中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (12): 101-111.DOI: 10.13304/j.nykjdb.2022.1021
林敏1(), 王磊1, 谷晓峰2, 燕永亮2, 刘柱3, 涂涛4, 姚斌4(
)
收稿日期:
2022-11-13
接受日期:
2022-11-30
出版日期:
2022-12-15
发布日期:
2023-02-06
通讯作者:
姚斌
作者简介:
林敏 E-mail:linmin@henu.edu.cn;
基金资助:
Min LIN1(), Lei WANG1, Xiaofeng GU2, Yongliang YAN2, Zhu LIU3, Tao TU4, Bin YAO4(
)
Received:
2022-11-13
Accepted:
2022-11-30
Online:
2022-12-15
Published:
2023-02-06
Contact:
Bin YAO
摘要:
随着生物组学、系统生物学和合成生物学等前沿学科的高度交叉融合,推动新一代基因工程技术不断取得新突破。基因回路设计与合成是新一代基因工程的技术核心,具有颠覆性、智能性和精准性三大技术特征。加快农业生物基因回路设计与合成技术等创新,将为创制新一代农业生物新品种和促进我国农业高质量绿色发展提供重要技术支撑。简要总结了农业生物基因回路设计与合成技术国际发展动态,深入探讨了我国农业生物基因智能设计与精准表达技术的发展策略与优先领域。
中图分类号:
林敏, 王磊, 谷晓峰, 燕永亮, 刘柱, 涂涛, 姚斌. 农业基因回路设计合成技术发展动态与策略[J]. 中国农业科技导报, 2022, 24(12): 101-111.
Min LIN, Lei WANG, Xiaofeng GU, Yongliang YAN, Zhu LIU, Tao TU, Bin YAO. Development Trends and Strategies of Gene Circuit Design and Synthesis Technologies in Agricultural Organisms[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 101-111.
技术路线 Technology roadmap | 应用效益 Application benefit | 预期产品 Expected product |
---|---|---|
人工抗逆基因回路 Artificial gene circuit of stress resistance | 节水免耕节本;减少农药使用和碳排放;增加土壤碳储量;高效利用土地和水资源 Water saving and no tillage and cost saving; Reduce pesticide use and carbon emissions; Increasing soil carbon storage; Efficient uses of land and water resources | 抗除草剂、抗虫和耐旱节水等超级作物;新一代农药 Herbicide-, insect-, drought-tolerant and water-saving super crops; The new generation of pesticides |
人工高效固碳途径 Artificial efficient carbon fixation approaches | 直接利用二氧化碳合成生物大分子;大幅度增强光合效率;增加碳汇 Direct use of carbon dioxide to synthesize biological macromolecules, Greatly enhanced photosynthetic efficiency, Increasing carbon sink | 光能或电能驱动固碳;人工C4水稻;人工纳米材料叶片 Carbon fixation driven by light or electricity; Artificial C4 rice; The artificial leaf with photosynthesis |
人工高效固氮途径 Artificial high efficiency nitrogen fixation approaches | 节肥节能增效;克服铵抑制、氧失活等天然固氮体系缺陷;减少碳排放 Saving fertilizer and energy, increasing efficiency; Overcoming the defects of natural nitrogen fixation system such as ammonium inhibition and oxygen inactivation; Reduced carbon emissions | 高效固氮菌肥;结瘤固氮的非豆科作物;固氮真核生物 High efficiency nitrogen- fixing bacterial fertilizer; Non-leguminous crops that form nitrogen-fixing nodules; Nitrogen-fixing eukaryote |
高效生物质转化线路 High efficiency biomass conversion circuits | 将生物质转化为生物炭并应用于土壤改良;增加土壤碳储量;生物质饲料化或肥料化 Soil improvement by converting biomass into biochar; Increasing soil carbon storage; Biomass feed or fertilizer | 新一代生物饲料或生物肥料;根际或肠道微生物组产品;新型农用酶制剂 A new generation of biological feed or fertilizer; Rhizosphere or gut microbiome products; New agricultural enzyme preparation |
动物基因工程 Animal genetic engineering | 人畜共患重大疫病防治;节省饲料;减少药物使用和碳排放 Prevention and control of major zoonotic diseases, Feed saving; Reduced drug use and carbon emissions | 高产抗病养殖动物;抗生素替代产品;新型益生元产品 High-yield and disease-resistant farmed animals; Antibiotic alternatives; New prebiotic products |
