中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (2): 199-210.DOI: 10.13304/j.nykjdb.2021.0675
• 生物制造 资源生态 • 上一篇
收稿日期:
2021-08-09
接受日期:
2021-09-23
出版日期:
2023-02-15
发布日期:
2023-05-17
通讯作者:
杨再华
作者简介:
罗鑫 E-mail: 1273760130@qq.com;
基金资助:
Xin LUO(), Yuekai WU, Niannian ZHANG, Jie XU, Zaihua YANG(
)
Received:
2021-08-09
Accepted:
2021-09-23
Online:
2023-02-15
Published:
2023-05-17
Contact:
Zaihua YANG
摘要:
为明确贵州油茶(Camellia oleifera Abel.)根际土壤真菌组成及多样性,同时探究其根际土壤真菌与土壤环境因子的相关性,以来自贵州贵阳、天柱、玉屏、望谟、威宁、黎平和册亨共7个地区的油茶根际土壤微生物为研究对象,采用Illumina MiSeq高通量测序技术对真菌群落的组成结构进行分析,同时测定其土壤理化性质,并与根际土壤真菌群落进行相关性分析。结果表明,油茶根际土壤呈酸性,富含有机质和速效钾,但少氮低磷,且不同地区土壤理化性质差异显著。Alpha多样性分析表明,油茶根际土壤真菌具有丰富的多样性,其中,望谟地区多样性最高;册亨次之;而贵阳最低。Beta多样性分析则显示7个地区间油茶根际土壤真菌组成具有显著差异。7个地区土壤样品中共获得634个OTUs(operational taxonomic units),隶属于9门、32纲、73目、141科和213属。在门水平,玉屏地区根际土壤真菌的优势菌门为担子菌门(Basidiomycota),其余6个地区根际土壤真菌的优势菌门均为子囊菌门(Ascomycota)。在属水平,沙蜥属(Saitozyma)、Archaeorhizomyces、被孢霉属(Mortierella)等在不同地区间的分布与相对丰度存在显著差异。相关分析表明,土壤全钾、有效磷、速效钾和有机质含量是影响油茶根际土壤真菌群落组成的主要驱动因子。其中,青霉属(Penicillium)、Cladophialophora、Oidiodendron等部分土壤真菌与土壤环境因子呈显著正相关性;而具有致病特性的Ilyonectria和镰刀菌属(Fusarium)与土壤环境因子呈显著负相关。以上研究结果为开发有益的油茶根际真菌资源,以及通过调控土壤环境因子来预防油茶病害提供了科学依据。
中图分类号:
罗鑫, 吴跃开, 张念念, 许杰, 杨再华. 油茶根际土壤真菌群落组成及多样性分析[J]. 中国农业科技导报, 2023, 25(2): 199-210.
Xin LUO, Yuekai WU, Niannian ZHANG, Jie XU, Zaihua YANG. Composition and Diversity of Fungal Community in Rhizosphere Soil of Camellia Oleifera[J]. Journal of Agricultural Science and Technology, 2023, 25(2): 199-210.
采样地点 Sampling sites | 经度 Longitude | 纬度 Latitude | 海拔 Altitude/m |
---|---|---|---|
贵阳GY | 106°44′37″ E | 26°33′19″ N | 1 245 |
天柱TZ | 109°11′15″ E | 26°54′35″ N | 472 |
玉屏YP | 108°54′47″ E | 27°18′17″ N | 511 |
望谟WM | 106°6′22″ E | 25°12′21″ N | 769 |
威宁WN | 104°41′5″ E | 26°44′55″ N | 1 982 |
黎平LP | 109°11′15″ E | 26°20′21″ N | 474 |
册亨CH | 105°48′54″ E | 24°53′47″ N | 948 |
表1 油茶根际土壤采样地点及信息
Table 1 Sampling sites and information of C. oleifera rhizosphere soil
采样地点 Sampling sites | 经度 Longitude | 纬度 Latitude | 海拔 Altitude/m |
---|---|---|---|
贵阳GY | 106°44′37″ E | 26°33′19″ N | 1 245 |
天柱TZ | 109°11′15″ E | 26°54′35″ N | 472 |
玉屏YP | 108°54′47″ E | 27°18′17″ N | 511 |
望谟WM | 106°6′22″ E | 25°12′21″ N | 769 |
威宁WN | 104°41′5″ E | 26°44′55″ N | 1 982 |
黎平LP | 109°11′15″ E | 26°20′21″ N | 474 |
册亨CH | 105°48′54″ E | 24°53′47″ N | 948 |
样本 Sample | pH | 有机质 OM/(g·kg-1) | 全氮 TN/(g·kg-1) | 全磷 TP/(g·kg-1) | 全钾 TK/(g·kg-1) | 碱解氮 AN/(mg·kg-1) | 有效磷 AP/(mg·kg-1) | 速效钾 AK/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
