Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (2): 137-144.DOI: 10.13304/j.nykjdb.2022.0775
• ANIMAL AND PLANT HEALTH • Previous Articles
Linjiao WU1(), Lifang SUN1, Chunhua ZHU2, Hong ZHANG1, Panpan DONG1, Leiqing CHEN1, Yunkun WU1()
Received:
2022-09-13
Accepted:
2023-01-03
Online:
2024-02-15
Published:
2024-02-04
Contact:
Yunkun WU
吴琳娇1(), 孙丽芳1, 朱春华2, 张红1, 董盼盼1, 陈磊清1, 吴允昆1()
通讯作者:
吴允昆
作者简介:
吴琳娇 E-mail: wulinj2925@163.com;
CLC Number:
Linjiao WU, Lifang SUN, Chunhua ZHU, Hong ZHANG, Panpan DONG, Leiqing CHEN, Yunkun WU. Research Progress of Cyprinid Herpesvirus Ⅱ (CyHV-Ⅱ) Vaccine[J]. Journal of Agricultural Science and Technology, 2024, 26(2): 137-144.
吴琳娇, 孙丽芳, 朱春华, 张红, 董盼盼, 陈磊清, 吴允昆. 鲤疱疹病毒二型(CyHV-Ⅱ)疫苗研究进展[J]. 中国农业科技导报, 2024, 26(2): 137-144.
疫苗类型Vaccine type | 抗原成分 Antigenic component | 免疫方式 Immune way | 优点 Advantage | 缺点 Disadvantage | 研发进展 Research progress | 参考文献 Reference |
---|---|---|---|---|---|---|
灭活疫苗Inactivated vaccine | β-丙内酯灭活CyHV-Ⅱβ-propiolactone inactivated CyHV-Ⅱ | 腹腔注射Intraperitoneal injection | 免疫原性强,安全性高,制备方式简单,易储运 Strong immunogenicity, high safety, simple preparation and easy storage and transportation | 免疫效果不稳定,需加强接种 Immune effect is not stable, need to strengthen vaccination | 实验室阶段 Laboratory stage | [ |
福尔马林灭活CyHV-ⅡFormalin inactivated CyHV-Ⅱ | 注射 Injection | [ | ||||
候选亚单位疫苗 Candidate subunit vaccine | 膜蛋白pORF25 Membrane protein pORF25 | 注射 Injection | 成分清楚,副作用弱,安全、高效、可规模化生产Clear composition, weak side effects, safe, efficient, scale production | 表达纯化过程复杂,需要成熟工艺 Complex expression purification process requires a mature process | 实验室研发 Laboratory stage | [ |
衣壳蛋白pORF92 Capsid protein pORF92 | 注射 Injection | [ | ||||
衣壳蛋白pORF72 Capsid protein pORF72 | 注射Injection | [ | ||||
截断膜蛋白pORF25D、pORF25C Truncated membrane protein pORF25D and pORF25C | 腹腔注射Intraperitoneal injection | [ | ||||
核酸疫苗Nucleic acid vaccine | 膜蛋白基因ORF25 Membrane gene ORF25 | 注射Injection | 免疫原性强;易大量表达,稳定性好且易生产 Strong immunogenicity; easy to express in large quantities, good stability and easy to produce | 技术不成熟,免疫反应过强 Immature technology, too strong immune response | 实验室研发 Laboratory stage | [ |
活载体疫苗Living-vector vaccine | 膜蛋白基因串联序列Tandem sequences | 浸泡immersion | 稳定的抗原蛋白分泌 作用 Stable antigenic protein secretion | 常难保存,易失活,易出现不良反应,安全性不高 Difficult to save, easy inactivation, prone to adverse reactions, safety is not high | 实验室研发 Laboratory stage | [ |
纳米递送疫苗 Nano-delivered vaccine | CyHV-Ⅱ核酸亚单位 CyHV-Ⅱ subunit of nucleic acid | 注射Injection | 稳定性强,抗原利用率提高,强化免疫刺激 Strong stability, improved antigen utilization, enhanced immune stimulation | 纳米材料与机体相互作用机制不清晰 The interaction mechanism between nanomaterials and the body is not clear | 申报专利 Patent filing | [ |
Table 1 Candidate CyHV-Ⅱ vaccine
疫苗类型Vaccine type | 抗原成分 Antigenic component | 免疫方式 Immune way | 优点 Advantage | 缺点 Disadvantage | 研发进展 Research progress | 参考文献 Reference |
---|---|---|---|---|---|---|
灭活疫苗Inactivated vaccine | β-丙内酯灭活CyHV-Ⅱβ-propiolactone inactivated CyHV-Ⅱ | 腹腔注射Intraperitoneal injection | 免疫原性强,安全性高,制备方式简单,易储运 Strong immunogenicity, high safety, simple preparation and easy storage and transportation | 免疫效果不稳定,需加强接种 Immune effect is not stable, need to strengthen vaccination | 实验室阶段 Laboratory stage | [ |
