中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (3): 133-142.DOI: 10.13304/j.nykjdb.2024.0218
• 动植物健康 • 上一篇
收稿日期:
2024-03-21
接受日期:
2024-06-24
出版日期:
2025-03-15
发布日期:
2025-03-14
作者简介:
杨冰 E-mail:1296773000@qq.com
基金资助:
Received:
2024-03-21
Accepted:
2024-06-24
Online:
2025-03-15
Published:
2025-03-14
摘要:
大豆疫霉病菌(Phytophthora sojae)是一种对农业生产具有重要威胁的病原体,可导致大豆疫霉根腐病(Phytophthora root rot,PRR),该病难以防治,每年可造成重大产量损失。为了制定更有效的防控策略,使其得到有效控制,归纳了大豆疫霉菌的致病机制及寄主分子响应,总结了大豆的抗病特性以及目前防治大豆疫霉病菌的策略,主要包括抗性品种选育、化学防治、农业防治、生物防治和综合防控等,并深入分析不同防治措施的优缺点,进一步探讨了控制PRR的可持续替代方案,为大豆产业的可持续发展提供理论依据。
中图分类号:
杨冰. 大豆疫霉菌的致病机制及寄主分子响应和防控方法研究进展[J]. 中国农业科技导报, 2025, 27(3): 133-142.
Bing YANG. Research Progress on Pathogenic Mechanism, Host Molecule Response, and Prevention and Control Methods of Soybean Phytophthora sojae[J]. Journal of Agricultural Science and Technology, 2025, 27(3): 133-142.
1 | NIU L, YANG J, ZHANG J H, et al.. Introduction of the harpin (Xooc)-encoding gene hrf2 in soybean enhances resistance against the oomycete pathogen Phytophthora sojae [J]. Transgenic Res., 2019, 28(2):257-266. |
2 | TREBLAY V, MCLAREN D L, KIM Y M, et al.. Molecular assessment of pathotype diversity of Phytophthora sojae in Canada highlights declining sources of resistance in soybean [J]. Plant Dis., 2021, 105(3): 4006-4013. |
3 | KAMOUN S, FURZER O, JONES J D,et al..The top 10 oomycete pathogens in molecular plant pathology [J]. Mol. Plant Pathol., 2015,16(4):413-434. |
4 | 魏佩霞, 付海燕, 周双, 等. 马铃薯晚疫病生防菌研究进展 [J]. 中国农学通报, 2023, 39(22):144-151. |
WEI P X, FU H Y, ZHOU S, et al.. Advances in biocontrol microbes of potato late blight [J]. Chin. Agric. Sci. Bull., 2023,39(22):144-151. | |
5 | SUGIMOTO T, KATO M, YOSHIDA S, et al.. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans [J]. Breed. Sci., 2012, 61(5):511-522. |
6 | ZHANG S, XU P, WU J, et al.. Races of Phytophthora sojae and their virulence on soybean cultivars in Heilongjiang, China [J]. Plant Dis., 2010, 94:87-91. |
7 | 周扬,韩昕君,傅豪, 等. 大豆疫霉根腐病的防治及研究进展 [J]. 农业科技通讯,2024 (3): 137-140. |
8 | 刘世名, 李魏, 戴良英. 大豆疫霉根腐病抗性研究进展[J].大豆科学, 2016, 35(2):320-329. |
LIU S M, LI W, DAI L Y.Progresses in research on the resistance of soybean to phytophythora root rot caused by Phytophthora sojae [J]. Soybean Sci., 2016, 35(2):320-329. | |
9 | ZHONG C, SUN S, YAO L, et al.. Fine mapping and identification of a novel phytophthora root rot resistance locus RpsZS18 on chromosome 2 in soybean [J]. Front. Plant Sci., 2018, 9(1):44-57. |
10 | DORRANCE A E. Management of Phytophthora sojae of soybean: a review and future perspectives [J]. Plant Pathol., 2018, 40(5):210-219. |
11 | MARTIN F N, GLORIA A Z, BALCI Y, et al.. Identification and detection of Phytophthora: reviewing our progress, identifying our needs [J]. Plant Dis., 2012, 96(8):1080-1103. |
12 | TYLER B M. Phytophthora sojae:root rot pathogen of soybean and model oomycete [J]. Mol. Plant Pathol., 2007,8(1):1-8. |
13 | TYLER B M, GIJZEN M. The Phytophthora sojae Genome Sequence: Foundation for a Revolution [M]. Springer, 2014:133-157. |