GY | 4.45±0.02 e | 48.66±1.37 c | 1.66±0.04 b | 0.47±0.02 cd | 5.19±0.14 f | 65.33±1.42 c | 9.34±0.29 a | 90.75±1.71 d |
TZ | 4.52±0.02 d | 66.50±1.04 b | 1.09±0.05 f | 0.49±0.02 c | 8.84±0.28 d | 72.85±1.72 b | 4.36±0.09 b | 185.00±4.55 a |
YP | 4.35±0.03 f | 28.57±0.84 e | 1.33±0.06 d | 0.62±0.03 b | 15.06±0.25 a | 48.18±1.31 e | 4.56±0.10 b | 65.50±1.73 f |
WM | 4.73±0.02 b | 25.60±0.61 f | 1.21±0.06 e | 0.39±0.01 e | 14.27±0.26 b | 42.29±1.16 f | 3.44±0.20 c | 66.5±2.38 f |
WN | 4.57±0.03 c | 74.26±1.00 a | 2.20±0.04 a | 1.25±0.04 a | 9.30±0.19 c | 75.54±2.35 a | 1.01±0.03 e | 160.75±5.31 b |
LP | 4.76±0.03 ab | 12.94±0.68 g | 0.61±0.02 g | 0.22±0.01 f | 6.99±0.28 e | 30.70±0.86 g | 1.27±0.07 d | 74.50±2.38 e |
CH | 4.79±0.02 a | 45.41±0.80 d | 1.46±0.07 c | 0.44±0.02 d | 14.44±0.09 b | 56.29±1.12 d | 0.98±0.05 e | 105.00±2.71 c |
表2 不同地区油茶根际土壤的理化性质
Table 2 Physicochemical properties of C. oleifera rhizosphere soil from different regions
样本 Sample | pH | 有机质 OM/(g·kg-1) | 全氮 TN/(g·kg-1) | 全磷 TP/(g·kg-1) | 全钾 TK/(g·kg-1) | 碱解氮 AN/(mg·kg-1) | 有效磷 AP/(mg·kg-1) | 速效钾 AK/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
GY | 4.45±0.02 e | 48.66±1.37 c | 1.66±0.04 b | 0.47±0.02 cd | 5.19±0.14 f | 65.33±1.42 c | 9.34±0.29 a | 90.75±1.71 d |
TZ | 4.52±0.02 d | 66.50±1.04 b | 1.09±0.05 f | 0.49±0.02 c | 8.84±0.28 d | 72.85±1.72 b | 4.36±0.09 b | 185.00±4.55 a |
YP | 4.35±0.03 f | 28.57±0.84 e | 1.33±0.06 d | 0.62±0.03 b | 15.06±0.25 a | 48.18±1.31 e | 4.56±0.10 b | 65.50±1.73 f |
WM | 4.73±0.02 b | 25.60±0.61 f | 1.21±0.06 e | 0.39±0.01 e | 14.27±0.26 b | 42.29±1.16 f | 3.44±0.20 c | 66.5±2.38 f |
WN | 4.57±0.03 c | 74.26±1.00 a | 2.20±0.04 a | 1.25±0.04 a | 9.30±0.19 c | 75.54±2.35 a | 1.01±0.03 e | 160.75±5.31 b |
LP | 4.76±0.03 ab | 12.94±0.68 g | 0.61±0.02 g | 0.22±0.01 f | 6.99±0.28 e | 30.70±0.86 g | 1.27±0.07 d | 74.50±2.38 e |
CH | 4.79±0.02 a | 45.41±0.80 d | 1.46±0.07 c | 0.44±0.02 d | 14.44±0.09 b | 56.29±1.12 d | 0.98±0.05 e | 105.00±2.71 c |
样本 Sample | 序列数 Number of sequences | OTUs数量 OTUs amount | 覆盖度 Converage/% | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao 1指数 Chao 1 index |
---|---|---|---|---|---|---|---|
GY | 72 617±2 244 a | 198±20 cd | 99.90±0.01 a | 1.82±0.26 b | 0.41±0.06 a | 231.86±17.16 bc | 233.33±18.85 b |
TZ | 65 123±4 335 c | 239±19 b | 99.95±0.02 a | 3.05±0.73 a | 0.18±0.12 bc | 250.27±15.60 b | 250.28±13.80 b |
