中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (8): 87-98.DOI: 10.13304/j.nykjdb.2022.0100
张文麒1,2,3(), 吴升2,3, 郭新宇2,3, 温维亮2,3, 卢宪菊2,3, 赵春江2,3(
)
收稿日期:
2022-02-11
接受日期:
2022-04-17
出版日期:
2022-08-15
发布日期:
2022-08-22
通讯作者:
赵春江
作者简介:
张文麒 E-mail:823271351@qq.com;
基金资助:
Wenqi ZHANG1,2,3(), Sheng WU2,3, Xinyu GUO2,3, Weiliang WEN2,3, Xianju LU2,3, Chunjiang ZHAO2,3(
)
Received:
2022-02-11
Accepted:
2022-04-17
Online:
2022-08-15
Published:
2022-08-22
Contact:
Chunjiang ZHAO
摘要:
基于多视角重建技术的作物三维表型高通量获取系统成本低、获取效率高,引起越来越多的关注。植物自旋转式拍摄平台易于搭建,但植物旋转过程中产生的抖动对点云三维重建和表型解析精度有一定影响。为评估旋转式多视角成像在小麦植株三维表型解析中的适用性,基于植物旋转设计了便携式小麦植株三维表型高通量采集系统,选取穗期不同品种的小麦植株作为实验样本进行点云重建,基于Hausdorff距离评价了重建点云的精度误差;并基于人工测量数据,对所提取的表型指标精度进行评价。结果表明,植物旋转式重建的点云与相机旋转式重建的点云有较高的一致性,点云精度差距基本控制在0.4 cm以下;获取的叶长、叶宽和株高的均根方误差分别为0.79、0.13和0.53 cm,平均绝对百分比误差分别为3.26%、7.63%和0.74%,表明该方式适合穗期的小麦植株表型重建,具有较高的点云重建和表型提取精度,并为小麦植株表型评价提供了一种低成本的解决方案。
中图分类号:
张文麒, 吴升, 郭新宇, 温维亮, 卢宪菊, 赵春江. 植株自旋转多视角重建技术在小麦植株三维表型获取中的应用评估[J]. 中国农业科技导报, 2022, 24(8): 87-98.
Wenqi ZHANG, Sheng WU, Xinyu GUO, Weiliang WEN, Xianju LU, Chunjiang ZHAO. Evaluation of Plant Self-rotation Multi-view Reconstruction Technique in 3D Phenotype Acquisition of Wheat Plants[J]. Journal of Agricultural Science and Technology, 2022, 24(8): 87-98.
图1 植株旋转式多视角采集装置注:1—相机;2—转台;3—标定单元;4—背景幕布;5—计算机。
Fig. 1 Plant rotating multi-view acquisition deviceNote:1—Camera; 2—Rotation stand; 3—Calibration unit; 4—Backdrop; 5—Computer.
图6 植物旋转方式和相机旋转方式重建点云可视化A、B、C为济麦38样本;D、E、F为西农979样本;G、H、I为新麦26样本。左图为植物旋转方式,右图为相机旋转方式。
Fig. 6 Visualization of point clouds reconstructed by plant self-rotation and camera rotationA, B and C are Jimai 38 samples; D, E and F are Xinnong 979 samples. G, H and I are Xinmai 26 samples. The left point cloud is obtained by plant selt-rotation, and the right by camera rotation.