14 | DONG S, KONG G, QUTOB D, et al..The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity [J].Mol. Plant Microbe Interact., 2012,25(7):896-909. |
15 | WANG Y, WANG Y C. Phytophthora sojae effectors orchestrate warfare with host immunity [J]. Curr. Opin. Microbiol., 2018, 46(1):7-13. |
16 | BEBBER D P, GURR S J. Crop-destroying fungal and oomycete pathogens challenge food security [J]. Fungal Genet. Biol., 2015, 74(6):62-64. |
17 | MA Z, ZHU L, SONG T, et al.. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor [J]. Science, 2017, 355(6326):710-714. |
18 | AI G, XIA Q Y, SONG T Q, et al.. A Phytophthora sojae CRN effector mediates phosphorylation and degradation of plant aquaporin proteins to suppress host immune signaling [J/OL]. PLoS Pathog., 2021, 3:1009388 [2024-02-20]. . |
19 | SONG T, MA Z, SHEN D, et al..An oomycete CRN effector reprograms expression of plant HSP genes by targeting their promoters [J/OL]. PLoS Pathog., 2015,11(12):e1005348 [2024-02-20]. . |
20 | LIU T L, SONG T Q, ZHANG X, et al.. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis [J/OL].Nat.Commun., 2014,5:5686 [2024-02-20]. . |
21 | FANG Y, CUI L, GU B,et al.. Efficient genome editing in the oomycete Phytophthora sojae using CRISPR/Cas9 [J/OL]. Curr.Protoc. Microbiol., 2017,44:21A [2024-02-20].. |
22 | ZHANG Y, ZHAO J, XIANG Y,et al..Proteomics study of changes in soybean lines resistant and sensitive to Phytophthora sojae [J/OL].Proteome Sci., 2011,9:52 [2024-02-20].. |
23 | 王兰, 刘函美, 张明媚,等. 大豆疫霉质外体效应子Ps140300抑制分子模式XEG1激活植物免疫的机制研究 [J]. 植物病理学报, 2023, 53(3):401-411. |
WANG L, LIU H M, ZHANG M M, et al.. The apoplastic effector Ps140300 inhibits innate immunity activated by XEG1 [J]. J. Plant Pathol., 2023, 53(3):401-411. | |
24 | 郑向, 段左平, 张杰,等. 大豆疫霉菌效应子研究进展 [J]. 生物技术通报, 2022, 38(11):10-20. |
ZHENG X, DUAN Z P, ZHANG J, et al.. Research progress on effector of Phytophthora sojae [J]. Biotech., 2022, 38(11):10-20. | |
25 | MORRIS P F, WARD E W B. Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones [J]. Physiol. Mol. Plant P., 1992, 40(1):17-22. |
26 | ZHOU L, MIDEROS S X, BAO L, et al.. Infection and genotype remodel the entire soybean transcriptome [J/OL]. BMC Genom., 2009,10:49 [2024-02-20].. |
27 | LIN F, ZHAO M, BAUMANN D D, et al.. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics [J/OL].BMC Genom., 2014, 15:18 [2024-02-20]. . |
28 | MOY P, QUTOB D, CHAPMAN B P, et al.. Patterns of gene expression upon infection of soybean plants by Phytophthora sojae [J]. Mol. Plant-Microbe In., 2004, 17(10):1051-1062. |
29 | GUO N, YE W W, WU X L, et al.. Microarray profiling reveals microRNAs iInvolving soybean resistance to Phytophthora sojae [J]. Genome, 2011, 54(11):954-958. |
30 | XU P F, WU J J, XUE A, et al.. Differentially expressed genes of soybean during infection by Phytophthora sojae [J]. J. Integr. Agric., 2012, 11(3):368-377. |