YP | 68 462±5 735 b | 154±6 e | 99.97±0.01 a | 2.10±0.60 b | 0.38±0.17 a | 161.28±12.80 e | 162.78±12.88 d |
WM | 67 440±6 651 b | 236±16 b | 99.97±0.01 a | 3.62±0.16 a | 0.07±0.02 c | 242.58±19.67 bc | 241.89±19.94 b |
WN | 70 937±2 249 b | 203±11 c | 99.94±0.02 a | 3.07±0.43 a | 0.16±0.08 c | 225.61±19.19 c | 227.68±21.51 b |
LP | 72 957±2 030 a | 181±6 d | 99.94±0.02 a | 2.11±0.49 b | 0.31±0.13 ab | 194.95±6.45 d | 195.43±8.78 c |
CH | 72 453±1 933 a | 285±12 a | 99.93±0.01 a | 3.45±0.07 a | 0.08±0.00 c | 302.55±15.26 a | 307.79±18.55 a |
表3 油茶根际土壤真菌ITS测序结果及Alpha多样性
Table 3 ITS sequencing results and alpha diversity of rhizosphere soil fungi of C. oleifera
样本 Sample | 序列数 Number of sequences | OTUs数量 OTUs amount | 覆盖度 Converage/% | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao 1指数 Chao 1 index |
---|---|---|---|---|---|---|---|
GY | 72 617±2 244 a | 198±20 cd | 99.90±0.01 a | 1.82±0.26 b | 0.41±0.06 a | 231.86±17.16 bc | 233.33±18.85 b |
TZ | 65 123±4 335 c | 239±19 b | 99.95±0.02 a | 3.05±0.73 a | 0.18±0.12 bc | 250.27±15.60 b | 250.28±13.80 b |
YP | 68 462±5 735 b | 154±6 e | 99.97±0.01 a | 2.10±0.60 b | 0.38±0.17 a | 161.28±12.80 e | 162.78±12.88 d |
WM | 67 440±6 651 b | 236±16 b | 99.97±0.01 a | 3.62±0.16 a | 0.07±0.02 c | 242.58±19.67 bc | 241.89±19.94 b |
WN | 70 937±2 249 b | 203±11 c | 99.94±0.02 a | 3.07±0.43 a | 0.16±0.08 c | 225.61±19.19 c | 227.68±21.51 b |
LP | 72 957±2 030 a | 181±6 d | 99.94±0.02 a | 2.11±0.49 b | 0.31±0.13 ab | 194.95±6.45 d | 195.43±8.78 c |
CH | 72 453±1 933 a | 285±12 a | 99.93±0.01 a | 3.45±0.07 a | 0.08±0.00 c | 302.55±15.26 a | 307.79±18.55 a |
图7 油茶根际土壤真菌的物种差异分析注:*、**和***分别表示差异在P<0.05、P<0.01和P<0.001水平显著。
Fig. 7 Differential species analysis of fungi in the rhizosphere soil of C. oleiferaNote:*, ** and *** mean significant differences at P<0.05, P<0.01 and P<0.001 levels, respectively.
图8 前10优势真菌类群与土壤环境因子在属水平上的RDA分析注:OM—有机质;TN—全氮;TP—全磷;TK—全钾;AN—碱解氮;AP—有效磷;AK—速效钾;箭头长短代表其与真菌的关联程度;箭头间夹角为锐角代表正相关,夹角为钝角代表负相关性,夹角为直角表示无相关性。
Fig. 8 RDA analysis of top ten dominant fungal groupsand soil environmental factors in C. oleifera rhizosphere soil at genus levelNote:OM—Organic matter; TN—Total nitrogen; TP—Total phosphorus; TK—Total potassium; AN—Alkali hydrolyzed nitrogen; AP—Available phosphorus; AK—Available potassium; the length of the arrow represents the degree of association with fungi; the acute angle, obtuse angle and right angle between the arrows represent the positive correlation, negative correlation and no correlation, respectively.