农业细胞工厂 Agricultural cell factory | 拓展蛋白资源;高附加值;节能;减少用水量、土地需求和碳排放 Expanding protein resources; High added value; Energy saving; Reduced water consumption and land demand and carbon emissions | 微生物源蛋白质替代;人造肉汉堡、人造奶冰淇淋等未来食品 Microbial protein substitution; Artificial meat burger, artificial milk ice cream and other future foods |
表1 基因回路设计和合成技术在农业和环境领域的应用前景
Table 1 Application prospects of gene circuit design and synthesis technologies in agriculture and environment fields
技术路线 Technology roadmap | 应用效益 Application benefit | 预期产品 Expected product |
---|---|---|
人工抗逆基因回路 Artificial gene circuit of stress resistance | 节水免耕节本;减少农药使用和碳排放;增加土壤碳储量;高效利用土地和水资源 Water saving and no tillage and cost saving; Reduce pesticide use and carbon emissions; Increasing soil carbon storage; Efficient uses of land and water resources | 抗除草剂、抗虫和耐旱节水等超级作物;新一代农药 Herbicide-, insect-, drought-tolerant and water-saving super crops; The new generation of pesticides |
人工高效固碳途径 Artificial efficient carbon fixation approaches | 直接利用二氧化碳合成生物大分子;大幅度增强光合效率;增加碳汇 Direct use of carbon dioxide to synthesize biological macromolecules, Greatly enhanced photosynthetic efficiency, Increasing carbon sink | 光能或电能驱动固碳;人工C4水稻;人工纳米材料叶片 Carbon fixation driven by light or electricity; Artificial C4 rice; The artificial leaf with photosynthesis |
人工高效固氮途径 Artificial high efficiency nitrogen fixation approaches | 节肥节能增效;克服铵抑制、氧失活等天然固氮体系缺陷;减少碳排放 Saving fertilizer and energy, increasing efficiency; Overcoming the defects of natural nitrogen fixation system such as ammonium inhibition and oxygen inactivation; Reduced carbon emissions | 高效固氮菌肥;结瘤固氮的非豆科作物;固氮真核生物 High efficiency nitrogen- fixing bacterial fertilizer; Non-leguminous crops that form nitrogen-fixing nodules; Nitrogen-fixing eukaryote |
高效生物质转化线路 High efficiency biomass conversion circuits | 将生物质转化为生物炭并应用于土壤改良;增加土壤碳储量;生物质饲料化或肥料化 Soil improvement by converting biomass into biochar; Increasing soil carbon storage; Biomass feed or fertilizer | 新一代生物饲料或生物肥料;根际或肠道微生物组产品;新型农用酶制剂 A new generation of biological feed or fertilizer; Rhizosphere or gut microbiome products; New agricultural enzyme preparation |
动物基因工程 Animal genetic engineering | 人畜共患重大疫病防治;节省饲料;减少药物使用和碳排放 Prevention and control of major zoonotic diseases, Feed saving; Reduced drug use and carbon emissions | 高产抗病养殖动物;抗生素替代产品;新型益生元产品 High-yield and disease-resistant farmed animals; Antibiotic alternatives; New prebiotic products |
农业细胞工厂 Agricultural cell factory | 拓展蛋白资源;高附加值;节能;减少用水量、土地需求和碳排放 Expanding protein resources; High added value; Energy saving; Reduced water consumption and land demand and carbon emissions | 微生物源蛋白质替代;人造肉汉堡、人造奶冰淇淋等未来食品 Microbial protein substitution; Artificial meat burger, artificial milk ice cream and other future foods |