31 | NARAYANAN N N, GROSIC S, TASMA I M, et al.. Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction [J]. Theor. Appl. Genet., 2009, 118(3):399-412. |
32 | ANDERSON R G, DEB D, FEDKENHEUER K, et al.. Recent progress in RXLR effector research[J].Mol.Plant Microbe Interact., 2015, 28(10):1063-1072. |
33 | XU P, JIANG L, WU J, et al.. Isolation and characterization of a pathogenesis-related protein 10 gene (GmPR10) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae [J]. Mol. Biol. Rep., 2014, 41(1):4899-4909. |
34 | JIANG L, WU J, FAN S, et al.. Isolation and characterization of a novel pathogenesis-related protein gene (GmPRP) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae [J/OL].PLoS One,2015,10(6):e0129932 [2024-02-20].. |
35 | CHENG Q, LI N, DONG L, et al.. Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean [J/OL].Front.Plant Sci., 2015,6:1024 [2024-02-20].. [PubMed] |
36 | CHEN Q S, YU G L, ZOU J N, et al.. GmDRR1, a dirigent protein resistant to Phytophthora sojae in Glycine max (L.) [J]. J Integr. Agric., 2018, 17(16):1289-1298. |
37 | FAN S, DONG L, HAN D,et al.. GmWRKY31 and GmHDL56 enhances resistance to Phytophthora sojae by regulating defense-related gene expression in soybean [J/OL]. Front. Plant Sci., 2017,8:781 [2024-02-20].. |
38 | CUI X, YAN Q, GAN S,et al.. GmWRKY40,a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae [J/OL]. BMC Plant Biol., 2019,19(1):598 [2024-02-20].. |
39 | ZHOU Y, HUANG J L, ZHANG X L, et al.. Overexpression of chalcone isomerase (CHI) increases resistance against Phytophthora sojae in soybean [J]. Plant Biol., 2018, 61(4):309-319. |
40 | STASKO A K, BATNINI A, BOLANOS-CARRIEL C,et al..Auxin profiling and GmPIN expression in Phytophthora sojae-soybean root interactions [J]. Phytopathology, 2020,110(12):1988-2002. |
41 | ZHU L, ZHOU Y, LI X, et al.. Metabolomics analysis of soybean hypocotyls in response to Phytophthora sojae infection [J/OL]. Front. Plant Sci., 2018, 9:1530 [2024-02-20].. |
42 | 许修宏. 大豆疫霉根腐病菌生理小种鉴定及抗源筛选研究 [D]. 哈尔滨东北农业大学, 2002. |
XU X H. On physiologic races of Phytophthora sojae and resistance to the pathogen in soybean germplasm source [D]. Harbin: Northeast Agriculture University, 2002. | |
43 | 朱振东, 霍云龙, 王晓鸣, 等. 大豆疫霉根腐病抗源筛选 [J]. 植物遗传资源学报, 2006, (1):24-30. |
ZHU Z D, HUO Y L, WANG X M, et al.. Screening for resistance sources to phytophthora root rot in soybean [J]. J. Plant Genetic Res., 2006, (1):24-30. | |
44 | DORRANCE D S, SMITH R K, SHURTLEFF D E, et al.. Evaluation of soybean germplasm for resistance to Phytophthora root and stem rot [J]. Crop Sci., 2012, 40(6):1647-1654. |
45 | LOHNES P D, REDINBAUGH M G, GOODWIN S B. Soybean rust resistance in U.S. germplasm [J]. Crop Sci., 1996, 36(2):434-442. |
46 | PAZDERNIK T J, GOODWIN S B. Soybean rust resistance in U.S. germplasm [J]. Crop Sci., 1998, 38(4):1157-1164. |
47 | 王显强, 张建平, 赵书辉, 等. 大豆疫霉根腐病研究进展及抗病育种展望 [J]. 中国农业科学, 2017, 49(16):3255-3267. |
