1 |
闫彬,杨福增,郭文川.基于机器视觉技术检测裂纹玉米种子[J].农机化研究,2020,42(5):181-185, 235.
|
|
YAN B, YANG F Z, GUO W C. Detection of cracked corn seeds based on machine vision technology [J]. Agric. Mech. Res., 2020, 42(5):181-185, 235.
|
2 |
吕梦棋,张芮祥,贾浩.基于改进ResNet玉米种子分类方法研究[J].中国农机化学报,2021,42(4):92-98.
|
|
LYU M Q, ZHANG R X, JIA H. Research on classification based on improved ResNet [J]. J. Chin. Agric. Mech., 2021, 42(4):92-98.
|
3 |
徐云碧,王冰冰,张健,等.应用分子标记技术改进作物品种保护和监管[J].作物学报,2022,48(8):1853-1870.
|
|
XU Y B, WANG B B, ZHANG J, et al.. Using molecular marker technology to improve the protection and supervision of judgment characteristics [J]. Acta Agron. Sin., 2022, 48(8):1853-1870.
|
4 |
冯瑞杰,陈争光,衣淑娟.基于贝叶斯优化的SVM玉米品种鉴别研究[J].光谱学与光谱分析,2022,42(6):1698-1703.
|
|
FENG R J, CHEN Z G, YI S J. Study on SVM standard shujuan based on Bayesian optimization [J]. Spectrosc. Spect. Anal., 2022, 42(6):1698-1703.
|
5 |
阳灵燕,张红燕,陈玉峰,等.机器学习在农作物品种识别中的应用研究进展[J].中国农学通报,2020,36(30):158-164.
|
|
YANG L Y, ZHANG H Y, CHEN Y F, et al.. Bulletin on the application of machine learning in agronomic judgment in agronomic judgment [J]. Chin. Agric. Sci. Bull., 2020, 36(30):158-164.
|
6 |
李浩光,李卫军,覃鸿,等.基于栈式自编码神经网络的包衣单籽粒玉米品种识别[J].农业机械学报,2017,48():422-428.
|
|
LI H G, LI W J, QIN H, et al.. Characteristic recognition of single-grain coated grains based on stacked Zihong neural network [J]. Trans. Chin. Soc. Agric. Mach., 2017, 48(S1):422-428.
|
7 |
马睿,王佳,赵威,等.基于卷积神经网络与迁移学习的玉米籽粒图像分类识别[J].中国粮油学报,2023,38(5):128-134.
|
|
MA R, WANG J, ZHAO W, et al.. Classification and recognition of corn kernel image based on convolutional neural network and transfer learning [J]. J. Chin. Cereals Oils Assoc., 2023, 38(5):128-134.
|
8 |
冯晓,张辉,周蕊,等.基于深度学习和籽粒双面特征的玉米品种识别[J].系统仿真学报,2021,33(12):2983-2991.
|
|
FENG X, ZHANG H, ZHOU R, et al.. Characteristics based on deep learning and double-sided features of grains [J]. J. Sys. Sim., 2021, 33(12):2983-2991.
|
9 |
刘林.基于深度学习的玉米籽粒品种识别[D].青岛:山东科技大学,2020.
|
|
LIU L. Identification of corn kernel characteristics based on in-depth research [D]. Qingdao: Shandong University of Science and Technology, 2020.
|
10 |
TU K, WEN S, CHENG Y, et al.. A non-destructive and highly efficient model for detecting the genuineness of maize variety ‘JINGKE 968’ using machine vision combined with deep learning [J/OL]. Computers Electronics Agric., 2021, 182:106002 [2022-06-12]. .
|
11 |
胡艳侠.基于机器视觉的玉米果穗品质检测方法研究[D].西安:长安大学,2017.
|
|
HU Y X.Research on corn ear quality detection method based on machine vision [D]. Xi’an: Chang’an University, 2017.
|
12 |
马钦,张佳婧,刘哲,等.基于双路卷积神经网络的玉米制种果穗筛分方法及装置:CN110766053A[P]. 2020-02-07.
|
13 |
ZOPH B, VASUDEVAN V, SHLENS J, et al.. Learning transferable architectures for scalable image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2018:8697-8710.
|
14 |
黄家才,舒奇,朱晓春,等.基于迁移学习的机器人视觉识别与分拣策略[J].计算机工程与应用,2019,55(8) :232-237.
|
|
HUANG J C, SHU Q, ZHU X C, et al.. Robot vision recognition and sorting strategy based on transfer learning [J].Comput. Eng. Appl., 2019, 55(8):232-237.
|
15 |
石祥滨,房雪键,张德园,等.基于深度学习混合模型迁移学习的图像分类[J].系统仿真学报,2016,28(1): 167-173, 182.
|
|
SHI X B, FANG X J, ZHANG D Y, et al.. Image classification based on mixed deep learning model transfer learning [J]. J. Sys. Sim., 2016, 28(1):167-173, 182.
|
16 |
王佳,马睿,马德新.基于深度学习的登海605玉米品种真伪鉴别方法研究[J].中国粮油学报,2023, 38(3): 151-157.
|
|
WANG J, MA R, MA D X. Identification method of Denghai 605 maize varieties based on deep learning [J]. J. Chin. Cereals Oils Assoc., 2023, 38(3): 151-157.
|
17 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017:1800-1807.
|
18 |
HE K M, ZHANG X Y, REN S Q, et al.. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016:770-778.
|
19 |
SANDLER M, HOWARD A, ZHU M, et al.. MoblieNetV2: inverted residual and linear bottlenecks [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018:4510-4520.
|
20 |
HUANG G, LIU Z, LAURENS V, et al.. Densely connected convolution networks [C]// Proceedings 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017:2261-2269.
|
21 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J/OL]. Computer Sci., 2014, arXiv:1409.1556 [2022-06-12]. .
|
22 |
杨昊岩,栾涛,韩仲志,等.基于深度学习声谱图分类的“听声识风”[J].华南师范大学学报(自然科学版),2021,53(5):10-16.
|
|
YANG H Y, LUAN T, HAN Z Z, et al.. “Listening to sound and knowing wind” based on deep learning spectrogram classification [J]. J. South China Norm. Univ. (Nat. Sci.), 2021, 53(5):10-16.
|
23 |
徐岩,刘林,李中远,等.基于卷积神经网络的玉米品种识别[J].江苏农业学报,2020,36(1):18-23.
|
|
XU Y, LIU L, LI Z Y, et al.. Recognition of corn varieties based on convolutional neural network [J]. Jiangsu J. Agric. Sci., 2020, 36(1):18-23.
|
24 |
许景辉,邵明烨,王一琛,等.基于迁移学习的卷积神经网络玉米病害图像识别[J].农业机械学报,2020,51(2):230-236, 253.
|
|
XU J H, SHAO M Y, WANG Y C, et al.. Image recognition of corn diseases based on convolutional neural network based on transfer learning [J]. Trans. Chin. Soc. Agric. Mach., 2020, 51(2):230-236, 253.
|