1 | REN J, LEE J, NA D. Recent advances in genetic engineering tools based on synthetic biology [J]. J. Microbiol.,2020,58(1):1-10. |
2 | ROELL M S, ZURBRIGGEN M D. The impact of synthetic biology for future agriculture and nutrition [J]. Curr. Opin. Biotechnol., 2020,61(2):102-109. |
3 | 汪海,赖锦盛,王海洋,等.作物智能设计育种——自然变异的智能组合和人工变异的智能创制[J].中国农业科技导报,2022,24(6):1-8. |
WANG H, LAI J S, WANG H Y, et al.. Bipartite intelligent design of crops—intelligent combination of natural variation and intelligent creation of artificial variation [J]. J. Agric. Sci. Technol., 2022, 24(6): 1-8. | |
4 | 林敏.农业生物育种技术的发展历程及产业化对策[J].生物技术进展, 2021, 11(4): 405-417. |
LIN M. The development course and industrialization countermeasure of agricultural biological breeding technology [J]. Curr. Biotechnol., 2021, 11(4): 405-417. | |
5 | OTERO-MURAS I, BANGA J R. Synthetic gene circuit analysis and optimization [J]. Methods Mol. Biol., 2021;2189:89-103. |
6 | SANTOS-MORENO J, SCHAERLI Y. CRISPR-based gene expression control for synthetic gene circuits [J]. Biochem. Soc.Trans., 2020,48(5):1979-1993. |
7 | JUSIAK B, CLETO S, PEREZ-PINERA P, et al.. Engineering synthetic gene circuits in living cells with CRISPR technology [J]. Trends Biotechnol., 2016,34(7):535-547. |
8 | MCCARTHY D M, MEDFORD J I. Quantitative and predictive genetic parts for plant synthetic biology [J/OL]. Front. Plant. Sci., 2020,11:512526 [2022-11-26]. . |
9 | ZHANG P, GUO Z, ULLAH S, et al.. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture [J]. Nat. Plants, 2021,7(7):864-876. |
10 | Associates Lewis-Burke.The federal bioeconomy landscape: Opportunities related to biotechnology, synthetic biology, and engineering biology [R]. USA: Lewis-Burke Associates,2021:7. |
11 | CHUI M, EVERS M, MANYIKA J, et al.. The bio revolution:innovations transforming economies, societies and our lives [R]. USA: McKinsey Global Institute, 2020:5. |
12 | 李新海,谷晓峰,马有志,等.农作物基因设计育种发展现状与展望[J].中国农业科技导报,2020,22(8):1-4. |
LI X H, GU X F, MA Y Z, et al.. Current status and perspectives in the development of crop genomic design breeding [J]. J. Agric. Sci. Technol., 2020,22(8):1-4. | |
13 | KHUSH G S.Breaking the yield frontier of rice [J]. Geo. J.,1995,35:329-332. |
14 | VIRK P S, KHUSH G S, PENG S. Breeding to enhance yield potential of rice at IRRI: the ideotype approach [J]. Int. Rice Res. Notes, 2004,29(1): 5-9. |
15 | PALEARI L, LI T, YANG Y, et al.. A trait-based model ensemble approach to design rice plant types for future climate [J]. Glob Chang Biol., 2022,28(8):2689-2710. |
16 | ČERMÁK T, GASPARINI K, KEVEI Z, et al.. Genome editing to achieve the crop ideotype in tomato [J]. Methods Mol. Biol., 2021,2264:219-244. |
17 | LI X, QIAN Q, FU Z, et al.. Control of tillering in rice [J]. Nature, 2003, 422(6932):618-621. |