WANG X Q, ZHANG J P, ZHAO S H, et al.. Research progress on soybean Phytophthora root rot and prospects for disease resistant breeding [J]. Chin. Agric. Sci., 2017, 49(16):3255-3267. | |
48 | ZHANG J, WANG X, ZHAO S, et al.. Identification and mapping of quantitative trait loci for resistance to Phytophthora sojae in soybean [J]. Theor. Appl. Genet., 2018, 131(1):165-176. |
49 | LI Y, ZHANG J, WANG X, et al.. Fine mapping and validation of a major QTL for resistance to Phytophthora sojae in soybean cultivar Williams 82 [J]. Theor. Appl. Genet., 2019, 132(4):1153-1167. |
50 | 何海涛, 唐雅楠, 顾学虎, 等. 防治大豆根腐病的药剂筛选及田间应用 [J]. 农药, 2023, 62(1):55-58. |
HE H T, TANG Y N, GU X W, et al.. Fungicides screening and field application for controlling soybean root rot [J]. Pesticide, 2023, 62(1):55-58. | |
51 | 蒋冰心, 盖迪, 陈方新, 等. 大豆疫霉根腐病防治药剂的筛选与复配研究 [J]. 安徽农业科学, 2022, 50(24):143-145. |
JIANG B X, GAI D, CHEN F X, et al.. Study on screening of effective fungicides and mixed preparations for controlling soybean Phytophthora root and stem rot [J]. J. Anhui Agric. Sci., 2022, 50(24):143-145. | |
52 | 兰成忠, 刘裴清, 李本金, 等. 23.4%瑞凡悬浮剂对大豆疫霉菌不同发育阶段的抑制作用 [J]. 现代农业科技, 2013, (7):126-128. |
53 | 王立刚. 72%克露可湿性粉剂防治大豆根腐病效果初报[J].大豆通报,1999(4):1-18. |
54 | COLBURN G C, JEFFERS S N. Efficacy of commercial algaecides to manage species of Phytophthora in suburban waterways [C]// Department of Agriculture, Forest Service, Pacific Southwest Research Station, 2010:223-224. |
55 | SINGH R P. Nanopesticides: new generation of pesticides for sustainable agriculture [J]. J. Agric. Food Chem., 2019, 67(36):9974-9987. |
56 | ZHAO Y, ZHANG Y, YAN Y,et al..pH-responsive pesticide-loaded hollow mesoporous silica nanoparticles with ZnO quantum dots as a gatekeeper for control of rice blast disease [J]. Materials,2024, 17(6):1344-1350. |
57 | 朱振东, 王晓鸣, 田玉兰, 等. 防治大豆疫霉根腐病的药剂筛选 [J]. 农药学学报, 1999, 1(3):39-44. |
ZHU D Z, WANG X M, TIAN Y L, et al.. Screening of fungicides for controlling Phytophthora root rot of soybean [J]. Chin. Pesticide Sci., 1999, 1(3):39-44. | |
58 | DORRANCE A E, ROBERTSON A E, CIANZO S, et al.. Integrated management strategies for Phytophthora sojae combining host resistance and seed treatments [J]. Plant Dis., 2009, 93(3):875-882. |
59 | TRIPLETT G B, DICK W A. No-tillage crop production: a revolution in agriculture [J]. Agron. J., 2008, 100(2):153-165. |
60 | WORKNEH F, YANG X B, TYLKA G L. Effect of tillage practices on vertical distribution of Phytophthora sojae [J]. Plant Dis., 1998, 82(5):1258-1263. |
61 | CANADAY C H, SCHMITTHENNER A F. Effects of chloride and ammonium salts on the incidence of Phytophthora root and stem rot of soybean [J]. Plant Dis., 2010,94(6):758-765. |
62 | ZHANG H, YANG Y, MEI X, et al.. Phenolic acids released in maize rhizosphere during maize-soybean intercropping inhibit Phytophthora blight of soybean [J/OL]. Front. Plant Sci., 2020,11:886 [2024-02-20]. . |
63 | POLZIN K M, LOHNES D G, NICKELL C D, et al.. Integration of Rps2, Rmd, and Rj2 into linkage group J of the soybean molecular map [J]. Herediby, 1994, 85(8):300-303. |
