1 |
NATHAN P, RICH P, REBECCA R. Comparative life cycle environmental impacts of three beef production strategies in the upper midwestern united states [J]. Agric. Syst., 2010, 103(6):380-389.
|
2 |
VAN B E, MODERNEL P, VIETS T. Environmental and economic performance of dutch dairy farms on peat soil [J/OL]. Agric. Syst., 2021, 193:103243 [2022-02-10]. .
|
3 |
郝思雯,马力通,成建国.苯甲醛对泥炭产生物甲烷的影响研究[J].现代化工,2021,44:1-7.
|
|
HAO S W, MA L T, CHENG J G. Effect of benzaldehyde on biomethane production from peat [J]. Mod. Chem. Ind., 2021, 44:1-7.
|
4 |
郝思雯,马力通,王亚雄,等.稀土化合物对泥炭产甲烷的促进作用[J].中国稀土学报,2021,39(2):294-301.
|
|
HAO S W, MA L T, WANG Y X, et al.. Enhanced methane production from peat with rare earth compounds [J]. J. Chin. Soc. Rare Earths, 2021, 39(2):294-301.
|
5 |
CHEN G Y, CHANG Z X, YE X M. Feasibility of anaerobic batch co-digestion of peat and rich straw for biogas production [J]. Res. Gate, 2011, 20(10A):2776-2784.
|
6 |
张水花,李宝才,张惠芬,等.黄腐植酸的化学组成[J].光谱实验室,2012,29(5):3216-3219.
|
|
ZHANG S H, LI B C, ZHANG H F, et al.. Chemical compositions of fulvic acid [J]. Chin. J. Sp. Lab., 2012, 29(5):3216-3219.
|
7 |
董利超,马力通,王亚雄.腐植酸前体物质木质素对褐煤生物甲烷化的影响[J].化学工程,2020,48(1):69-73.
|
|
DONG L C, MA L T, WANG Y X. Effect of humic acid precursor lignin on biomethanation of lignite [J]. Chem. Eng., 2020, 48(1):69-73.
|
8 |
马力通,刘云颖,董利超,等.苯甲酸对褐煤生物甲烷化的影响[J].煤炭转化,2019,42(1):73-77.
|
|
MA L T, LIU Y Y, DONG L C, et al.. Effects of benzoic acid on lignite biomethanation [J]. Coal Convers., 2019, 42(1):73-77.
|
9 |
WANG Y, MA L T, BAI Y C, et al.. Increased biomethane production from herbaceous peat through pretreatment with dilute sulfuric acid [J/OL]. Biomass Conv. Bior., 2022, 22:3052-5 [2022-02-10]. .
|
10 |
UGO D C. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: a review under the perspective of a circular economy [J]. Sci. Total Environ., 2020, 738:1-22.
|
11 |
LI X W, XING M Y, YANG J, et al.. Organic matter humification in vermifiltration process for domestic sewage sludge treatment by excitation-emission matrix fluorescence and fourier transform infrared spectroscopy [J]. J. Hazard. Mater., 2013, 261:491-499.
|
12 |
TANIA V F, JULES B V L, GRIETJE Z. Humic acid-like and fulvic acid-like inhibition on the hydrolysis of cellulose and tributyrin [J]. Biol. Energy Res., 2015, 8(2):821-831.
|
13 |
CHENG J, LI H, DING L K, et al.. Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: The effect of magnetite nanoparticles on microbial electron transfer and syntrophism [J/OL]. Chem. Eng. J., 2020, 397:125394 [2022-02-10]. .
|
14 |
HUANG F, LIU H B, WEN J X, et al.. Underestimated humic acids release and influence on anaerobic digestion during sludge thermal hydrolysis [J/OL]. Water Res., 2021, 201:117310 [2022-02-10]. .
|
15 |
LI J, HAO X, VAN LOOSDRECHT M C M, et al.. Effect of humic acids on batch anaerobic digestion of excess sludge [J]. Water Res., 2019, 155:431-443.
|
16 |
樊兴明,张义超,张钊,等.腐植酸的选择性降解及其分子量测定研究[J].腐植酸,2011(1):20-24, 34.
|
|
FAN X M, ZHANG Y C, ZHANG Z, et al.. Research on the selective degradation and molecular weight of humic acid [J]. Humic Acid, 2011(1):20-24, 34.
|
17 |
BERMUDEZ P N, KENNES C, VEIGA M C. Anaerobic digestion of tuna waste for the production of volatile fatty acids [J]. Waste Manag., 2017, 68:96-102.
|
18 |
马力通,路亚楠,郝思雯.超微粉碎泥炭发酵产生物甲烷的研究[J].化学与生物工程,2020,37(1):21-24.
|
|
MA L T, LU Y N, HAO S W. Fermentation production of biomethane by superfine grinded peat [J]. Chem. Bioeng., 2020, 37(1):21-24.
|
19 |
VAVILIN V A, LOKSHINA L Y, JOKELA J P Y, et al.. Modeling solid waste decomposition [J]. Bioresour. Technol., 2004, 94(1):69-81.
|