福尔马林灭活CyHV-ⅡFormalin inactivated CyHV-Ⅱ | 注射 Injection | [ | ||||
候选亚单位疫苗 Candidate subunit vaccine | 膜蛋白pORF25 Membrane protein pORF25 | 注射 Injection | 成分清楚,副作用弱,安全、高效、可规模化生产Clear composition, weak side effects, safe, efficient, scale production | 表达纯化过程复杂,需要成熟工艺 Complex expression purification process requires a mature process | 实验室研发 Laboratory stage | [ |
衣壳蛋白pORF92 Capsid protein pORF92 | 注射 Injection | [ | ||||
衣壳蛋白pORF72 Capsid protein pORF72 | 注射Injection | [ | ||||
截断膜蛋白pORF25D、pORF25C Truncated membrane protein pORF25D and pORF25C | 腹腔注射Intraperitoneal injection | [ | ||||
核酸疫苗Nucleic acid vaccine | 膜蛋白基因ORF25 Membrane gene ORF25 | 注射Injection | 免疫原性强;易大量表达,稳定性好且易生产 Strong immunogenicity; easy to express in large quantities, good stability and easy to produce | 技术不成熟,免疫反应过强 Immature technology, too strong immune response | 实验室研发 Laboratory stage | [ |
活载体疫苗Living-vector vaccine | 膜蛋白基因串联序列Tandem sequences | 浸泡immersion | 稳定的抗原蛋白分泌 作用 Stable antigenic protein secretion | 常难保存,易失活,易出现不良反应,安全性不高 Difficult to save, easy inactivation, prone to adverse reactions, safety is not high | 实验室研发 Laboratory stage | [ |
纳米递送疫苗 Nano-delivered vaccine | CyHV-Ⅱ核酸亚单位 CyHV-Ⅱ subunit of nucleic acid | 注射Injection | 稳定性强,抗原利用率提高,强化免疫刺激 Strong stability, improved antigen utilization, enhanced immune stimulation | 纳米材料与机体相互作用机制不清晰 The interaction mechanism between nanomaterials and the body is not clear | 申报专利 Patent filing | [ |
1 | HEDRICK R P, GILAD O, YUN S, et al.. A herpesvirus associated with mass mortality of juvenile and adult koi, a strain of common carp [J]. J. Aquat. Anim. Health, 2000, 12(1):44-57. |
2 | JEFFERY K R, BATEMAN K, BAYLEY A, et al.. Isolation of a cyprinid herpesvirus 2 from goldfish, Carassius auratus (L.), in the UK [J]. J. Fish Dis., 2007, 30(11):649-656. |
3 | HEDRICK R P, WALTZEK T B, MCDOWELL T S. Susceptibility of koi carp, common carp, goldfish, and goldfish×common carp hybrids to Cyprinid herpesvirus-2 and herpesvirus-3 [J]. J. Aquat. Anim. Health, 2006, 18(1):26-34. |
4 | DANEK T, KALOUS L, VESELY T, et al.. Massive mortality of Prussian carp Carassius gibelio in the upper Elbe basin associated with herpesviral hematopoietic necrosis (CyHV-2) [J]. Dis. Aquat. Organ, 2012, 102(2):87-95. |
5 | FICHI G, CARDETI G, COCUMELLI C, et al.. Detection of Cyprinid herpesvirus 2 in association with an Aeromonas sobria infection of Carassius carassius (L.), in Italy [J]. J. Fish Dis., 2013, 36(10):823-830. |
6 | OUYANG P, ZHOU Y J, WANG K Y, et al.. First report of Cyprinid herpesvirus 2 outbreak in cultured gibel carp, Carassius auratus gibelio at low temperature [J]. J. World Aquacult. Soc., 2020, 51(5):1208-1220. |
7 | GOODWIN A E, KHOO L, LAPATRA S E, et al.. Goldfish hematopoietic necrosis herpesvirus (Cyprinid herpesvirus 2) in the USA: Molecular confirmation of isolates from diseased fish [J]. J. Aquat. Anim. Health, 2006, 18(1):11-18. |
8 | JUNG S J, MIYAZAKI T. Herpesviral haematopoietic necrosis of goldfish, Carassius auratus (L.) [J]. J. Fish Dis., 1995, 18(3):211-220. |
9 | WANG L, HE J, LIANG L, et al.. Mass mortality caused by Cyprinid herpesvirus 2 (CyHV-2) in Prussian carp (Carassius gibelio) in China [J]. B Eur. Assoc. Fish Pat., 2012, 32(5):164-173. |
