Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (2): 100-108.DOI: 10.13304/j.nykjdb.2022.0930
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles
Guangjun YANG1,2(), Yuan LIAO3, Zhichao ZHANG2, Rongzhen ZHONG4, Ziyuan DUAN2(
)
Received:
2022-10-29
Accepted:
2023-01-12
Online:
2024-02-15
Published:
2024-02-04
Contact:
Ziyuan DUAN
杨广军1,2(), 廖媛3, 张志超2, 钟荣珍4, 段子渊2(
)
通讯作者:
段子渊
作者简介:
杨广军 E-mail:guangjuny1011@163.com;
基金资助:
CLC Number:
Guangjun YANG, Yuan LIAO, Zhichao ZHANG, Rongzhen ZHONG, Ziyuan DUAN. Characteristics of Temporal Expression of Key Genes During Differentiation from Sheep Preadipocyte[J]. Journal of Agricultural Science and Technology, 2024, 26(2): 100-108.
杨广军, 廖媛, 张志超, 钟荣珍, 段子渊. 绵羊前体脂肪细胞分化过程中关键基因时序表达特征研究[J]. 中国农业科技导报, 2024, 26(2): 100-108.
基因名称 Gene name | 登录号 GenBank ID | 引物序列 Primer sequence (5’-3’) | 产物长度 Product size/bp |
---|---|---|---|
m-DLK1 | NM_001190703.1 | F: GCGTGGACCTGGAGAAAG R: ACAGAAGTTGCCTGAGAAGC | 194 |
m-ZFP423 | NM_001310520.1 | F: CACCTGCGATCACTGTCAG R: GACGCAACATCCTTGCTGGA | 141 |
m-SREBF1 | NM_001313979.1 | F: CTTTGGCCTCGCTTTTCGG R: TGGGTCCAATTAGAGCCATCTC | 118 |
m-PPARG | NM_001127330.3 | F: CTCCAAGAATACCAAAGTGCGA R: GCCTGATGCTTTATCCCCACA | 150 |
m-CEBPA | NM_001287514.1 | F: GCGGGAACGCAACAACATC R: GTCACTGGTCAACTCCAGCAC | 97 |
m-FABP4 | NM_001409513.1 | F: TGGGAACCTGGAAGCTTGTCTC R: GAATTCCACGCCCAGTTTGA | 197 |
m-ADIPOQ | NM_009605.5 | F: TCACCTACGACCAGTATCAG R: GAGAAGAAAGCCAGTAAATGT | 167 |
m-ACC1 | NM_133360.3 | F: AACATCCCCACGCTAAACAG R: CTGACAAGGTGGCGTGAAG | 117 |
m-FASN | NM_007988.3 | F: ATTGGCTCCACCAAATCCAAC R: CCCATGCTCCAGGGATAACAG | 90 |
m-LPL | NM_008509.2 | F: TCAGAGCCAAGAGAAGCAGCAA R: TTGTGTTGCTTGCCATCCTCA | 118 |
m-HSL | NM_001039507.2 | F: GATTTACGCACGATGACACAGT R: ACCTGCAAAGACATTAGACAGC | 114 |
m-β-actin | NM_007393.5 | F: TCTGGCACCACCTTCTACAATG R: AGCACAGCCTGGATAGCAACG | 171 |
o-DLK1 | XM_027957402.2 | F: TCTGCGAGATCATGACCAAC R: GGCTTGCACAGACACTTGAA | 214 |
o-ZFP423 | XM_027977817.2 | F: TTCCTGACCGAGTCCTCCCT R: TCTTGTGGTTCTCCTTGATGTGC | 193 |
o-SREBF1 | XM_027974786.2 | F: GAGCTTCGTGGTTTCCAGAG R: CTCAGGCTACGGTCCAGAAG | 158 |
o-PPARG | NM_001100921.1 | F: CCCTGGCAAAGCATTTGTAT R: ACTGACACCCCTGGAAGATG | 222 |
o-CEBPA | NM_001308574.1 | F: CAAAGCCAAGAAGTCCGT R: CTCAGTTGTTCCACCCGC | 180 |
o-FABP4 | NM_001114667.1 | F: AGTGGGTGTGGGCTTTGCTA R: TTTTCTCTTTATGGTGGTTG | 256 |
o-ADIPOQ | XM_042243690.1 | F: TCGTTGGTCCTAAGGGTGAC R: TTGGTAAAGCGAATGGGAAC | 184 |
Table 1 Sequence of amplified primers
基因名称 Gene name | 登录号 GenBank ID | 引物序列 Primer sequence (5’-3’) | 产物长度 Product size/bp |
---|---|---|---|
m-DLK1 | NM_001190703.1 | F: GCGTGGACCTGGAGAAAG R: ACAGAAGTTGCCTGAGAAGC | 194 |
m-ZFP423 | NM_001310520.1 | F: CACCTGCGATCACTGTCAG R: GACGCAACATCCTTGCTGGA | 141 |
m-SREBF1 | NM_001313979.1 | F: CTTTGGCCTCGCTTTTCGG R: TGGGTCCAATTAGAGCCATCTC | 118 |
m-PPARG | NM_001127330.3 | F: CTCCAAGAATACCAAAGTGCGA R: GCCTGATGCTTTATCCCCACA | 150 |
m-CEBPA | NM_001287514.1 | F: GCGGGAACGCAACAACATC R: GTCACTGGTCAACTCCAGCAC | 97 |