18 | JIAO Y, WANG Y, XUE D, et al.. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice [J]. Nat. Genet., 2010,42(6):541-544. |
19 | JIANG L, LIU X, XIONG G, et al.. DWARF 53 acts as a repressor of strigolactone signalling in rice [J]. Nature,2013, 504(7480):401-405. |
20 | ZHOU F, LIN Q, ZHU L, et al.. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling [J]. Nature, 2013,504(7480):406-410. |
21 | 邓一文,刘裕强,王静,等.农作物抗病虫研究的战略思考[J].中国科学: 生命科学,2021,10: 1435 -1446. |
22 | BENTIVENHA J P. F., MONTEZANO D G, HUNT T E, et al.. Intraguild interactions and behavior of Spodoptera frugiperda and Helicoverpa spp. on maize [J]. Pest. Manag. Sci., 2017,73(11): 2244-2251. |
23 | 吴秋琳,姜玉英,胡高,等.中国热带和南亚热带地区草地贪夜蛾春夏两季迁飞轨迹的分析[J].植物保护,2019,45(3):1-9. |
WU Q L, JIANG Y Y, HU G, et al.. Analysis on spring and summer migration routes of fall armyworm (Spodoptera frugiperda) from tropical and southern subtropical zones of China [J]. Plant Protection, 2019,45(3):1-9. | |
24 | 徐蓬军,张丹丹,王杰,等.草地贪夜蛾对玉米和烟草的偏好性研究[J].植物保护,2019,45(4) : 61-64. |
XU P J, ZHANG D D, WANG J, et al.. The host preference of Spodoptera frugiperda on maize and tobacco [J]. Plant Protection, 2019,45(4): 61-64. | |
25 | 张丹丹,吴孔明.国产Bt-Cry1Ab和Bt-(Cry1Ab+Vip3Aa)玉米对草地贪夜蛾的抗性测定[J].植物保护,2019,45(4):54-60. |
ZHANG D D, WU K M.The bioassay of chinese domestic Bt-Cry1Ab and Bt-(Cry1Ab+Vip3Aa)maize against the fall armyworm, spodoptera frugiperda [J]. Plant Protection, 2019,45(4):54-60. | |
26 | 赵胜园,杨现明,杨学礼,等. 8种农药对草地贪夜蛾的田间防治效果[J]. 植物保护,2019,45(4):74-78. |
ZHAO S Y, YANG X M, YANG X L, et al.. Field efficacy of eight insecticides on fall armyworm, Spodoptera frugiperda [J]. Plant Protection, 2019,45(4):74-78. | |
27 | WANG Y, LIANG C, WU S, et al.. Significant improvement of cotton verticillium wilt resistance by manipulating the expression of gastrodia antifungal proteins [J]. Mol. Plant, 2016, 9(10):1436-1439. |
28 | 陈方圆,杨洋,李波,等.棉花抗黄萎病分子机制研究进展[J].分子植物育种,2016,14(10):2859-2868. |
CHEN F Y, YANG Y, LI B,et al.. Research advance on molecular regulation mechanism of verticillium wilt resistance in cotton [J]. Mol. Plant Breeding, 2016,14(10):2859-2868. | |
29 | 王雯慧.棉花黄萎病抗病基因研究取得进展[J].中国农村科技, 2017(11):10. |
WANG W H. Advances in research on cotton verticillium wilt resistance genes [J]. China Rural Sci. Technol., 2017(11):10. | |
30 | LI T, MA X, LI N, et al.. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.) [J]. Plant Biotechnol. J., 2017, 15(12):1520-1532. |
31 | BAKTAVACHALAM G B, DELANEY B, FISHER T L, et al.. Transgenic maize event TC1507: Global status of food, feed, and environmental safety [J]. GM. Crops. Food., 2015,6(2):80-102. |
32 | 王璞玥,唐鸿志,吴震州,等. “合成生物学”研究前沿与发展趋势[J].中国科学基金, 2018,32(5):545-551. |
WANG P Y, TANG H Z, WU Z Z, et al.. Research frontiers and development trends of “synthetic biology” [J]. Bull. National Nat. Sci. Foundation China, 2018,32(5):545-551. | |
