中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (8): 110-118.DOI: 10.13304/j.nykjdb.2024.0386
• 动植物健康 • 上一篇
李海燕1(), 张婷1, 李新畅1, 张玲1, 王培2, 鲍民胡1(
)
收稿日期:
2024-05-14
接受日期:
2024-09-24
出版日期:
2025-08-15
发布日期:
2025-08-26
通讯作者:
鲍民胡
作者简介:
李海燕 E-mail:lihaiyan8805@163.com;
基金资助:
Haiyan LI1(), Ting ZHANG1, Xinchang LI1, Ling ZHANG1, Pei WANG2, Minhu BAO1(
)
Received:
2024-05-14
Accepted:
2024-09-24
Online:
2025-08-15
Published:
2025-08-26
Contact:
Minhu BAO
摘要:
为筛选对葡萄灰霉病菌具有拮抗作用的生防细菌,采用平板对峙法和滤纸片法从葡萄根际土壤中分离具有拮抗作用的细菌,选择拮抗作用较强菌株,通过形态特征、生理生化特性及16S rDNA序列分析对其进行鉴定,并通过血平板法、种子萌发试验和离体果实法对其安全性、促生性和防治效果进行检测。结果显示,从葡萄根际土壤中分离的142株细菌中筛选出5株具有拮抗作用的细菌,这5株拮抗细菌对葡萄灰霉病菌具有不同程度的抑制作用,抑菌率为81.74%~89.13%,抑菌带宽为2.42~11.08 mm,其中菌株B1-4对葡萄灰霉病菌的拮抗作用最强;经形态特征、生理生化特性及16S rDNA序列分析鉴定,B1-4为贝莱斯芽孢杆菌(Bacillus velezensis)。该菌株不具备溶血性,能够分泌纤维素酶和蛋白酶,并具有固氮与产铁载体能力;其发酵液的100倍稀释液可显著提高黄瓜、小油菜种子的萌发率和胚根长度。B1-4发酵原液对采摘后葡萄灰霉病的保护作用防效为70.31%,治疗作用防效为69.53%,与50%咯菌腈5 000倍稀释液防效(71.88%)差异不显著。因此,贝莱斯芽孢杆菌B1-4是一株具有防控葡萄灰霉病潜力的生防菌株。
中图分类号:
李海燕, 张婷, 李新畅, 张玲, 王培, 鲍民胡. 一株拮抗葡萄灰霉病菌的贝莱斯芽孢杆菌筛选及鉴定[J]. 中国农业科技导报, 2025, 27(8): 110-118.
Haiyan LI, Ting ZHANG, Xinchang LI, Ling ZHANG, Pei WANG, Minhu BAO. Screening and Identification of a Strain of Bacillus velezensis Against Botrytis cinerea[J]. Journal of Agricultural Science and Technology, 2025, 27(8): 110-118.
分级Grade | 分级标准 Grading standard |
---|---|
0级Level 0 | 无病斑 No spots |
1级Level 1 | 病斑面积占5%以下 Lesion area<5% |
3级Level 3 | 病斑面积占6%~15% 6%< lesion area<15% |
5级Level 5 | 病斑面积占16%~30% 16%< lesion area<30% |
7级Level 7 | 病斑面积占31%~50% 31%< lesion area<50% |
9级Level 9 | 病斑面积占50%以上 Lesion area>50% |
表1 葡萄灰霉病分级标准
Table 1 Grading standard of grape gray mold disease
分级Grade | 分级标准 Grading standard |
---|---|
0级Level 0 | 无病斑 No spots |
1级Level 1 | 病斑面积占5%以下 Lesion area<5% |
3级Level 3 | 病斑面积占6%~15% 6%< lesion area<15% |
5级Level 5 | 病斑面积占16%~30% 16%< lesion area<30% |
7级Level 7 | 病斑面积占31%~50% 31%< lesion area<50% |
9级Level 9 | 病斑面积占50%以上 Lesion area>50% |
菌株Strain | 抑菌率Inhibition rate/% | 抑菌带Inhibitory zone/mm |
---|---|---|
B1-4 | 89.13±5.43 a | 11.08±0.90 a |
0-1 | 88.04±2.94 a | 8.33±2.39 b |
0-0 | 84.13±0.38 b | 3.58±1.78 c |
1-4-1 | 81.96±0.75 b | 2.42±1.38 c |
C1 | 81.74±0.65 b | 8.25±0.97 b |
表2 5株拮抗细菌对灰葡萄孢的抑菌效果
Table 2 Inhibitory effects of 5 antagonistic bacteria against Botrytis cinerea