图7 点云豪斯多夫距离可视化A:植株点云;B:叶片点云;C:麦穗点云。每行从左至右分别为济麦38、西农979、新麦26
Fig. 7 Point cloud Hausdorff distance visualizationA: Plant point cloud; B: Leaf point cloud; C: Spike point cloud. Each row from left to right is the experimental subject of Jimai 38, Xinnong 979 and Xinmai 26, respectively
图9 小麦重建点云距离统计结果A、B为西农979样本;C、D为新麦样本;E、F为济麦38样本
Fig. 9 Wheat reconstruction point cloud distance statistical resultsA and B are Xinnong 979 samples; C and D are Xinmai 26 samples; E and F are Jimai 38 samples
项目 Item | 植物旋转式 Plant self-rotation | 相机旋转式 Camera rotation | |
---|---|---|---|
相机数量 Camera number | 2 | 3 | |
组件成本 Component cost/yuan | 转台装置 Turntable unit | 443 | 34 500 |
相机 Camera | 12 800 | 19 200 | |
计算机 Computer | 5 000 | 5 000 | |
图像数量 Image number | 60 | 90 | |
图像大小 Image size/Mb | 1.54 | 6.00 | |
单个样本耗时 Reconstruction time per sample/s | 932 | 2 552 | |
重建效率/(s·幅-1) Reconstruction efficiency/(s·frame-1) | 15.53 | 28.36 |
表1 植物旋转式拍摄平台和相机旋转式拍摄平台的成本和重建效率对比
Table 1 Comparison of cost and reconstruction efficiency of plant self-rotation shooting platform and camera rotation shooting platform
项目 Item | 植物旋转式 Plant self-rotation | 相机旋转式 Camera rotation | |
---|---|---|---|
相机数量 Camera number | 2 | 3 | |
组件成本 Component cost/yuan | 转台装置 Turntable unit | 443 | 34 500 |
相机 Camera | 12 800 | 19 200 | |
计算机 Computer | 5 000 | 5 000 | |
图像数量 Image number | 60 | 90 | |
图像大小 Image size/Mb | 1.54 | 6.00 | |
单个样本耗时 Reconstruction time per sample/s | 932 | 2 552 | |
重建效率/(s·幅-1) Reconstruction efficiency/(s·frame-1) | 15.53 | 28.36 |
1 | LI L, ZHANG Q, HUANG D. A review of imaging techniques for plant phenotyping [J]. Sensors (Basel), 2014, 14(11): 20078-20111. |
2 | PIERUSCHKA R, SCHURR U. Plant phenotyping: past, present, and future [J]. Plant Phenomics, 2019(3): 1-6. |
3 | 彭永彬,谢先芝.表型组学在水稻研究中的应用[J].中国水稻科学,2020,34(4):300-306. |
PENG Y B, XIE X Z. Application of phenomics in rice research [J]. Chin. J. Rice Sci., 2020, 34(4): 300-306. | |
4 | 程超华,唐蜻,邓灿辉,等.表型组学及多组学联合分析在植物种质资源精准鉴定中的应用 [J].分子植物育种,2020,18(8):2747-2753. |
CHENG C H, TANG Q, DENG C H, et al.. Application of phenomics and multiomics joint analysis in accurate identification of plant germplasm resources [J]. Mol. Plant Breeding, 2020, 18(8): 2747-2753 | |
5 | 穆金虎,陈玉泽,冯慧,等.作物育种学领域新的革命:高通量的表型组学时代[J].植物科学学报,2016,34(6):962-971. |
MU J H, CHEN Y Z, FENG H, et al.. A new revolution in crop breeding : the era of high-throughput phenomics [J]. Plant Sci. J., 2016, 34(6): 962-971. | |
6 | 卢少志,杨蒙,杨万能,等.田间作物表型检测平台设计与试验[J].华中农业大学学报,2021,40(4):209-218. |
LU S Z, YANG M, TANG W N, et al.. Design and experiment of a platform for detecting phenotype of field crop [J]. J. Huazhong Agric. Univ., 2021, 40(4): 209-218. | |
7 | 郭庆华,吴芳芳,庞树鑫,等.Crop 3D—基于激光雷达技术的作物高通量三维表型测量平台[J].中国科学:生命科学,2016,46(10):1210-1221. |
GUO Q H, WU F F, PANG S X, et al.. Crop 3D: a platform based on LiDAR for 3D high-throughput crop phenotyping [J]. Sci. Sin.: Vitae, 2016, 46(10): 1210-1221. | |