33 | 赵国屏.合成生物学:开启生命科学“会聚”研究新时代[J].中国科学院院刊,2018, 33(11): 1135-1149. |
ZHAO G P. Synthetic biology: unsealing the convergence era of life science research [J]. Bull. Chin. Acad. Sci., 2018, 33(11): 1135-1149. | |
34 | KUMAWAT K C, RAZDAN N, SAHARAN K. Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives [J/OL]. Microbiol. Res., 2022, 254:126901 [2022-11-26]. . |
35 | 刘双江,施文元,赵国屏. 中国微生物组计划:机遇与挑战[J].中国科学院院刊, 2017,32(3): 241-250. |
LIU S J, SHI W Y, ZHAO G P. China microbiome initiative: opportunity and challenges [J]. Bull. Chin. Acad. Sci., 2017, 32(3): 241-250. | |
36 | BANO S, WU X, ZHANG X. Towards sustainable agriculture: rhizosphere microbiome engineering [J]. Appl. Microbiol. Biotechnol., 2021,105(19):7141-7160. |
37 | BRODY H. The gut microbiome [J/OL]. Nature, 2020,577(S5) [2022-11-26]. . |
38 | MASON C J. Complex relationships at the intersection of insect gut microbiomes and plant defenses [J]. J. Chem. Ecol., 2020,46(8):793-807. |
39 | HACQUARD S, GARRIDO-OTER R, GONZALEZ A, et al.. Microbiota and host nutrition across plant and animal kingdoms [J]. Cell Host Microbe,2015,17: 603-616. |
40 | HERRIDGE D F, PEOPLES M B, BODDEY R M. Global inputs of biological nitrogen fixation in agricultural systems [J]. Plant Soil., 2008, 311(1-2):1-18. |
41 | GRIESMANN M, CHANG Y, LIU X, et al.. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis [J]. Science, 2018, 2018, 361(6398): eaat1743 [2022-11-27]. . |
42 | ZHANG J Y, LIU Y X, ZHANG N, et al.. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice [J]. Nat. Biotechnol., 2019,37(6): 676-684. |
43 | ARSHAD M A, HASSAN F U, REHMAN M S, et al.. Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities [J]. Anim. Nutr., 2021, 7(3):883-895. |
44 | LEE D, GOH T W, KANG M G, et al.. Perspectives and advances in probiotics and the gut microbiome in companion animals [J]. J. Anim. Sci. Technol., 2022,64(2):197-217. |
45 | 李爱科,林燕,赵永欣.饲用抗生素替代品研究进展[J].饲料工业, 2013,34(20):1-6. |
LI A K, LIN Y, ZHAO Y X. Research progress in substitute of feed antibiotics [J]. Feed Ind. Magazine, 2013,34(20):1-6. | |
46 | MARKOWIAK P, SLIZEWSKA K. The role of probiotics, prebiotics and synbiotics in animal nutrition [J/OL]. Gut Pathog., 2018,10:21 [2022-11-27]. . |
47 | ROHANI M F, ISLAM S M, HOSSAIN M K, et al.. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish [J]. Fish Shellfish Immunol., 2022,120:569-589. |
48 | PENG J, RICHARDS D E, HARTLEY N M, et al.. ‘Green revolution’ genes encode mutant gibberellin response modulators [J]. Nature, 1999,400(6741):256-261. |
49 | SPIELMEYER W, ELLIS M H, CHANDLER P M. Semidwarf (sd-1),“green revolution”rice, contains a defective gibberellin 20-oxidase gene [J]. Proc. Natl. Acad. Sci. USA, 2002,99(13):9043-9048. |
50 | TAGUCHI-SHIOBARA F, YUAN Z, HAKE S, et al.. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize [J]. Gene Dev., 2001,15(20):2755-2766. |
