1 |
农业农村部办公厅关于印发《2021年全国“虫口夺粮”保丰收行动方案》的通知(农办农〔2021〕4号) [J].中华人民共和国农业部公报,2021,2:48-54.
|
2 |
邹修国.基于计算机视觉的农作物病虫害识别研究现状[J].计算机系统应用,2011,20(6):238-242.
|
|
ZOU X G.Research status of crop pests recognition over computer vision [J]. Comput. Syst. Appl., 2011,20(6):238-242.
|
3 |
周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
|
|
ZHOU F Y, JIN L P, DONG J.Review of convolutional neural network [J]. Chin. J. Comput., 2017,40(6):1229-1251.
|
4 |
高雄,王海超.甘蓝菜青虫害自动识别系统的开发与试验研究:基于机器视觉[J].农机化研究,2015,37(1):205-208, 222.
|
|
GAO X, WANG H C. Research on cabbage rapae pests automatic recognition system based on machine vision [J]. J. Agric. Mech. Res., 2015,37(1):205-208, 222.
|
5 |
苏鸿,温国泉,谢玮,等.基于区域卷积神经网络模型的广西柑橘病虫害识别方法研究[J].西南农业学报,2020,33(4):805-810.
|
|
SU H, WEN G Q, XIE W, et al.. Research on Citrus pest and disease recognition method in Guangxi based on regional convolutional neural network model [J]. Southwest China J. Agric. Sci., 2020,33(4):805-810.
|
6 |
ALI F, QAYYUM H, IQBAL M J. Faster-PestNet: a lightweight deep learning framework for crop pest detection and classification [J/OL]. IEEE Access, 2023, 11: 104016-104027 [2024-07-11]. .
|
7 |
姜敏,沈一鸣,张敬尧,等.基于深度学习的水稻病虫害诊断方法研究[J].洛阳理工学院学报(自然科学版),2019,29(4):78-83.
|
|
JIANG M, SHEN Y M, ZHANG J Y, et al.. Research on rice diseases and pests diagnosis based on deep learning [J]. J. Luoyang Inst. Sci. Technol. (Nat. Sci.), 2019, 29(4):78-83.
|
8 |
郭阳,许贝贝,陈桂鹏,等.基于卷积神经网络的水稻虫害识别方法[J].中国农业科技导报,2021,23(11):99-109.
|
|
GUO Y, XU B B, CHEN G P, et al.. Rice insect pest recognition method based on convolutional neural network [J]. J. Agric. Sci. Technol., 2021,23(11):99-109.
|
9 |
施杰,林双双,罗建刚,等.基于YOLO v5s改进模型的玉米作物病虫害检测方法[J].江苏农业科学,2023,51(24):175-183.
|
10 |
LIKITH S, REDDY B R, REDDY K S. A smart system for detection and classification of pests using YOLO and CNN techniques [C]// Proceedings of International Conference on Computational Performance Evaluation (ComPE). IEEE, 2021: 049-052.
|
11 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [EB/OL].(2022-07-06) [2024-07-11]. .
|
12 |
WANG C C, HE W, NIE Y, et al.. Gold-YOLO:efficient object detector via gather-and-distribute mechanism [EB/OL]. (2023-09-20) [2024-07-11]. .
|
13 |
YU Z P, HUANG H B, CHEN W J, et al.. YOLO-FaceV2:a scale and occlusion aware face detector [EB/OL].(2022-08-03) [2024-07-11] . .
|
14 |
MA S L, XU Y, MA S L, et al.. MPDIoU: a loss for efficient and accurate bounding box regression [J/OL]. (2023-07-14) [2024-07-11]. .
|
15 |
WU X, ZHAN C, LAI Y K, et al.. Ip102: a large-scale benchmark dataset for insect pest recognition [C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019: 8787-8796.
|
16 |
农业农村部.中华人民共和国农业农村部公告第654号[J].中华人民共和国农业部公报,2021,2:48-54.
|
17 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [EB/OL]. (2015-11-23) [2024-07-11]. .
|
18 |
VASWANI A, SHAZEER N, PARMAR N, et al.. Attention is all you need [EB/OL]. (2017-06-12) [2024-07-11]. .
|
19 |
REZATOFIGHI H, TSOI N, GWAK J Y, et al.. Generalized intersection over union: A metric and a loss for bounding box regression [C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. IEEE, 2019: 658-666.
|
20 |
ZHENG Z H, WANG P, LIU W, et al.. Distance-IoU loss: faster and better learning for bounding box regression [J]. Proc. AAAI Conf. Artif. Intell., 2020, 34(7): 12993-13000.
|
21 |
ZHANG Y F, REN W, ZHANG Z, et al.. Focal and efficient IOU loss for accurate bounding box regression [EB/OL]. (2021-01-20) [2024-07-11]. .
|
22 |
GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression [EB/OL]. (2022-05-25) [2024-07-11]. .
|
23 |
LIU W, ANGUELOV D, ERHAN D, et al.. Ssd: Single shot multibox detector [C]// Proceedings of Computer Vision-ECCV 2016: 14th European Conference. Springer International Publishing, 2016: 21-37.
|
24 |
GIRSHICK R. Fast r-cnn [C]// Proceedings of the IEEE international conference on computer vision. IEEE, 2015: 1440-1448.
|
25 |
WU W T, LIU H, LI L L, et al.. Application of local fully convolutional neural network combined with YOLO v5 algorithm in small target detection of remote sensing image [J/OL]. PLoS One, 2021, 16(10): e0259283 [2024-07-11]. .
|
26 |
TALAAT F M, ZAINELDIN H. An improved fire detection approach based on YOLO-v8 for smart cities [J]. Neural Comput. Appl., 2023, 35(28): 20939-20954.
|