [J]. Nat. Biotechnol., 2019, 37(9): 1070-1079.
|
53 |
CARLSON J C, BADRAN A H, GUGGIANA-NILO D A, et al.. Negative selection and stringency modulation in phage-assisted continuous evolution [J]. Nat. Chem. Biol., 2014, 10(3): 216-222.
|
54 |
WELLNER A, MCMAHON C, GILMAN M S A, et al.. Rapid generation of potent antibodies by autonomous hypermutation in yeast [J]. Nat. Chem. Biol., 2021, 17(10): 1057-1064.
|
55 |
KUANG Y, LI S, REN B, et al.. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms [J]. Mol. Plant, 2020, 13(4): 565-572.
|
56 |
LI C, ZHANG R, MENG X, et al.. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors [J]. Nat. Biotechnol., 2020, 38(7): 875-882.
|
57 |
YU H, LI J. Breeding future crops to feed the world through de novo domestication [J/OL]. Nat. Commun., 2022, 13(1): 1171 [2022-05-15]. .
|
58 |
YU H, LIN T, MENG X, et al.. Aroute to de novo domestication of wild allotetraploid rice [J]. Cell, 2021. 184(5): 1156-1170.
|
59 |
WANG Y, WANG H, WEI L, et al.. Synthetic promoter design in escherichia coli based on a deep generative network [J]. Nucleic Acids Res., 2020, 48(12): 6403-6412.
|
60 |
STROKACH A, KIM P M. Deep generative modeling for protein design [J]. Curr. Opin. Struct. Biol., 2022, 72: 226-236.
|
61 |
WU Z, JOHNSTON K E, ARNOLD F H, et al.. Protein sequence design with deep generative models [J]. Curr. Opin. Chem. Biol., 2021, 65: 18-27.
|