菌株Strain | 抑菌率Inhibition rate/% | 抑菌带Inhibitory zone/mm |
---|---|---|
B1-4 | 89.13±5.43 a | 11.08±0.90 a |
0-1 | 88.04±2.94 a | 8.33±2.39 b |
0-0 | 84.13±0.38 b | 3.58±1.78 c |
1-4-1 | 81.96±0.75 b | 2.42±1.38 c |
C1 | 81.74±0.65 b | 8.25±0.97 b |
处理 Treatment | 黄瓜Cucumber | 小油菜Rape | ||
---|---|---|---|---|
萌发率 Germination rate/% | 胚根长度 Root length/cm | 萌发率 Germination rate/% | 胚根长度 Root length/cm | |
CK1 | 92.67±3.01 b | 4.60±0.16 b | 86.00±2.00 b | 3.38±0.22 b |
B1-4 | 0.00±0.00 | — | 0.00±0.00 | — |
B1-450 | 88.00±2.00 c | 2.67±0.24 c | 72.67±3.06 c | 2.41±0.28 c |
B1-4100 | 95.33±1.15 a | 4.88±0.29 a | 93.33±2.31 a | 3.76±0.33 a |
B1-4200 | 92.00±2.00 b | 4.49±0.14 b | 84.67±1.15 b | 3.22±0.19 b |
NB | 91.33±1.15 b | 4.49±0.16 b | 84.67±4.16 b | 3.20±0.23 b |
表3 不同B1-4发酵液处理下黄瓜、小油菜种子的萌发
Table 3 Germination of cucumber and rape seeds treated with different B1-4 fermentation broth treatments
处理 Treatment | 黄瓜Cucumber | 小油菜Rape | ||
---|---|---|---|---|
萌发率 Germination rate/% | 胚根长度 Root length/cm | 萌发率 Germination rate/% | 胚根长度 Root length/cm | |
CK1 | 92.67±3.01 b | 4.60±0.16 b | 86.00±2.00 b | 3.38±0.22 b |
B1-4 | 0.00±0.00 | — | 0.00±0.00 | — |
B1-450 | 88.00±2.00 c | 2.67±0.24 c | 72.67±3.06 c | 2.41±0.28 c |
B1-4100 | 95.33±1.15 a | 4.88±0.29 a | 93.33±2.31 a | 3.76±0.33 a |
B1-4200 | 92.00±2.00 b | 4.49±0.14 b | 84.67±1.15 b | 3.22±0.19 b |
NB | 91.33±1.15 b | 4.49±0.16 b | 84.67±4.16 b | 3.20±0.23 b |
处理Treatment | 病情指数 Disease index/% | 防效 Control efficiency/% | |
---|---|---|---|
保护作用 Protective effect | PB1-4 | 11.40±0.90 g | 70.31±1.36 a |
PB1-450 | 12.60±0.90 f | 67.19±2.35 ab | |
PB1-4100 | 16.50±0.52 d | 50.00±2.71 d | |
PB1-4200 | 21.00±0.52 b | 42.10±1.35 e | |
治疗作用 Rapeutic effect | CB1-4 | 11.70±0.90 f | 69.53±2.35 a |
CB1-450 | 13.80±1.37 e | 64.06±3.58 b | |
CB1-4100 | 19.20±1.04 c | 57.03±1.35 c | |
CB1-4200 | 22.00±0.52 b | 45.31±1.35 e | |
对照 Control | CK2 | 38.40±1.04 a | — |
CK3 | 10.80±0.90 g | 71.87±2.35 a |
表4 贝莱斯芽孢杆菌B1-4对葡萄离体果粒的防治效果
Table 4 Control effects of bacillus velezensis B1-4 against grape gray mold disease
处理Treatment | 病情指数 Disease index/% | 防效 Control efficiency/% | |
---|---|---|---|
保护作用 Protective effect | PB1-4 | 11.40±0.90 g | 70.31±1.36 a |
PB1-450 | 12.60±0.90 f | 67.19±2.35 ab | |