64 | BOLÍVAR-ANILLO H J, GARRIDO C, COLLADO I G.Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea [J]. Phytochem. Rev., 2020, 19(3):721-740. |
65 | NAIK K, MISHRA S, SRICHANDAN H, et al.. Plant growth promoting microbes: potential link to sustainable agriculture and environment [J]. Biocatal. Agric. Biotech., 2019, 21(8):103-106. |
66 | ARFAOUI A, ADAM L R, BEZZAHOU A, et al.. Isolation and identification of cultivated bacteria associated with soybeans and their biocontrol activity against Phytophthora sojae [J]. Biocontrol, 2018, 63(1):607-617. |
67 | ZHAO L F, XU Y J, LAI X H. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties [J]. Microbiology, 2018, 49(7):269-278. |
68 | ARFAOUI A, HADRAMI A, ADAM L R, et al.. Combining Streptomyces hygroscopicus and phosphite boosts soybean’s defense responses to Phytophthora sojae [J]. Biocontrol, 2020, 65(5):363-375. |
69 | DOWARAH B, GILL S S, AGARWALA N.Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants [J]. J. Plant Growth Regul., 2022, 41(4):1429-1444. |
70 | GIACHERO M L, MARQUEZ N, GALLOU A, et al.. An in vitro method for studying the three-way interaction between soybean,Rhizophagus irregularis and the soil-borne pathogen Fusarium virguliforme [J/OL]. Front. Plant Sci., 2017,8:1033 [2024-02-20]. . |
71 | XI X D, FAN J L, YANG X Y, et al.. Evaluation of the anti-oomycete bioactivity of rhizosphere soil-borne isolates and the biocontrol of soybean root rot caused by Phytophthora sojae [J/OL].Biol.Control, 2022,166:104818 [2024-02-20].. |
72 | MARQUEZ N, GIACHERO M L, GALLOU A, et al.. Transcriptome analysis of mycorrhizal and nonmycorrhizal soybean plantlets upon infection with Fusarium virguliforme, one causal agent of sudden death syndrome [J]. Plant Pathol., 2019, 68(4):470-480. |
73 | WAGNER A, NORRIS S, CHATTERJEE P,et al..Aquatic pseudomonads inhibit oomycete plant pathogens of Glycine max [J/OL]. Front. microbiol., 2018,9:1007 [2024-02-20]. . |
74 | HOU J, BI S, YAN L, et al.. Biological potential of Pseudomonas sp. BS1 in the control of phytophthora root rot of soybean [J]. Afr. J. Microbiol. Res., 2012, 6(15):3589-3593. |
75 | DALAL J, KULKARNI N. Antagonistic and plant growth promoting potertials of indigenous endophytic bacteria of soybean (Glycine max (L) Merril) [J]. J. Microbiol., 2013, 1(27):62-69. |
76 | AVOUBI N, ZAFARI D, MIRABOLFATHY M. Combination of trichoderma species and Bradyrhizobium japonicum in control of Phytophthora sojae and soybean growth [J]. Crop Prot., 2012, 3(9):67-79. |
77 | 赵黎明, 李爽, 隋哲, 等. 轮作对田间大豆疫霉致病型和遗传结构的影响[J].东北农业大学学报, 2016, 23(1):1-12. |
ZHAO L M, LI S, SUI Z, et al.. Impact of crop rotation on pathotype and genetic structure of Phythophthora sojae in fields [J]. J. Northeast Agric. Univ., 2016, 23(1):1-12. |
[1] | 赵宏岩, 谭君伟, 张杰, 陈浩楠, 王春旭, 赵地, 李海鹏, 朱李霞, 韩毅强. 小豆和绿豆茎基感病部位真菌群落结构研究[J]. 中国农业科技导报, 2022, 24(5): 129-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||