51 | BOMMERT P, LUNDE C, NARDMANN J, et al.. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase [J]. Development, 2005,132(6):1235-1245. |
52 | WU Q, REGAN M, FURUKAWA H, et al.. Role of heterotrimeric galpha proteins in maize development and enhancement of agronomic traits [J/OL]. PLoS Genet., 2018, 14(4): e1007374 [2022-11-27]. . |
53 | HUANG X, QIAN Q, LIU Z, et al.. Natural variation at the DEP1 locus enhances grain yield in rice [J]. Nat. Genet.,2009, 41(4):494-497. |
54 | WANG B, SMITH S M, LI J. Genetic regulation of shoot architecture [J]. Annu. Rev. Plant. Biol., 2018,69:437-468. |
55 | BROPHY J A N, MAGALLON K J, DUAN L, et al.. Synthetic genetic circuits as a means of reprogramming plant roots [J]. Science,2022,377(6607):747-751.. |
56 | YANG L, ZHANG P, WANG Y H, et al.. Plant synthetic epigenomic engineering for crop improvement [J]. Sci. China Life Sci., 2022, 65: 2191-2204.. |
57 | RINKE C, SCHWIENTEK P, SCZYRBA A,et al.. Insights into the phylogeny and coding potential of microbial dark matter [J]. Nature, 2013,499(7459):431-437. |
58 | PANWAR B S, RAM C, NARULA R K,et al.. Pool deconvolution approach for high-throughput gene mining from Bacillus thuringiensis [J]. Appl. Microbiol. Biotechnol.,2018,102(3):1467-1482. |
59 | NAYFACH S, ROUX S, SESHADRI R, et al.. A genomic catalog of Earth’s microbiomes [J]. Nat. Biotechnol., 2021,39(4):499-509. |
60 | PASIN F, MENZEL W, DAROS J A. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses [J]. Plant Biotechnol. J.,2019, 17(6):1010-1026. |
61 | ANDRES J, BLOMEIER T, ZURBRIGGEN M D. Synthetic switches and regulatory circuits in plants [J]. Plant Physiol., 2019, 179(3):862-884. |
62 | JAMES C. Global status of commercialized Biotech/GM crops: 2017 [R]. Ithaca, NY, ISAAA, ISAAA Brief No. 53, 2017. |
63 | ZHU H, LI C, GAO C. Applications of CRISPR-Cas in agricul- ture and plant biotechnology [J]. Nat. Rev. Mol. Cell Biol., 2020,21(11):661-677. |
64 | YU H, LIN T, MENG X B, et al.. A route to de novo domestication of wild allotetraploid rice [J]. Cell,2021,184(4):1156-1170. |
65 | BAI B, LIU W, QIU X, et al.. The root microbiome: Community assembly and its contributions to plant fitness[J]. J. Integr. Plant. Biol., 2022, 64(2):230-243. |
66 | CAPORASO J G, LAUBER C L, WALTERS W A, et al.. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J]. Proc. Natl. Acad. Sci. USA, 2011,108:4516-4522. |
67 | HESS M, SCZYRBA A, EGAN R, et al.. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen [J]. Science, 2011, 331(6016):463-467. |
68 | BAI Y, MULLER D B, SRINIVAS G, et al.. Functional overlap of the arabidopsis leaf and root microbiota [J]. Nature, 2015, 528:364-369. |
69 | GHYSELINCK J, PFEIFFER S, HEYLEN K, et al.. The effect of primer choice and short read sequences on the outcome of 16S rRNA gene based diversity studies [J]. PLoS One, 2013,8(8):e71360 [2022-11-27]. . |