PB1-4100 | 16.50±0.52 d | 50.00±2.71 d | |
PB1-4200 | 21.00±0.52 b | 42.10±1.35 e | |
治疗作用 Rapeutic effect | CB1-4 | 11.70±0.90 f | 69.53±2.35 a |
CB1-450 | 13.80±1.37 e | 64.06±3.58 b | |
CB1-4100 | 19.20±1.04 c | 57.03±1.35 c | |
CB1-4200 | 22.00±0.52 b | 45.31±1.35 e | |
对照 Control | CK2 | 38.40±1.04 a | — |
CK3 | 10.80±0.90 g | 71.87±2.35 a |
[1] | 任亚峰,韦唯,李冬雪,等.葡萄灰霉病病原菌鉴定及生物学特性[J].应用与环境生物学报,2019, 5(5):1139-1144. |
REN Y F, WEI W, LI D X, et al.. Identification and biological characteristics of grape gray mold pathogen [J]. Chin. J. Appl. Environ. Biol., 2019, 5(5): 1139-1144. | |
[2] | 张艳杰,许换平,沈凤英,等.我国葡萄灰霉病菌形态型和致病力分化[J].农业生物技术学报,2017,5(11):1740-1755. |
ZHANG Y J, XU H P, SHENG F Y, et al.. Phenotypes and virulence variability among grape gray mold isolates from grapes (Vitis vinifera) in China [J]. J. Agric. Biotechnol., 2017, 5(11): 1740-1755. | |
[3] | 张玮,乔广行,黄金宝,等.中国葡萄灰霉病菌对嘧霉胺的抗药性检测[J].中国农业科学,2013,46(6):1208-1212. |
ZHANG W, QIAO G X, HUANG J B, et al.. Evaluation on resistance of grape gray mold pathogen botrytis cinerea to pyrimethanil in China [J]. Sci. Agric. Sin., 2013, 46(6):1208-1212. | |
[4] | 贾爽爽,黄晓庆,孔繁芳,等.黑龙江和云南葡萄产区灰霉病菌对多菌灵和异菌脲的抗性检测[J].植物保护,2021,47(4):239-243. |
JIA S S, HUANG X Q, KONG F F, et al.. Detection of resistance of Botrytis cinerea to carbendazim and iprodione in grapevine areas of Heilongjiang and Yunnan [J]. Plant Protect., 2021, 47(4): 239-243. | |
[5] | 普继雄,周宗山,王娜,等.弥勒市葡萄灰霉病菌4种杀菌剂的抗药性检测[J].果树学报,2021,38(7):1147-1152. |
PU J X, ZHOU Z S, WANG N, et al.. Evaluation on resistance of Botrytis cinerea to four fungicides in Mile county [J]. J. Fruit Sci., 2021, 38(7):1147-1152. | |
[6] | XU T, ZHU T H, LI S J. βI,3-1,4-glucanase gene from Bacillus velezensis ZJ20 exerts antifungal effect on plant pathogenic fungi [J]. World J. Microbiol. Biotechnol., 2016,32(2):1-9. |
[7] | RUIZ-GARCÍA C, BÉJAR V, MARTÍNEZ-CHECA F, et al.. Bacillus velezensis sp.nov.,a surfactant-producing bacterium isolated from the river Vélez in Málaga,southern Spain [J]. Int. J. Syst. Evol. Microbiol., 2005, 55(Pt1):191-195. |
[8] | 李珅瑀,贾祥子,郭君陶,等.水稻稻瘟病生防细5-8的鉴定及其生防机制研究[J].北方农业学报,2021,49(3):74-81. |
LI K Y, JIA X Z, GUO J T, et al.. Identification of rice blast control bacteria 5-8 and its biocontrol mechanism [J]. J. Northern Agric., 2021, 49(3): 74-81. | |