m-FABP4 | NM_001409513.1 | F: TGGGAACCTGGAAGCTTGTCTC R: GAATTCCACGCCCAGTTTGA | 197 |
m-ADIPOQ | NM_009605.5 | F: TCACCTACGACCAGTATCAG R: GAGAAGAAAGCCAGTAAATGT | 167 |
m-ACC1 | NM_133360.3 | F: AACATCCCCACGCTAAACAG R: CTGACAAGGTGGCGTGAAG | 117 |
m-FASN | NM_007988.3 | F: ATTGGCTCCACCAAATCCAAC R: CCCATGCTCCAGGGATAACAG | 90 |
m-LPL | NM_008509.2 | F: TCAGAGCCAAGAGAAGCAGCAA R: TTGTGTTGCTTGCCATCCTCA | 118 |
m-HSL | NM_001039507.2 | F: GATTTACGCACGATGACACAGT R: ACCTGCAAAGACATTAGACAGC | 114 |
m-β-actin | NM_007393.5 | F: TCTGGCACCACCTTCTACAATG R: AGCACAGCCTGGATAGCAACG | 171 |
o-DLK1 | XM_027957402.2 | F: TCTGCGAGATCATGACCAAC R: GGCTTGCACAGACACTTGAA | 214 |
o-ZFP423 | XM_027977817.2 | F: TTCCTGACCGAGTCCTCCCT R: TCTTGTGGTTCTCCTTGATGTGC | 193 |
o-SREBF1 | XM_027974786.2 | F: GAGCTTCGTGGTTTCCAGAG R: CTCAGGCTACGGTCCAGAAG | 158 |
o-PPARG | NM_001100921.1 | F: CCCTGGCAAAGCATTTGTAT R: ACTGACACCCCTGGAAGATG | 222 |
o-CEBPA | NM_001308574.1 | F: CAAAGCCAAGAAGTCCGT R: CTCAGTTGTTCCACCCGC | 180 |
o-FABP4 | NM_001114667.1 | F: AGTGGGTGTGGGCTTTGCTA R: TTTTCTCTTTATGGTGGTTG | 256 |
o-ADIPOQ | XM_042243690.1 | F: TCGTTGGTCCTAAGGGTGAC R: TTGGTAAAGCGAATGGGAAC | 184 |
基因名称 Gene name | 登录号 GenBank ID | 引物序列 Primer sequence (5’-3’) | 产物长度 Product size/bp |
---|---|---|---|
o-ACC1 | NM_001009256.1 | F: ACCACCAACGCGAAGGT R: GTCAATGGCGGACAGGA | 114 |
o-FASN | XM_027974304.2 | F: GCCATCCTCTCTGCCTACTG R: CTGCTTCACGAACTCCAACA | 198 |
o-LPL | NM_001009394.1 | F: CTTCAACCACAGCAGCAAAA R: AAACTTGGCCACATCCTGTC | 211 |
o-HSL | NM_001128154.1 | F: CTCCGACTCAGACCAGAAGG R: AGGGCTGCTTCAGACACACT | 192 |
o-β-actin | NM_001009784.3 | F: CGGCAATGAGCGGTTCC R: CCGTGTTGGCGTAGAGGT | 143 |
Table 1 Sequence of amplified primers
基因名称 Gene name | 登录号 GenBank ID | 引物序列 Primer sequence (5’-3’) | 产物长度 Product size/bp |
---|---|---|---|
o-ACC1 | NM_001009256.1 | F: ACCACCAACGCGAAGGT R: GTCAATGGCGGACAGGA | 114 |
o-FASN | XM_027974304.2 | F: GCCATCCTCTCTGCCTACTG R: CTGCTTCACGAACTCCAACA | 198 |
o-LPL | NM_001009394.1 | F: CTTCAACCACAGCAGCAAAA R: AAACTTGGCCACATCCTGTC | 211 |
o-HSL | NM_001128154.1 | F: CTCCGACTCAGACCAGAAGG R: AGGGCTGCTTCAGACACACT | 192 |
o-β-actin | NM_001009784.3 | F: CGGCAATGAGCGGTTCC R: CCGTGTTGGCGTAGAGGT | 143 |
Fig. 1 Morphological feature of 3T3-L1 cell line and ovine preadipocytes and mature adipocytes stained by oil red OA: 3T3-L1 converged to 90%; B~D: 3T3-L1 induced for 8 d and magnified 16, 40, 80 times after oil red O staining; E: Sheep preadipocytes converged to 90%; F~H: Sheep preadipocytes induced for 16 d and magnified 16, 40, 80 times after oil red O staining
Fig. 2 Expression of gene related to adipogenic differentiation in 3T3-L1 cell line and ovine preadipocytesNote:The ordinate on the left is the relative expression of sheep preadipocytes; the ordinate on the right is the expression level of 3T3-L1;sampling interval of sheep preadipocytes is 4 d, and sampling interval of 3T3-L1 is 2 d. Different lowercase letters indicate significant differences between different sampling times of same cell line at P<0.05 level.