70 | BULGARELLI D, GARRIDO-OTER R, MUNCH P C, et al.. Structure and function of the bacterial root microbiota in wild and domesticated barley [J]. Cell Host Microbe,2015,17(3):392-403. |
71 | XU Y, ZHOU T, ZHANG S, et al.. Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases [J]. Proc. Natl. Acad. Sci. USA, 2014,111(34):12354-12359. |
72 | BAI J, LU Y, XU Y M,et al.. Diversity-oriented combinatorial biosynthesis of hybrid polyketide scaffolds from azaphilone and benzenediol lactone biosynthons [J]. Org. Lett., 2016,18(6) :1262-1265. |
73 | OLDROYD G E D. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants [J]. Nat. Rev. Microbiol. 2013, 11(4):252-263. |
74 | LIN JS, LI X, LUO Z, et al.. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula [J]. Nat. Plants, 2018,4(11):942-952. |
75 | NISHIDA H, SUZAKI T. Nitrate-mediated control of root nodule symbiosis [J]. Curr. Opin. Plant Biol., 2018,44:129-136. |
76 | 燕永亮,田长富,杨建国,等.人工高效生物固氮体系创建及其农业应用[J].生命科学,2021,33(12):1532-1543. |
YAN Y L, TIAN C F, YANG J G, et al.. Establishment of artificial efficiency biological nitrogen fixation system and its agricultural application [J]. Chin. Bull. Life Sci., 2021,33(12):1532-1543. | |
77 | CHEN C Y, ZHOU Y Y, FU H, et al.. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome [J/OL]. Nat. Commun., 2021, 12: 1106 [2022-11-27]. . |
78 | YANG H, WU J Y, HUANG X C, et al.. ABO genotype alters the gut microbiota by regulating GalNAc levels in pigs [J]. Nature, 2022, 606(7913): 358-367. |
79 | CAI T, SUN H, QIAO J, et al.. Cell-free chemoenzymatic starch synthesis from carbon dioxide [J]. Science, 2021,373(6562):1523-1527. |
80 | 宇博智业市场研究中心. 2022—2027年中国生物技术产业运行态势及投资规划深度研究报告[R]. 中研普华产业研究院,2022:1-300. |
81 | LI Y, SHI T, HAN P, et al.. Thermodynamics-driven production of value-added D-allulose from Inexpensive Starch by an in vitro enzymatic synthetic biosystem [J]. ACS. Cata., 2021,11(9):5088-5099. |
82 | 农业农村部畜牧兽医局, 中国饲料工业协会. 2021年全国饲料工业发展概况[N]. 中国畜牧兽医报, 2022-02-20(008). |
83 | SURESH G, DAS R K, KAUR B S, et al.. Alternatives to antibiotics in poultry feed: molecular perspectives [J]. Crit. Rev. Microbiol.,2018, 44(3):318-335. |
84 | 温家姝,胡彩虹,崔世豪,等.微生态制剂对家禽肠道健康影响的研究进展[J].动物营养学报,2021,33 (4): 1851-1858. |
WEN J Z, HU C H, CUI S H, et al.. Research progress on effects of microecological agents on intestinal health of poultry [J]. Chin. J. Anim. Nutr.,2021,33 (4) : 1851-1858. | |
85 | HUYNH T G, SHIU Y L, NGUYEN T P, et al.. Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: a review [J]. Fish Shellfish Immunol…, 2017, 64:367-382. |
86 | ROSELLI M, PIEPER R, ROGEL-GAILLARD C, et al.. Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs [J]. Anim. Feed. Sci. Tech., 2017,233:104-119. |