[9] | 冉新炎,齐素敏,韩广泉,等.产表面活性素野生菌株的筛选、鉴定及其发酵条件研究[J].山东农业科学,2021,53(6):77-83. |
RAN X Y, QI S M, HAN G Q, et al.. Study of screening, identification and fermentation conditions of wild strains producing surfactin [J]. Shandong Agric. Sci., 2021, 53(6):77-83. | |
[10] | 曾欣,张亚惠,迟惠荣,等.温郁金内生拮抗细菌B-11的分离及其抑菌活性[J].微生物学通报,2019,46(5):1018-1029. |
ZENG X, ZHANG Y H, CHI H R, et al.. Antimicrobial activity of endophytic bacterium strain B-11 isolated from Curcuma wenyujin [J]. Microbiol. China, 2019, 46(5):1018-1029. | |
[11] | 周明国.中国植物病害化学防治研究(第七卷) [M].北京:中国农业出版社,2010:1-377. |
[12] | 周泠璇,刘娅.红提葡萄内生细菌的分离鉴定及灰霉病拮抗菌的筛选[J].生物技术通报,2016,32(4):184-189. |
ZHOU L X, LIU Y. Isolation and identification of endophytic bacteria in red grape,and screening of antagonistic bacteria against Botrytis cinerea [J]. Biotechnol. Bull., 2016,32(4):184-189. | |
[13] | 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001:1-419. |
[14] | 欧阳晓伦,陈昭,窦鑫,等.贝莱斯芽孢杆菌YX-3的筛选鉴定及其抑菌效果[J].黑龙江八一农垦大学学报,2022,34(6):64-70. |
OUYANG X L, CHEN Z, DOU X, et al.. Screening and identification of Bacillus velezensis YX-3 and antagonistic effect [J]. J. Heilongjiang Bayi Agric. Univ., 2022, 34(6):64-70. | |
[15] | 方园,彭勇政,廖长贵,等.一株具有防病促生功能的贝莱斯芽孢杆SF327[J].微生物学报,2022,62(10):4071-4088. |
FANG Y, PENG Y Z, LIAO C G, et al.. Bacillus velezensis SF327, a potential biocontrol agent with the functions of preventing plant diseases and promoting plant growth [J]. Acta Microbiol. Sin., 2022, 62(10): 4071-4088. | |
[16] | 李坤,洪秀杰,王欣悦,等.贝莱斯芽孢杆菌TC-52的分离鉴定及其对水稻幼苗生长和立枯病的影响[J].江苏农业科学, 2024,52(10):129-137. |
[17] | 谷清义,王妍佳,李梦楠,等.枯草芽孢杆菌BSCY-1对黄瓜种子萌发和幼苗生长特性的影响[J].北方园艺, 2024,(10):17-23. |
GU Q Y, WANG Y J, LI M J. Effects of a Bacillus subyilis BSCY-1 on the seed germination and seeding growth and physiological characteristics of cucumber [J]. Northern Hortic., 2024(10):17-23. | |
[18] | 姚佳睿,吕金钊,陈康,等.不同油麦菜品种萌发期耐热指标筛选及耐热性评价[J].西北农业学报,2024,33(3):511-520. |
YAO J R, LYU J Z, CHEN G. Screening and evaluation of heat resistance indexes in different lettuce varieties at germination stage [J]. Acta Agric. Bor-Occid. Sin., 2024, 33(3):511-520. | |
[19] | 崔欣,李伟,朱建兰.葡萄灰霉病优势拮抗细菌的筛选与鉴定[J].中国植保导刊,2018,8(1):12-16. |
CUI X, LI W, ZHU J L. Selection and identification of antagonistic strain to Botrytis cinerea [J]. China Plant Prot., 2018, 8(1):12-16. | |