1 | MAO Y W, HOPKINS D L, ZHANG Y M, et al.. Consumption patterns and consumer attitudes to beef and sheep meat in China [J]. J. Food Nutr. Res., 2016, 4(42):30-39. |
2 | ROLLS B J, DREWNOWSKI A, LEDIKWE J H. Changing the energy density of the diet as a strategy for weight management [J]. J. Am. Diet. Assoc., 2005, 105(S5):98-103. |
3 | KANTONO K, HAMID N, MA Q, et al.. Consumers’ perception and purchase behaviour of meat in China [J/OL]. Meat Sci., 2021, 179:108548 [2022-09-12]. . |
4 | GHABEN A L, SCHERER P E. Adipogenesis and metabolic health [J]. Nat. Rev. Mol. Cell Biol., 2019, 20(4):242-258. |
5 | NUNN E R, SHINDE A B, ZAGANJOR E. Weighing in on adipogenesis [J/OL]. Front. Physiol., 2022, 13:821278 [2022-09-12]. . |
6 | SUL H S. Minireview: Pref-1: role in adipogenesis and mesenchymal cell fate [J]. Mol. Endocrinol., 2009, 23(11):1717-1725. |
7 | GUPTA R K, MEPANI R J, KLEINER S, et al.. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells [J]. Cell Metab., 2012, 15(2):230-239. |
8 | ARSENIJEVIC T, GRÉGOIRE F, DELFORGE V, et al.. Murine 3t3-l1 adipocyte cell differentiation model: validated reference genes for qpcr gene expression analysis [J/OL]. PLoS One, 2012, 7(5):e37517 [2022-09-12]. . |
9 | LEE J H, CHO H D, JEONG J H, et al.. New vinegar produced by tomato suppresses adipocyte differentiation and fat accumulation in 3t3-l1 cells and obese rat model [J]. Food Chem., 2013, 141(3):3241-3249. |
10 | LEE J Y, KIM T Y, KANG H, et al.. Anti-obesity and anti-adipogenic effects of chitosan oligosaccharide (GO2KA1) in SD rats and in 3T3-L1 preadipocytes models [J/OL]. Molecules, 2021, 26(2): 0331 [2022-09-12]. . |
11 | PARK Y J, SEO D W, JU J Y, et al.. The antiobesity effects of buginawa in 3T3-L1 preadipocytes and in a mouse model of high-fat diet-induced obesity [J/OL]. Biomed. Res. Int., 2019, (3):3101987 [2022-09-12]. . |
12 | WONG M L, MEDRANO J F. Real-time PCR for mRNA quantitation [J]. Biotechniques, 2005, 39(1):75-85. |
13 | DUFAU J, SHEN J X, COUCHET M, et al.. In vitro and ex vivo models of adipocytes [J]. Am. J. Physiol. Cell Physiol., 2021, 320(5):822-841. |
14 | SCOTT M A, NGUYEN V T, LEVI B, et al.. Current methods of adipogenic differentiation of mesenchymal stem cells [J]. Stem Cell Dev., 2011, 20(10):1793-1804. |
15 | 潘红梅,闫尊强,龙熙,等.3T3-L1前脂肪细胞诱导分化方法的建立[J].中国畜牧杂志,2016,52(15):94-97. |
16 | 赵蕾,郑美丽,杨梅,等.3T3-L1前体脂肪细胞诱导分化方法优化的初步探讨[J].首都医科大学学报,2019,40(2):226-231. |
ZHAO L, ZHENG M L, YANG M, et al.. Optimization of induction and differentation of 3T3-L1 preadipocyte [J]. J. Captial Med. Univ., 2019, 40(2):226-231. | |
17 | PU Y, VEIGA A. Pparγ agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes [J/OL]. Cell. Mol. Biol. Lett., 2017, 22:6 [2022-09-12]. . |
18 | WANG Y, LI X, CAO Y, et al.. Effect of the acaa1 gene on preadipocyte differentiation in sheep [J/OL]. Front. Genet., 2021, 12:649140 [2022-09-12]. . |
19 | XIAO C, JIN H G, ZHANG L C, et al.. Effects of SPARCL1 on the proliferation and differentiation of sheep preadipocytes [J]. Adipocyte, 2021, 10(1):658-669. |