10 | GUO Q, ZHANG M M, LI Y, et al.. Biofloc technology (BFT): an alternative aquaculture system for prevention of Cyprinid herpesvirus 2 infection in Gibel carp (Carassius auratus gibelio) [J]. Fish Shellfish Immun., 2018, 83:140-147. |
11 | M-ASHAHBAZI, SANTOS H A. Revolutionary impact of nanovaccines on immunotherapy [J]. New Eng. J. Med., 2015, 2(2):44-50. |
12 | AHMAD M Z, AHMAD J, HAQUE A, et al.. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges [J]. Expert Rev. Vaccines, 2020, 19(11):1053-1071. |
13 | JIANG N, YUAN D, ZHANG M, et al.. Diagnostic case report: disease outbreak induced by CyHV-2 in goldfish in China [J/OL]. Aquaculture, 2020, 523:735156 [2022-08-15]. . |
14 | GROFF J M, LAPATRA S E, MUNN R J, et al.. A viral epizootic in cultured populations of juvenile goldfish due to a putative herpesvirus etiology [J]. J. Vet. Diagn. Invest., 1998, 10(4):375-378. |
15 | DAVISON A J, KUROBE T, GATHERER D, et al.. Comparative genomics of carp herpesviruses [J]. J. Virol., 2013, 87(5):2908-2922. |
16 | ZHANG L L, MA J, FAN Y D, et al.. Immune response and protection in gibel carp, Carassius gibelio, after vaccination with beta-propiolactone inactivated Cyprinid herpesvirus 2 [J]. Fish Shellfish Immun., 2016, 49:344-350. |
17 | BOGWALD J, DALMO R A. Review on immersion vaccines for fish: an update 2019 [J/OL]. Microorganisms, 2019, 7(12):7120627 [2022-08-15]. . |
18 | ZHAO R, GENG Y, YU Z, et al.. New detection of Cyprinid herpesvirus 2 associated with mass mortality in colour crucian carp (Carassius auratus), in China [J]. Aquac. Res., 2019, 50(6):1705-1709. |
19 | YAN Y Y, HUO X C, AI T S, et al.. β-glucan and anisodamine can enhance the immersion immune efficacy of inactivated Cyprinid herpesvirus 2 vaccine in Carassius auratus gibelio [J]. Fish Shellfish Immun., 2020, 98(3):285–295. |
20 | HUSBAND A J. Novel vaccination strategies for the control of mucosal infection [J]. Vaccine, 1993, 11(2):107-112. |
21 | MUNANG’ANDU H M, PAUL J, EVENSEN O. An overview of vaccination strategies and antigen delivery systems for streptococcus agalactiae vaccines in Nile Tilapia (Oreochromis niloticus) [J/OL]. Vaccines, 2016, 4(4):4040048 [2022-08-15]. . |
22 | SILIN D S, LYUBOMSKA O V, JIRATHITIKAL V, et al.. Oral vaccination: where we are? [J]. Expert Opin. Drug Del., 2007, 4(4):323-340. |
23 | LI K, YUAN R, ZHANG M T, et al.. Recombinant baculovirus BacCarassius-D4ORFs has potential as a live vector vaccine against CyHV-2 [J]. Fish Shellfish Immun., 2019, 92(1):101-110. |
24 | ZAMAN M, GOOD M F, TOTH I. Nanovaccines and their mode of action [J]. Methods, 2013, 60(3):226-231. |
25 | SMITH J D, MORTON L D, ULERY B D. Nanoparticles as synthetic vaccines [J]. Curr. Opin. Biotech., 2015, 34:217-224. |
26 | SEO M W, PARK T E. Recent advances with liposomes as drug carriers for treatment of neurodegenerative diseases [J]. Biomed. Eng. Lett., 2021, 11(3):211-216. |
27 | REYES M, RAMIREZ C, NTILDE A I, et al.. A novel "in-feed" delivery platform applied for oral DNA vaccination against IPNV enables high protection in Atlantic salmon (Salmon salar) [J]. Vaccine, 2017, 35(4):626-632. |
28 | CVJETINOVIC D, PRIJOVIC Z, JANKOVIC D, et al.. Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking [J]. J. Control Release, 2021, 332:301-311. |