8 | SHIFERAW B, SMALE M, BRAUM H J, et al.. Crops that feed the world 10. past successes and future challenges to the role played by wheat in global food security [J]. Food Security, 2013, 5(3): 291-317. |
9 | 刘守阳,金时超,郭庆华,等.基于数字化植物表型平台(D3P)的田间小麦冠层光截获算法开发[J].智慧农业,2020,2(1):87-98. |
LIU S Y, JIN S C, GUO Q H, et al.. An algorithm for estimating field wheat canopy lightinterception based on digital plant phenotyping platform [J]. Smart Agric., 2020, 2(1): 87-98. | |
10 | WATANABE K, GUO W, ARAI K, et al.. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling [J/OL]. Front. Plant Sci., 2017, 8: 421 [2022-06-22]. . |
11 | 王传宇,郭新宇,杜建军,等.基于时间序列图像的玉米植株干旱胁迫表型检测方法[J].农业工程学报,2016,32(21):189-195. |
WANG C Y, GUO X Y, DU J J, et al.. Maize plant drought stress phenotype testing method based on time-series images [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(21): 189-195. | |
12 | 黄林生,邵松,卢宪菊,等.基于卷积神经网络的生菜多光谱图像分割与配准[J].农业机械学报,2021,52(09):186-194. |
HUANG L S, SHAO S, LU X J, et al.. Segmentation and registration of lettuce multispectral image based on convolutional neural network [J]. Trans. Chin. Soc. Agric. Mach., 2021, 52(09): 186-194. | |
13 | CHOUDHURY S, BASHYAM S, QIU Y, et al.. Holistic and component plant phenotyping using temporal image sequence [J]. Plant Methods, 2018, 14(1): 1-21. |
14 | PAULUS S. Measuring crops in 3D: using geometry for plant phenotyping [J]. Plant Methods, 2019, 15(1): 1-13. |
15 | 劳彩莲,杨瀚,李鹏,等.基于消费级深度相机的玉米植株三维重建[J].农业机械学报,2019,50(7):222-228. |
LAO C L, YANG H, LI P, et al.. 3D Reconstruction of maize plants based on consumer depth camera [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50(7): 222-228. | |
16 | 翟晓晓,邵杰,张吴明,等.基于移动LiDAR点云的树木三维重建[J].中国农业信息,2019,31(5):84-89. |
ZHAI X X, SHAO J, ZHANG W M, et al. Three-dimensional reconstruction of trees using mobile laser scanning point clouds [J]. China Agric. Inform., 2019, 31(5): 84-89. | |
17 | 周静静,郭新宇,吴升,等.基于多视角图像的植物三维重建研究进展[J].中国农业科技导报,2019,21(2):9-18. |
ZHOU J J, GUO X Y, WU S, et al. Research progress on plant three-dimensional reconstruction based on multi-view images [J]. J. Agric. Sci. Technol., 2019, 21(2): 9-18. | |
18 | WESTOBY M J, BRASINGTON J, GLASSER N F, et al.. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications [J]. Geomorphology, 2012, 179: 300-314. |
19 | GOESELE M, SNAVELY N, CURLESS B, et al.. Multi-view stereo for community photo collections [C]// Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, October 14-21, 2007. Rio de Janeiro, Brazil: IEEE, 2007: 1-8. |
20 | LOWE D G. Distinctive image features from scale-invariant keypoints [J]. Int J. Computer Vision, 2004, 60(2): 91-110. |
21 | SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited [C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA: IEEE 2016: 4104-4113. |