[20] | 卢晓虹,许敏,李甜爽,等.番茄青枯病拮抗菌株的筛选、鉴定及发酵条件的优化[J].山西农业科学, 2022, 50(5): 698-708. |
LU H H, XU M, LI T S, et al.. Screening and identification of antagonistic strains of tomato bacterial wilt and optimization of fermentation conditions [J]. J. Shanxi Agric. Sci., 2022, 50(5):698-708. | |
[21] | 李永丽,周洲,曲良建,等.贝莱斯芽孢杆菌Pm9生物防治潜力及全基因组分析[J].河南农业大学学报,2021,55(6):1081-1088. |
LI Y L, ZHOU Z, QU L J, et al.. Biological control potential and complete genome analysis of Bacillus velezensis Pm9 [J]. J. Henan Agric. Univ., 2021, 55(6):1081-1088. | |
[22] | 中国农药信息网.防治对象:灰霉病[EB/OL].(2023-02-05)[2024-04-15]. . |
[23] | 年洪娟,陈丽梅.土壤有益细菌在植物根际竞争定殖的影响因素[J].生态学杂志,2010,29(6):1235-1239. |
NIAN H J, CHEN L M. Factors affecting the competitive colonization of beneficial bacteria in plant rhizosphere:a review [J]. Chin. J. Ecol., 2010, 29(6):1235-1239. | |
[24] | 张炳欣,张平,陈晓斌.影响引人微生物根部定殖的因素[J].应用生态学报,2000,11(6):951-953. |
ZHANG B X, ZHANG P, CHEN X B.Factors affecting colonization of introduced microorganisms on plant roots [J].Chin. J. Appl. Ecol., 2000, 11(6): 951-953. | |
[25] | WANG L T, LEE F L, TAI C J, et al.. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens [J]. Int.J. Syst. Evol. Microbiol., 2008, 58(Pt3):671-675. |
[26] | DUNLAP C A, KIM S J, KWON S W, et al.. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus [J]. Int. J. Syst. Evol. Microbiol., 2015, 65(7):2104-2109. |
[27] | ADAMS D J. Fungal cell wall chitinases and glucanases [J].Microbiology, 2004,150(Pt 7):2029-2035. |
[28] | FAN B, WANG C, SONG X F,et al.. Bacillus velezensis FZB42 in 2018:the gram-positive model strain for plant growth promotion and biocontrol [J/OL]. Front. Microbiol., 2019, 10:1279 [2024-04-15]. . |
[29] | 李永丽,周洲,尹新明.贝莱斯芽孢杆菌Mr12预防苹果轮纹病等病害的潜力及其全基因组分析[J].果树学报,2021,38(9):1459-1467. |
LI Y L, ZHOU Z, YIN X M. Potential and genome-wide analysis of Bacillus velezensis Mr12 in preventing apple ring rot and other diseases [J]. J. Fruit Sci., 2021, 38(9):1459-1467. | |
[30] | 夏明聪,邓晓旭,齐红志,等.贝莱斯芽抱杆菌YB-145对小麦纹枯病的防治效果及促生作用[J].河南农业科学,2021,50(10):76-83. |
XIA M C, DENG X X, QI H Z, et al.. Biological control of sharp eyespot and growth promotion in wheat by Bacillus velezensis YB-145 [J]. J. Henan Agric. Sci., 2021, 50(10):76-83. | |