20 | DENG K, REN C, LIU Z, et al.. Characterization of RUNX1T1, an adipogenesis regulator in ovine preadipocyte differentiation [J]. Int. J. Mol. Sci., 2018, 19(5):1300 [2022-09-12]. . |
21 | ZENG J, ZHOU S W, ZHAO J, et al.. Role of OXCT1 in ovine adipose and preadipocyte differentiation [J]. Biochem. Biophys. Res. Commun., 2019, 512(4):779-785. |
22 | HAUSMAN G J, BASU U, WEI S, et al.. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location [J]. Annu. Rev. Anim. Biosci., 2014, 2:323-351. |
23 | BOHAN A E, PURVIS K N, BARTOSH J L, et al.. The proliferation and differentiation of primary pig preadipocytes is suppressed when cultures are incubated at 37°Celsius compared to euthermic conditions in pigs [J]. Adipocyte, 2014, 3(4):322-332. |
24 | PATEL N G, HOLDER J C, SMITH S A, et al.. Differential regulation of lipogenesis and leptin production by independent signaling pathways and rosiglitazone during human adipocyte differentiation [J]. Diabetes, 2003, 52(1):43-50. |
25 | LI B J, QIAO L Y, YAN X R, et al.. mRNA expression of genes related to fat deposition during in vitro ovine adipogenesis [J]. Can. J. Anim. Sci., 2019, 99(4):764-771. |
26 | WANG Y, KIM K A, KIM J H, et al.. Pref-1, a preadipocyte secreted factor that inhibits adipogenesis [J]. J. Nutr., 2006, 136(12):2953-2956. |
27 | ZHU Y, QI C, KORENBERG J R, et al.. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mppar gamma) gene: alternative promoter use and different splicing yield two mppar gamma isoforms [J]. Proc. Natl. Acad. Sci. USA, 1995, 92(17):7921-7925. |
28 | WANG Q A, TAO C, JIANG L, et al.. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation [J]. Nat. Cell Biol., 2015, 17(9):1099-1111. |
29 | JANANI C, RANJITHA-KUMARI B D. PPAR gamma gene: a review [J]. Diabetes Metab. Syndrome., 2015, 9(1):46-50. |
30 | KIM J B, WRIGHT H M, WRIGHT M, et al.. ADD1/SREBP1 activates PPAR gamma through the production of endogenous ligand [J]. Proc. Natl. Acad. Sci. USA, 1998, 95(8):4333-4337. |
31 | ZHAO X, FENG D, WANG Q, et al.. Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1 [J]. J. Clin. Invest., 2012, 122(7): 2417-2427. |
32 | HORTON J D. Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis [J]. Biochem. Soc. Trans., 2002, 30(6):1091-1095. |
33 | EBERLÉ D, HEGARTY B, BOSSARD P, et al.. SREBP transcription factors: master regulators of lipid homeostasis [J]. Biochimie, 2004, 86(11):839-848. |
34 | DOROTEA D, KOYA D, HA H. Recent insights into SREBP as a direct mediator of kidney fibrosis via lipid-independent pathways [J/OL]. Front. Pharmacol., 2020, 11:265 [2022-09-12]. . |
35 | ELSTNER E, MÜLLER C, KOSHIZUKA K, et al.. Ligands for peroxisome proliferator-activated receptor gamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice [J]. Proc. Natl. Acad. Sci. USA, 1998, 95(15):8806-8811. |
36 | OLZMANN J A, CARVALHO P. Dynamics and functions of lipid droplets [J]. Nat. Rev. Mol. Cell. Biol., 2019, 20(3):137-155. |