87 | YAHFOUFI N, MALLET J F, GRAHAM E, et al.. Role of probiotics and prebiotics in immunomodulation [J]. Curr. Opin. Food. Sci., 2018,20:82-91. |
88 | BINDELS L B, DELZENNE N M, CANI P D, et al.. Towards a more comprehensive concept for prebiotics [J]. Nat. Rev. Gastro. Hepat., 2015,12(5):303-310. |
89 | 鹿书强.微生态制剂——益生元在畜牧生产中的应用[J].饲料博览,2003(9): 16-18. |
LU S Q. Microecological preparation—application of probiotics in animal husbandry [J]. Feed Rev., 2003(9): 16-18. | |
90 | HAHNE G, TOMLINSON L, NOGUÉ F. Precision genetic engineering tools for next-generation plant breeding [J]. Plant Cell Rep., 2019,38(4):435-436. |
91 | RISCHER H, SZILVAY G R, OKSMAN-CALDENTEY K M. Cellular agriculture-industrial biotechnology for food and materials [J]. Curr. Opin. Biotechnol., 2020, 61: 128-134. |
92 | MARVIK O J, PHILP J. The systemic challenge of the bioeconomy: a policy framework for transitioning towards a sustainable carbon cycle economy [J/OL]. EMBO Rep., 2020, 21(10): e51478 [2022-11-27]. . |
93 | 林敏,姚斌.加强合成生物技术创新,引领现代农业跨越发展[J].生物技术进展,2022,12(3):321-324. |
LIN M, YAO B. Strengthening Innovation in synthetic biotechnology and leading the leapfrog development of modern agriculture [J]. Curr. Biotechnol., 2022,12(3):321-324. | |
94 | MARCELLIN E, ANGENENT L T, NIELSEN L K, et al.. Recycling carbon for sustainable protein production using gas fermentation [J/OL]. Curr. Opin. Biotechnol., 2022, 76:102723 [2022-11-27]. |
95 | SHIH C F, ZHANG T, LI J, et al.. Powering the future with liquid sunshine [J]. Joule, 2018, 2(10): 1925-1949. |
96 | DOUGLAS R M, PAVEL V C, JAECHEOL C, et al.. A road map to the ammonia economy[J]. Joule, 2020, 4: 1186-1205. |
97 | PHILP J. Bioeconomy and net-zero carbon: lessons from Trends in Biotechnology, volume 1, issue 1 [J/OL]. Trends Biotechnol., 2022, S0167-7799(22)00250-5 [2022-11-27]. . |
[1] | 汪海, 赖锦盛, 王海洋, 李新海. 作物智能设计育种——自然变异的智能组合和人工变异的智能创制[J]. 中国农业科技导报, 2022, 24(6): 1-8. |
[2] | 郭位军, 李东维, 谢上, 杨立文, 李聪, 田健, 普莉, 谷晓峰. 人工智能加速作物表观遗传设计育种[J]. 中国农业科技导报, 2022, 24(12): 90-100. |
[3] | 邹婉侬,宋敏*. 试论我国公共资源治理的制度供给改革——以农业生物遗传资源治理为例[J]. 中国农业科技导报, 2021, 23(4): 11-19. |
[4] | 朱畇昊1,2,李璐1,赵乐1,2,董诚明1,2*. 地黄次生代谢产物生物合成基因表达水平与其含量的相关性分析[J]. 中国农业科技导报, 2018, 20(11): 36-43. |
[5] | 雷彩燕,李静静,闫凤鸣*. 植物皂苷生物合成及调控研究进展[J]. , 2014, 16(4): 50-58. |
[6] | 宗元元,李博强,秦国政,张占全,田世平*. 棒曲霉素对果品质量安全的危害及其研究进展[J]. , 2013, 15(4): 36-41. |
[7] | 李瑞国. 国际农业生物技术发展趋势分析[J]. , 2010, 12(4): 6-11. |
[8] | 张晓蓉 杨素萍. 光合细菌类胡萝卜素研究[J]. , 2005, 7(6): 26-30. |
[9] | 李学勇. 加速农业生物技术跨越式发展 切实推进新的农业科技革命——在“中国农业生物技术论坛”上的讲话[J]. , 2003, 5(1): 3-6. |
[10] | 张银定[1] 王琴芳[2] 等. 全球现代农业生物技术的政策取向分析和对我国的借鉴[J]. , 2001, 3(6): 56-60. |
[11] | 戴小枫 甘吉生 等. 澳大利亚农业科技研究主要进展之一自然资源、种植业生产管理体系与农业生物技术[J]. , 2001, 3(3): 79-80. |
[12] | . 中国农业科学院生物技术研究所主要科研成果[J]. , 2000, 2(2): 37-38. |
[13] | 戴小枫 王韧 贾继增 黄大昉. 国外农作物生物技术重大科学工程(基地/中心)建设的一些情况[J]. , 2000, 2(2): 43-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||