[31] | DAULNGLA P P, ALANE L, DAULAGLA P P, et al. L-form bacteria of Pseudomona syringae pv. phaseolicola, induce chitinases and enhance resistance to Botrntis cinerea, infection in Chinese cabbage [J]. Physiol. Mol. Plant Pathol., 2003, 62(5): 253-263. |
[32] | 刘彩云,赵静.生防菌株LB-1培养液对黄瓜的抑菌及促生作用[J].植物病理学报,2020,50(6):731-738. |
LIU C Y, ZHAO J. Disease suppression and growth-promoting effects of the culture broth of a biocontrol strain LB-1 on cucumber [J]. Acta Phytopathol. Sin., 2020, 50(6): 731-738. | |
[33] | 刘雪娇,李红亚,李术娜,等.贝莱斯芽孢杆菌3A3-15生防和促生机制[J].河北大学学报(自然科学版),2019,39 (3):302-310. |
LIU X J, LI H Y, LI S N, et al.. Biocontrol and growth promotion mechanisms of Bacillus velezensis 3A3-15 [J]. J. Hebei Univ. (Nat. Sci.), 2019, 39 (3): 302-310. |
[1] | 侯晓晴, 姜子豪, 富洋, 宋忠振, 俞志敏. 鞘氨醇单胞菌胞外多糖的组成结构及其对大麦幼苗的促生作用[J]. 中国农业科技导报, 2025, 27(4): 201-208. |
[2] | 杨智敏, 张慧豪, 张园园, 杜红岩, 刘晓东, 侯亚光, 王毅, 徐道龙, 黄金贵, 程晓宁, 随洋, 王瑞利, 于超, 赵玲玲, 陈春梅, 雅茹, 贾丽, 张明月, 王宏伟, 姚淞耀, 赵莹, 邵科. 娄彻氏链霉菌HM85的鉴定及其对甜菜的防病促生作用[J]. 中国农业科技导报, 2024, 26(5): 148-155. |
[3] | 常峻嘉, 盖佳鑫, 陶刚, 莫转龙海. 哈茨木霉菌对烟草的促生及其黑胫病的诱导抗性评价[J]. 中国农业科技导报, 2024, 26(10): 168-176. |
[4] | 吴雅婷, 汪笑宇, 汤青平, 武尊, 高浩峰, 何学欣, 杨张磊, 贾旭颖, 邵蓬. 半滑舌鳎体表溃疡症细菌性病原的分离鉴定及组织病理学研究[J]. 中国农业科技导报, 2023, 25(6): 135-143. |
[5] | 牛营超, 王星, 郭青云, 戴小华, 袁小勇, 陈琳. 棉花立枯病拮抗细菌的分离鉴定及抑菌活性[J]. 中国农业科技导报, 2023, 25(12): 138-144. |
[6] | 李宏博, 陈月月, 杨玉洁, 徐琦琦, 秦蕾, 蔡鑫, 夏利宁. 新疆伊犁昭苏健康鸡源大肠杆菌耐药性及耐药基因分析[J]. 中国农业科技导报, 2023, 25(11): 123-131. |
[7] | 田振祥, 丁伟, 程茁, 戴航宇. 大豆内生细菌的分离及其作用效果研究[J]. 中国农业科技导报, 2022, 24(6): 47-57. |
[8] | 潘梦诗, 郭文阳, 周留柱, 邓丽, 苗建利, 徐宏光, 张宗源, 亓兰达. 贝莱斯芽孢杆菌菌剂对花生白绢病的田间防效及作用机理研究[J]. 中国农业科技导报, 2022, 24(11): 130-136. |
[9] | 孟玉, 陶刚, 黄德棋, 姚遐俊. 溶磷真菌的多样性及其在农业与生态中的应用[J]. 中国农业科技导报, 2022, 24(11): 208-217. |
[10] | 周茂超1,2,黄艳娜2,段赛菲1,2,束仕元1,2,唐雪明2*. 微生物种衣剂的研制及其对玉米苗期生长的影响[J]. 中国农业科技导报, 2021, 23(4): 110-118. |
[11] | 姜彩鸽1,宋双1,李茜2,王国珍1,张怡1*,关晓燕3. 贺兰山东麓葡萄灰霉病菌对不同类型杀菌剂抗药性水平的评价[J]. 中国农业科技导报, 2020, 22(10): 119-128. |
[12] | 王伟1,郑大浩1,杨超博2,李泳1,王薇1,李熙英1,3*. 高效纤维素分解菌的分离及秸秆降解生物效应[J]. 中国农业科技导报, 2019, 21(8): 36-46. |
[13] | 王永杰,陈红莲,程云生,王芬. 黄金鲫内脏类结节病的病原鉴定与药物敏感性试验分析[J]. 中国农业科技导报, 2017, 19(12): 104-109. |
[14] | 李婷,何来,梁泉峰*. 非豆科植物的根瘤菌促生机制的研究进展[J]. , 2013, 15(2): 97-102. |
[15] | 何继军1,王彪2. 动物性饲料中沙门氏菌的分离鉴定与分析[J]. , 2009, 11(S1): 56-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||