29 | MAKADIA H K, SIEGEL S J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier [J]. Polymers-Basel, 2011, 3(3):1377-1397. |
30 | ZHANG L, ZENG Z Z, HU C H, et al.. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines [J]. Biomaterials, 2016, 77:307-319. |
31 | MARASINI N, SKWARCZYNSKI M, TOTH I. Oral delivery of nanoparticle-based vaccines [J]. Expert Rev. Vaccines, 2014, 13(11):1361-1376. |
32 | ZHANG C C, XIE H Y, ZHANG Z Y, et al.. Applications and biocompatibility of Mesoporous silica nanocarriers in the field of medicine [J/OL]. Front PHarmacol., 2022, 13:829796 [2022-08-15]. . |
33 | ZHANG W B, ZHU C H, XIAO F N, et al.. pH-controlled release of antigens using mesoporous silica nanoparticles delivery system for developing a fish oral vaccine [J/OL]. Front. Immunol., 2021, 12:644396 [2022-08-15]. . |
34 | HU F, LI Y Y, WANG Q, et al.. Carbon nanotube-based DNA vaccine against koi herpesvirus given by intramuscular injection [J]. Fish Shellfish Immun., 2020, 98:810-818. |
35 | CAO Y, TAN Y F, WONG Y S, et al.. Recent advances in chitosan-based carriers for gene delivery [J]. Mar. Drugs, 2019, 17(6):381 [2022-08-15]. . |
36 | ZHENG F R, LIU H Z, SUN X Q, et al.. Development of oral DNA vaccine based on chitosan nanoparticles for the immunization against reddish body iridovirus in turbots (Hthalmus maximus Scop ) [J]. Aquaculture, 2016, 452:263-271. |
37 | BALLESTEROS N A, ST-JEAN S R, PEREZ-PRIETO S I. Food pellets as an effective delivery method for a DNA vaccine against infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss, Walbaum) [J]. Fish Shellfish Immun., 2014, 37(2):220-228. |
38 | NEVES A, URBINATTI P, MALAFRONTE R, et al.. Malaria outside the Amazon region: natural Plasmodium infection in Anop Helines captured near an indigenous village in the Vale do Rio Branco, Itanhaem, SP, Brazil [J]. Acta Trop., 2013, 125(1):102-106. |
39 | DAS A, ALI N. Nanovaccine: an emerging strategy [J]. Exp. Rev. Vaccines, 2021, 20(10):1273-1290. |
40 | SALGADO-MIRANDA C, LOZA-RUBIO E, ROJAS-ANAYA E, et al.. Viral vaccines for bony fish: past, present and future [J]. Expert Rev. Vaccines, 2013, 12(5):567-578. |
41 | ITO T, KURITA J, OZAKI A, et al.. Growth of cyprinid herpesvirus 2 (CyHV-2) in cell culture and experimental infection of goldfish Carassius auratus [J]. Dis. Aquat. Organ, 2013, 105(3):193-202. |
42 | DHARMARATNAM A, SUDHAGAR A, DAS S, et al.. Immune gene expression and protective effects in goldfish (Carassius auratus L.) immunized with formalin-inactivated cyprinid herpesvirus-2 (CyHV-2) vaccine [J/OL]. Microbiol. Pathog., 2022, 164:105452 [2022-08-15]. . |
43 | SHEN Z, JIANG Y, LU J, et al.. Application of a monoclonal antibody specific for the ORF92 capsid protein of Cyprinid herpesvirus 2 [J]. J. Virol. Methods, 2018, 261:22-27. |
44 | KONG S Y, JIANG Y S, WANG Q, et al.. Detection methods of Cyprinid herpesvirus 2 infection in silver crucian carp (Carassius auratus gibelio) via a pORF72 monoclonal antibody [J]. J. Fish Dis., 2017, 40(12):1791-1798. |
45 | DU M, CHEN M, SHEN H, et al.. CyHV-2 ORF104 activates the p38 MAPK pathway [J]. Fish Shellfish Immun., 2015, 46(2):268-273. |