参数Parameter | RDA1 | RDA2 | 决定系数r2 | P值P value |
---|---|---|---|---|
pH | -0.866 | -0.498 | 0.060 | 0.511 |
有机质OM | -0.590 | -0.807 | 0.232 | 0.048 |
全氮TN | -0.709 | -0.704 | 0.100 | 0.305 |
全磷TP | -0.943 | -0.331 | 0.149 | 0.136 |
全钾TK | -0.983 | 0.182 | 0.657 | 0.001 |
碱解氮AN | -0.596 | -0.802 | 0.137 | 0.184 |
有效磷AP | 0.744 | 0.667 | 0.366 | 0.005 |
速效钾AK | -0.554 | -0.832 | 0.266 | 0.020 |
表4 前10优势真菌类群与土壤环境因子envfit函数检验
Table 4 Envfit permutation function test of top ten dominant fungal groups and soil environmental factors
参数Parameter | RDA1 | RDA2 | 决定系数r2 | P值P value |
---|---|---|---|---|
pH | -0.866 | -0.498 | 0.060 | 0.511 |
有机质OM | -0.590 | -0.807 | 0.232 | 0.048 |
全氮TN | -0.709 | -0.704 | 0.100 | 0.305 |
全磷TP | -0.943 | -0.331 | 0.149 | 0.136 |
全钾TK | -0.983 | 0.182 | 0.657 | 0.001 |
碱解氮AN | -0.596 | -0.802 | 0.137 | 0.184 |
有效磷AP | 0.744 | 0.667 | 0.366 | 0.005 |
速效钾AK | -0.554 | -0.832 | 0.266 | 0.020 |
图9 属水平物种丰度与土壤环境因子的Spearman相关性分析注:*、**和***分别表示相关在P<0.05、P<0.01和P<0.001水平显著。
Fig. 9 Spearman correlation analysis of species abundance and soil environmental factors at genus levelNote:*, ** and *** mean significant correlation at P<0.05, P<0.01 and P<0.001 levels, respectively.
1 | MA J Q, MA Y, WEI Z L, et al.. Effects of arbuscular mycorrhizal fungi symbiosis on microbial diversity and enzyme activities in the rhizosphere soil of Artemisia annua [J]. Soil Sci. Soc. Am. J., 2021, 85(3):703-716. |
2 | POWELL J R, RILLIG M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function [J]. New Phytol., 2018, 220(4):1059-1075. |
3 | HANNULA S E, MORRIËN E, PUTTEN W H V D, et al.. Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil [J/OL]. Fungal Ecol., 2020, 48:100988 [2021-07-05]. . |
4 | 吴佳伟,杨瑞,王勇,等.贵州草海流域三种不同植被类型根际土壤真菌结构组成和多样性[J].菌物学报,2020,39(7):1250-1262. |
WU J W, YANG R, WANG Y, et al.. Community and diversity of rhizosphere soil fungi in three different vegetation types in Caohai basin, Guizhou province [J]. Mycosystema, 2020, 39(7):1250-1262. | |
5 | 魏世清,李金怀,蒲小东,等.施用沼肥对油茶林根际土壤微生物数量和酶活性影响[J].中国沼气,2018,36(6):55-60. |
WEI S Q, LI J H, PU X D, et al.. Effects of biogas fertilizer on soil microbial population and enzyme activities in rhizosphere soil of Camellia oleifera [J]. China Biogas, 2018, 36(6):55-60. | |
6 | 庄瑞林.中国油茶[M].北京:中国林业出版社,2008:1-366. |
ZHUANG R L. Chinese Camellia oleifera [M]. Beijing:China Forestry Press, 2008:1-366. | |
7 | 王进.贵州油茶特色资源[J].大众科学,2020(12):20-21. |
8 | WANG Y X, CHEN J Y, XU X W, et al.. Identification and characterization of Colletotrichum species associated with anthracnose disease of Camellia oleifera in China [J]. Plant Dis., 2020, 104(2):474-482. |
9 | TANG Y Y, HE X M, SUN J, et al.. Comprehensive evaluation on tailor-made Deep Eutectic Solvents (DESs) in extracting tea saponins from seed pomace of Camellia oleifera Abel [J/OL]. Food Chem., 2021, 342:128243 [2021-07-05]. . |
10 | ZHANG J P, ZHANG T T, YING Y, et al.. Effects of different additives on the chemical composition and microbial diversity during composting of Camellia oleifera shell [J/OL]. Bioresource Technol., 2021, 330:124990 [2021-07-05]. . |
