1 |
牛学礼,南志标.运用微根管技术研究草地植物细根的进展[J].草业学报,2017,26(11):205-215.
|
|
NIU X L, NAN Z B. Rewiew of minirhizotron applications for study of fine roots in grassland [J]. Acta Pratac. Sin., 2017, 26(11):205-215.
|
2 |
DANJON F, REUBENS B. Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation [J]. Plant Soil, 2008, 303: 1-34.
|
3 |
BATES G H. A device for the observation of root growth in the soil [J]. Nature, 1937,139: 966–967.
|
4 |
廖荣伟,刘晶淼,安顺清,等.基于微根管技术的玉米根系生长监测[J].农业工程学报,2010,26(10):156-161.
|
|
LIAO R W, LIU J M, AN S Q, et al.. Monitor of corn root growth in soil based on minirhizotron technique [J]. Trans. Chin. Soc. Agric. Eng., 2010,26(10):156-161.
|
5 |
李燕丽,王昌昆,卢碧林,等.基于微根管技术的盐胁迫下小麦根系生长原位监测方法[J].土壤学报,2021,58(3):599-609.
|
|
LI Y L, WANG C K, LU B L, et al.. In-situ monitoring method of wheat root growth under salt stress using minirhizotron technique [J]. Acta Pedol. Sin., 2021, 58(3): 599-609.
|
6 |
刘凯,李文彬,赵玥,等.基于微根管图像的根系形态特征快速提取技术[J].中国水土保持科学,2021,19(4):129-136.
|
|
LIU K, LI W B, ZHAO Y, et al.. Rapid extraction technology of the root morphological characteristics via minirhizotron image[J]. Sci. Soil Water Conservation, 2021, 19(4): 129-136.
|
7 |
李克新,李沐阳,薛瑞,等.林木幼苗根系 CT 序列图像分割[J].森林工程,2014,30 (1):25-29.
|
|
LI K X, LI M Y, XUE R, et al.. CT slice image segmentation of the seedling roots [J]. Forest Eng., 2014,30 (1):25-29.
|
8 |
佘丽萱,康佳,王楠,等.一种新的棉花根系图像阈值分割方法[J].河北大学学报(自然科学版),2022,42(2):124-130.
|
|
SHE L X, KANG J, WANG N, et al.. A new threshold segmentation method for cotton root images [J]. J. Hebei Univ. (Nat. Sci. ), 2022, 42(2): 124-130.
|
9 |
YASRAB R, ATKINSON J A, WELLS D M, et al.. RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures [J/OL]. GigaScience, 2019,8(11): giz123 [2022-11-16]. .
|
10 |
WANG T, ROSTAMZA M, SONG Z, et al.. SegRoot: a high throughput segmentation method for root image analysis [J]. Comput. Electron. Agric., 2019, 162: 845-854.
|
11 |
WASSON A, BISCHOF L, ZWART A, et al.. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field [J]. J. Exp. Bot., 2016,67(4): 1033-1043.
|
12 |
SMITH A G, PETERSEN J, SELVAN R, et al.. Segmentation of roots in soil with U-Net [J/OL]. Plant Methods, 2020,16:13 [2022-11-16]. .
|
13 |
申晨.基于深度学习的棉花原位根系分割技术研究[D].保定:河北农业大学,2021.
|
|
SHEN C. Research on cotton in situ root segmentation technology based on deep learning [D]. Baoding: Hebei Agricultural University, 2021.
|
14 |
HOU Q B, ZHOU D Q, FENG J H. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.
|
15 |
HOU Q, ZHANG L, CHENG M M, et al.. Strip pooling: Rethinking spatial pooling for scene parsing [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 4003-4012.
|
16 |
CHEN L C, ZHU Y, PAPANDREOU G, et al.. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Proceedings of the European conference on computer vision (ECCV). Computer Vision Foundation, 2018: 801-818.
|
17 |
黄聪,杨珺,刘毅,等.基于改进DeepLabV3+的遥感图像分割算法[J].电子测量技术,2022,45(21):148-155.
|
|
HUANG C, YANG J, LIU Y, et al.. Remote sensing image segmentation algorithm based on improved DeeplabV3+ [J]. Electron. Meas. Technol., 2022,45(21):148-155.
|
18 |
李宁,张彦辉,尚英强,等.基于改进DeepLabv3+网络的风机叶片分割算法研究[J].电子技术应用,2022,48(9):108-113, 118.
|
|
LI N, ZHANG Y H, SHANG Y Q,et al.. Research on fan blade segmentation algorithm based on improved DeepLabv3+ network [J]. Appl. Electron. Tech., 2022, 48(9):108-113, 118.
|
19 |
谭国金,欧吉,艾永明,等.基于改进DeepLabv3+模型的桥梁裂缝图像分割方法[J].吉林大学学报(工学版), 2022, 48(9):108-113, 118.
|
|
TAN G J, OU J, AI Y M, et al.. Bridge crack image segmentation method based on improved DeepLabv3+ model [J]. J. Jilin Univ.(Eng. Technol.): 2022, 48(9):108-113, 118.
|
20 |
肖万欣,王延波,赵海岩,等.中国不同年代玉米根系形态生理功能特性的演化[J].辽宁农业科学,2022,(3):45-49.
|
|
XIAO W X, WANG Y B, ZHAO H Y, et al.. Evolution of morphological and physiological function traits of corn root released in different ages of China[J].Liaoning Agric. Sci.,2022(3):45-49.
|
21 |
TIAN Y, YANG G D, WANG Z, et al.. Detection of apple lesions in orchards based on deep learning methods of CycleGAN and YOLOV3-dense [J/OL]. J. Sen., 2019, 7630926 [2022-11-16]. .
|