46 | WU R H, ZHANG Q, LI Y. Development, characterization of monoclonal antibodies specific for the ORF25 membrane protein of Cyprinid herpesvirus 2 and their applications in immunodiagnosis and neutralization of virus infection [J/OL]. Aquaculture, 2020, 519:734904 [2022-08-15]. . |
47 | GAO W, WEN H, WANG H, et al.. Identification of structure proteins of Cyprinid herpesvirus 2 [J/OL]. Aquaculture, 2020, 523:735184 [2022-08-15]. . |
48 | ZHOU Y, JIANG N, MA J, et al.. Protective immunity in gibel carp, Carassius gibelio of the truncated proteins of Cyprinid herpesvirus 2 expressed in Pichia pastoris [J]. Fish Shellfish Immun., 2015, 47(2):1024-1031. |
49 | DONG Z R, MU Q J, KONG W G, et al.. Gut mucosal immune responses and protective efficacy of oral yeast Cyprinid herpesvirus 2 (CyHV-2) vaccine in Carassius auratus gibelio [J/OL]. Front. Immunol., 2022, 13:932722. . |
50 | KRISHNAN B R. Current status of DNA vaccines in veterinary medicine [J]. Adv. Drug Deliver Rev., 2000, 43(1):3-11. |
51 | YUAN X M, SHEN J Y, PAN X Y, et al.. Screening for protective antigens of Cyprinid herpesvirus 2 and construction of DNA vaccines [J/OL]. J. Viro Methods, 2020, 280:113877 [2022-08-15]. . |
52 | CAO Z W, LIU S J, NAN H, et al.. Immersion immunization with recombinant baculoviruses displaying Cyprinid herpesvirus 2 membrane proteins induced protective immunity in gibel carp [J]. Fish Shellfish Immun., 2019, 93:879-887. |
53 | ZHANG T, GU Y, LIU X, et al.. Incidence of Carassius auratus gibelio gill hemorrhagic disease caused by CyHV-2 infection can be reduced by vaccination with polyhedra incorporating antigens [J/OL]. Vaccines, 2021, 9(4):9040397 [2022-08-15]. . |
54 | FRANCIS M J. Recent advances in vaccine technologies [J]. Vet Clin. N Am-Small, 2018, 48(2):231-241. |
55 | 贡成良,曹广力,胡小龙,等.基于杆状病毒表达系统制备包裹鲤疱疹病毒II型抗原的多角体的方法:CN106834352A[P].2017-06-13. |
56 | 翟秋明,胡小龙,张星,等.一种纳米晶体包裹CyHv-2核酸亚单位疫苗的制备方法:CN114854789A[P].2022-08-05. |
57 | PAN J B, WANG Y Q, ZHANG C, et al.. Antigen-directed fabrication of a multifunctional nanovaccine with ultrahigh antigen loading efficiency for tumor photothermal-immuotherapy [J/OL]. Adv. MaterNLM, 2018, 30(8):4408 [2022-08-15]. . |
58 | DAR A H, RASHID N, MAJID I, et al.. Nanotechnology interventions in aquaculture and seafood preservation [J]. Crit. Rev. Food Sci., 2020, 60(11):1912-1921. |
59 | CHAN F, YONG J L, BIJAN E F, et al.. Emerging vaccine nanotechnology: from defense against infection to sniping cancer [J]. Acta Pharm. Sin. B, 2022, 12(5):2206-2223. |
60 | HUO X C, FAN C J, AI T S, et al.. The combination of molecular adjuvant CCL35.2 and DNA vaccine significantly enhances the immune protection of Carassius auratus gibelio against CyHV-2 infection [J/OL]. Vaccines, 2020, 8(4):8040567 [2022-08-15]. . |
61 | LIU L F, GAO S, LUAN W M, et al.. Generation and functional evaluation of a DNA vaccine co-expressing Cyprinid herpesvirus 3 envelop protein and carp interleukin-1 beta [J]. Fish Shellfish Immun., 2018, 80:223-231. |
[1] | Yating WU, Xiaoyu WANG, Qingping TANG, Zun WU, Haofeng GAO, Xuexin HE, Zhanglei YANG, Xuying JIA, Peng SHAO. Isolation and Identification of Bacterial Etiology and Histopathological Study of Surface Ulcer of Cynoglossus semilaevis [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 135-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||