11 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:1-495. |
12 | CHANG S, PURYEAR J, CAIRNEY J. A simple and efficient method for isolating RNA from pine trees [J]. Plant Mol. Biol. Rep., 1993, 11(2):113-116. |
13 | CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al.. QIIME allows analysis of high-throughput community sequencing data [J]. Nat. Methods, 2010, 7(5):335-336. |
14 | TEDERSOO L, SÁNCHEZ-RAMÍREZ S, KÕLJALG U, et al.. High-level classification of the fungi and a tool for evolutionary ecological analyses [J]. Fungal Divers., 2018, 90(1):135-159. |
15 | SCHLOSS P D, WESTCOTT S L, RYABIN T, et al.. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Appl. Environ. Microb., 2009, 75(23):7537-7541. |
16 | VEACH A M, MORRIS R E E S E, YIP D Z, et al.. Correction to:Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin [J]. Microbiome, 2021, 9(1):21-21. |
17 | 尹杰, 牛素贞, 刘进平, 等. 贵州有机茶园土壤肥力的调查[J]. 西南农业学报, 2013, 26(1):226-229. |
YIN J, NIU S Z, LIU J P, et al.. Investigation on soil fertility of organic tea garden in Guizhou [J]. Southwest China J. Agric. Sci., 2013, 26(1):226-229. | |
18 | 冯金玲, 郑新娟, 杨志坚, 等. 套种模式对油茶生长及根际土壤理化性质的影响[J]. 森林与环境学报, 2015, 35(4):324-330. |
FENG J L, ZHENG X J, YANG Z J, et al.. Effects of interplanting pattern on the forest and rhizosphere soil physical and chemical properties of Camellia oleifera [J]. J. For. Environ., 2015, 35(4):324-330. | |
19 | 马帅兵, 李昌来, 周忠发. 贵州省油茶的生态适宜性评价及种植区划研究[J]. 安徽农业科学, 2011, 39(23):14094-14097. |
MA S B, LI C L, ZHOU Z F. Ecological suitability and planting regionalization of Camellia oleifera in Guizhou province [J]. J. Anhui Agric. Sci., 2011, 39(23):14094-14097. | |
20 | DING Y Q, JIN Y L, HE K Z, et al.. Low nitrogen fertilization alter rhizosphere microorganism community and improve sweetpotato yield in a nitrogen-deficient rocky soil [J/OL]. Front. Microbiol., 2020, 11:678 [2021-07-05]. . |
21 | 刘松涛,田春丽,曹雯梅,等.基于不同土壤质地棉花根际微生物和酶活性特征分析[J].中国农业科技导报,2020,22(2):73-79. |
LIU S T, TIAN C L, CAO W M, et al.. Characteristics of rhizosphere microorganisms and enzyme activities of cotton based on different soil textures [J]. J. Agric. Sci. Technol., 2020:22(2):73-79. | |
22 | JIMU L K, NYAKUDYA I W, MAGOGO C, et al.. Impact of pine plantation establishment on soil properties and fungal communities of natural forests in Zimbabwe [J]. Southern For: J. For. Sci., 2020, 82(3):263-270. |
23 | CHEN Y L, XU T L, HU H W, et al.. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China [J]. Soil Biol. Biochem., 2017, 110(2):12-23. |
24 | MIGUEL R M, JOSE G M V, MEIKE P. Diversity of fungi in soils with different degrees of degradation in Germany and Panama [J]. Mycobiology, 2020, 48(1):20-28. |
25 | 傅海平,周品谦,王沅江,等.绿肥间作对茶树根际土壤真菌群落的影响[J].茶叶通讯,2020,47(3):406-415. |
FU H P, ZHOU P Q, WANG Y J, et al.. Effects of intercropping different green manures on fungal community characteristics in rhizosphere soil of tea plant [J]. J. Tea Comm., 2020:47(3):406-415. | |
26 | 史芳芳,李向泉.葡萄根际土壤真菌群落多样性分析[J].中国农业科技导报,2019,21(7):47-58. |
SHI F F, LI X Q. Diversity analysis of fungus community in rhizosphere soil of grape [J]. Rev. China Agric. Sci. Technol., 2019, 21(7):47-58. | |