37 | SMITH S, WITKOWSKI A, JOSHI A K. Structural and functional organization of the animal fatty acid synthase [J]. Prog. Lipid Res., 2003, 42(4):289-317. |
38 | WANG H, ECKEL R H. Lipoprotein lipase: from gene to obesity [J]. Am. J. Physiol-Endocrinol. Metab., 2009, 297(2):271-288. |
39 | TSUBAKIO-YAMAMOTO K, SUGIMOTO T, NISHIDA M, et al.. Serum adiponectin level is correlated with the size of HDL and LDL particles determined by high performance liquid chromatography [J]. Metabolism, 2012, 61(12):1763-1770. |
40 | CHAN D C, WATTS G F, NG T W, et al.. Adiponectin and other adipocytokines as predictors of markers of triglyceride-rich lipoprotein metabolism [J]. Clin. Chem., 2005, 51(3):578-585. |
41 | YANAI H, YOSHIDA H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: mechanisms and perspectives [J/OL]. Int. J. Mol. Sci., 2019, 20(5):1190 [2022-09-12]. . |
42 | FURUHASHI M, HOTAMISLIGIL G S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets [J]. Nat. Rev. Drug. Discov., 2008, 7(6):489-503. |
43 | ZIMMERMAN A W, VEERKAMP J H. New insights into the structure and function of fatty acid-binding proteins [J]. Cell. Mol. Life Sci., 2002, 59(7):1096-1116. |
44 | RODRÍGUEZ-CALVO R, GIRONA J, ALEGRET J M, et al.. Role of the fatty acid-binding protein 4 in heart failure and cardiovascular disease [J]. J. Endocrinol., 2017, 233(3):173-184. |
45 | OLZMANN J A, CARVALHO P. Dynamics and functions of lipid droplets [J]. Nat. Rev. Mol. Cell Biol., 2019, 20(3):137-155. |
46 | ROSAS-BALLINA M, GUAN X L, SCHMIDT A, et al.. Classical activation of macrophages leads to lipid droplet formation without de novo fatty acid synthesis [J/OL]. Front. Immunol., 2020, 11:131 [2022-09-12]. . |
[1] | Lingwei SUN, Mengxian HE, Jianjun DAI, Caifeng WU, Defu ZHANG, Yuexia LIN. Metabolomics in Neonatal Lambs of Hu-sheep with Intrauterine Growth Retardation [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 123-131. |
[2] | Wei YAN, Yutao WANG, Yonghao ZHANG, Haixia LIU, Dayong HAN, Aiwen ZHU. Study on Expressions of CNR1 and FABP4 Genes in Ovine Intramuscular Preadipocytes [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 95-102. |
[3] | YAN Wei1, LIU Haixia1, ZHANG Li1, HAN Dayong1, ZHU Aiwen1, ZHAO Xuting1*, LUO Yuzhu2*. Comparative Analysis of FABP4 Genetic Characteristcs of Ovine Population from China and New Zealand [J]. Journal of Agricultural Science and Technology, 2018, 20(9): 40-48. |
[4] |
LIU Yu-feng, WANG Ming-li*, SHI Zi-zhong, WANG Hong-|yu.
Analysis of Technical Efficiency and Technological Progress Contribution in Mutton Sheep Production [J]. , 2014, 16(3): 156-161. |
[5] | JIN Ling-yan|GU Xin|CAI Jin-hua|LIU Ya-ni. Detection of Dovine and Sheep Derived Materials in Feed by Two PCR Methods [J]. , 2008, 10(S2): 76-80. |
[6] | MA Yu-zhen, WANG Rui,YAN Zhen, WANG Li-min| LIU Dong-jun| XIA Guo-liang. Comparison Between Sheep Fetal Fibroblast Cells transfected with |GFP by Lipofectamine^TM and by Fugene-6 [J]. , 2008, 10(1): 108-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||