22 | WU S, WEN W, WANG Y, et al.. MVS-Pheno: a portable and low-cost phenotyping platform for maize shoots using multiview stereo 3D reconstruction [J/OL]. Plant Phenomics, 2020, 2020:1848437 [2022-06-22]. . |
23 | LIU S, ACOSTA-GAMBOA L M, HUANG X, et al.. Novel low cost 3D surface model reconstruction system for plant phenotyping [J/OL]. J. Imaging, 2017, 3(3): 39 [2022-06-22].. |
24 | ROSSI R, LEOLINI C, COSTAFREDA-AUMEDES S, et al.. Performances evaluation of a low-cost platform for high-resolution plant phenotyping [J/OL]. Sensors, 2020, 20(11): 3150 [2022-06-22]. . |
25 | WANG Y, WEN W, WU S, et al.. Maize plant phenotyping: comparing 3D laser scanning, multi-view stereo reconstruction, and 3D digitizing estimates [J/OL]. Remote Sens., 2019, 11(1): 63 [2022-06-22]. . |
26 | MOULON P, MONASSE P, PERROT R, et al.. Openmvg: Open multiple view geometry [C]// Proceedings of the International Workshop on Reproducible Research in Pattern Recognition. Cham: Springer, 2016: 60-74. |
27 | ANDREW V, GOLDBERG, SAGI H, et al. OpenMVS: multi-view stereo reconstruction library[EB/OL]. [2021-06-17]. . |
28 | ZHANG Y, TENG P, SHIMIZU Y, et al.. Estimating 3D leaf and stem shape of nursery paprika plants by a novel multi-camera photography system [J/OL]. Sensors, 2016, 16(6): 874 [2022-06-22].. |
29 | LU X, ONO E, LU S, et al.. Reconstruction method and optimum range of camera-shooting angle for 3D plant modeling using a multi-camera photography system [J]. Plant Methods, 2020, 16(1): 1-16. |
[1] | 李舒欣, 张浩, 郑厚胜, 郑培和, 逄世峰, 许世泉. 转录组分析二马牙和长脖类型林下参表型差异[J]. 中国农业科技导报, 2021, 23(9): 56-68. |
[2] | 刘忠祥, 杨彦忠, 王晓娟, 连晓荣, 周文期, 何海军, 周玉乾, 寇思荣. 快中子诱变突变体的表型鉴定及配合力效应分析[J]. 中国农业科技导报, 2021, 23(6): 184-194. |
[3] | 吴丹1,叶军立1,王康1,耿泽栋1,付晶波1,刘凌波2,杨万能1*. 基于轮廓投影的盆栽水稻三维重建方法研究[J]. 中国农业科技导报, 2020, 22(9): 87-95. |
[4] | 任富莉1,2,潘映红3,张笑笑2,蒲伟军2,牟永莹3,李玉斌2,张桦1*,朱莉2*. 基于多重表型的高粱耐盐性综合评价方法[J]. 中国农业科技导报, 2019, 21(6): 152-162. |
[5] | 周静静1,2,3,郭新宇2,3,吴升2,3,杜建军2,3,赵春江2,3*. 基于多视角图像的植物三维重建研究进展[J]. 中国农业科技导报, 2019, 21(2): 9-18. |
[6] | 王凯悦,陈芳泉,黄五星*. 植物干旱胁迫响应机制研究进展[J]. 中国农业科技导报, 2019, 21(2): 19-25. |
[7] | 梁丽秀1,2,叶军立1,吴丹1,杨万能1*. 水稻表层根系图像分割算法研究[J]. 中国农业科技导报, 2019, 21(1): 70-79. |
[8] | 于泽涛1,2,温维亮1,2,郭新宇1,2*,王勇健1,2,钱婷婷3. 基于三维点云的灌浆后期玉米植株形态变化研究[J]. 中国农业科技导报, 2018, 20(12): 59-66. |
[9] | 吴迪1,王梦坷2,杨万能1,刘谦2,黄成龙1*. 水稻表层根系性状无损测量技术研究[J]. 中国农业科技导报, 2017, 19(7): 66-77. |
[10] | 潘晓迪1,2,张颖1,2,邵萌1,2,马黎明1,2,郭新宇1,2*. 作物根系结构对干旱胁迫的适应性研究进展[J]. 中国农业科技导报, 2017, 19(2): 51-58. |
[11] | 袁杰1,2,杜建军2,郭新宇2*. 基于可见光图像的玉米植株表型检测研究进展[J]. 中国农业科技导报, 2016, 18(6): 90-96. |
[12] | 温维亮1,2,王勇健1,2,许童羽3*,杨涛3,郭新宇1,2,朱宏宇4,董成玉4. 基于三维点云的玉米果穗几何建模[J]. 中国农业科技导报, 2016, 18(5): 88-93. |
[13] | 邵萌1,2,张颖1,2,郭新宇1,2*. 玉米果穗养分运输组织的表型研究进展[J]. 中国农业科技导报, 2016, 18(3): 38-45. |
[14] | 王勇健1,2,温维亮2,郭新宇2,赵春江2*. 基于点云数据的植物叶片三维重建[J]. , 2014, 16(5): 83-89. |
[15] | 王辰,赵为民,牟玉莲*. 调控动物表型microRNA在分子育种中新的重要标记[J]. , 2013, 15(3): 108-112. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 249
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||