27 | 景晓雅,孙柳清,李尚彧,等.太行菊属植物根际土壤微生物多样性初步研究[J].中国农业科技导报,2021,23(3):193-200. |
JING X Y, SUN L Q, LI S Y, et al.. Rhizospheric microorganisms diversity analysis of Opisthopappus sp. [J]. J. Agric. Sci. Technol., 2021, 23(3):193-200. | |
28 | LIU H J, DUAN W D, LIU C, et al.. Spore production in the solid-state fermentation of stevia residue by Trichoderma guizhouense and its effects on corn growth [J]. J. Integr. Agric., 2021, 20(5):1147-1156. |
29 | HAN S W, YANG X, LI L Q, et al.. Limiting factors of saffron corm production from the perspective of microorganisms [J]. Sci. Hortic., 2019, 247:165-174. |
30 | BARBARA P, DAVID B, HUGUES B, et al.. Positive effects of plant association on rhizosphere microbial communities depend on plant species involved and soil nitrogen level [J]. Soil Biol. Biochem., 2017, 114:1-4. |
31 | 杨娟,董醇波,张芝元,等.不同产地杜仲根际土真菌群落结构的差异性分析[J].菌物学报,2019,38(3):327-340. |
YANG J, DONG C B, ZHANG Z Y, et al.. Analyses on fungal community composition of Eucommia ulmoides rhizosphere soil in different areas [J]. Mycosystema, 2019, 38(3):327-340. | |
32 | 张淼,陈裕凤,陈龙,等.不同地区药用植物两面针根际土壤真菌种群多样性差异分析[J].生物技术通报,2020,36(9):167-179. |
ZHANG M, CHEN Y F, CHEN L, et al.. Difference analysis of the community diversity of fungi in the rhizosphere soil of Zanthoxylum nitidum (Roxb.) DC in different regions [J]. Biotech. Bulletin, 2020, 36(9):167-179. | |
33 | 童炳丽,刘济明,陈敬忠,等.米槁根际土壤真菌多样性及其与果实药用活性成分含量的相关性分析[J].菌物学报,2019,38(7):1058-1070. |
TONG B L, LIU J M, CHEN J Z, et al.. Correlation between fungal diversity in rhizosphere soil and medicinal active components in fruits of Cinnamomum migao [J]. Mycosystema, 2019, 38(7):1058-1070. | |
34 | ALAN E R, JOSÉ-MIGUEL B, ANN M M, et al.. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms [J]. Plant Soil, 2009, 321(1-2):305-339. |
35 | MOHAMED E F, YEON-JU K, YU-JIN K, et al.. Cylindrocarpon destructans/Ilyonectria radicicola -species complex: causative agent of ginseng root-rot disease and rusty symptoms [J]. J. Gins. Res., 2018, 42(1):9-15. |
36 | XIN L, CUN Y. First report of damping-off disease caused by Fusarium oxysporum in Pinus massoniana in China [J]. J. Plant Dis. Protect., 2020, 127:401-409. |
37 | MILLIDEE M M, W. M J, M. W J. Effect of soil fertility and intercropping on the incidence and severity of root rot diseases of common bean (Phaseolus vulgaris L.) [J]. World J. Agric. Res., 2017, 5(4):189-199. |
[1] | 王嘉元1,秦富仓1*,杨振奇2,任小同1,芳菲3,张颖4. 黄土残塬沟壑区不同土地利用方式下土壤动物群落特征[J]. 中国农业科技导报, 2021, 23(3): 156-165. |
[2] | 丁苏芹,晏姿,李玺,唐东芹*. 香雪兰球茎发育的内源激素变化规律研究[J]. 中国农业科技导报, 2019, 21(9): 51-57. |
[3] | 赵蓉蓉1,邵惠芳1*,范磊2,张慢慢3,王杉杉1,陈芳泉1,刘志宏1,牛桂言1,郝浩浩4,许自成1. 烘丝工序烟丝化学成分与感官质量的关系分析[J]. 中国农业科技导报, 2017, 19(2): 93-102. |
[4] | 王鹏泽1,来苗1,陶陶1,付培培1,任伟2, 杜阅光3,位辉琴3,周伏叶1,刘鹏飞1,赵铭钦1*. 不同香型烤烟主要香味物质成分与香韵指标的关系研究[J]. , 2015, 17(3): 126-135. |
[5] | 李娜娜1*,吴秋平2*,张晓冬1,董树亭2,刘鹏2,张吉旺2. 30个甜高粱品种茎秆糖产量与干物质生产特性相关研究[J]. , 2011, 13(4): 104-109. |
[6] | 赵连武,谢永生,王继军,刘涛,何毅峰,李文卓. 陕西省汉台区农业产业结构现状分析及调整对策[J]. , 2008, 10(5): 104-109. |
[7] | 焦芳婵1,许自成2,卢秀萍1,郑聪2,3,肖炳光1,刘朝营2. 不同世代群体烤烟化学成分和评吸质量的比较[J]. , 1, 1(1): 115-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||