中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (6): 170-183.DOI: 10.13304/j.nykjdb.2023-0971
• 生物制造 资源生态 • 上一篇
张莹1(), 谷海红1,2,3(
), 艾艳君1, 李富平1,2, 吴梓敬1
收稿日期:
2023-12-30
接受日期:
2024-06-04
出版日期:
2025-06-15
发布日期:
2025-06-23
通讯作者:
谷海红
作者简介:
张莹 E-mail:zhangying77585@163.com;
基金资助:
Ying ZHANG1(), Haihong GU1,2,3(
), Yanjun AI1, Fuping LI1,2, Zijing WU1
Received:
2023-12-30
Accepted:
2024-06-04
Online:
2025-06-15
Published:
2025-06-23
Contact:
Haihong GU
摘要:
人类生产活动导致CO2排放量增加,全球变暖问题严重威胁生态系统的安全。丛枝菌根真菌可以与80%陆生植物形成共生系统,具有提高植物抗逆性、促进植物生长等作用,具有良好的应用前景,然而丛枝菌根真菌在实际应用过程中存在对土壤碳储量的影响效果不稳定、应用技术不成熟等问题,严重限制其应用。从丛枝菌根真菌影响土壤碳的固定和分解2方面,对其影响植物光合作用、养分在植物体内吸收转化、根系附近微生物群落活性、根系附近土壤碳的分解进行系统梳理,并对实际应用中存在的问题进行说明,以期为丛枝菌根真菌在土壤碳平衡方面的研究提供理论支撑。
中图分类号:
张莹, 谷海红, 艾艳君, 李富平, 吴梓敬. 丛枝菌根真菌对土壤碳平衡的影响研究进展[J]. 中国农业科技导报, 2025, 27(6): 170-183.
Ying ZHANG, Haihong GU, Yanjun AI, Fuping LI, Zijing WU. Research Progress on Effect of Arbuscular Mycorrhizal Fungi on Soil Carbon Balance[J]. Journal of Agricultural Science and Technology, 2025, 27(6): 170-183.
重金属 Heavy metal | 宿主植物 Host plant | 菌种 Culture | 作用效果 Repair effect | 参考文献 Reference |
---|---|---|---|---|
镉 Cd | 玉米 Corn | Funneliformismosseae | 接种组叶片叶绿素含量、净光合速率和蒸腾速率增加1.1倍、2.3倍和39.4% Chlorophyll content, net photosynthetic rate and transpiration rate of inoculated leaves increased by 1.1 times, 2.3 times and 39.4% | [ |
铜 Cu | 白茅 Cogon | Rhizophagus irregularis | 接种组过氧化物酶(peroxidase, POD)活性显著增强,光合作用指标与POD呈显著正相关 Activity of peroxidase (POD) in inoculation group was significantly enhanced, and the photosynthetic index was positively correlated with POD | [ |
镉 Cd | 小麦 Wheat | Rhizophagus intraradices、Funneliformismosseae | 接种组较对照组叶绿素a含量提高,叶绿素b含量、净光合速率提高20.41%、17.07% Compared with control group, the contents of chlorophyll a, chlorophyll b and net photosynthetic rate in inoculation group increased by 20.41% and 17.07% | [ |
铅、镉 Pb、Cd | 玉米 Corn | Glomusmosseae | 接种组玉米叶片叶绿素含量、光合速率、气孔导度、蒸腾速率和胞间CO2浓度分别增加60.8%、155.0%、400.0%、89.1%和33.9% Chlorophyll content, photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO2 concentration of maize leaves in inoculation group increased by 60.8%, 155.0%, 400.0%, 89.1% and 33.9% respectively | [ |
铬 Cr | 乌桕 Chinese tallow tree | AMF | 随着Cr含量的增加,光合作用性能下降,但接种后下降不明显 With the increase of Cr content, the photosynthetic performance decreased, but this decrease was not obvious in the inoculation group | [ |
铅 Pb | 刺槐 Locust | Rhizophagus intraradices, Funneliformismosseae | 接种组总叶绿素含量、叶片净光合速率、气孔导度显著高于非菌根植物 Total chlorophyll content, net photosynthetic rate and stomatal conductance of inoculated group were significantly higher than those of non-mycorrhizal plants | [ |
镉、锌 Cd,Zn | 紫花 苜蓿 Alfalfa | Rhizophagus irregularis | 接种组气孔导度、总叶绿素含量显著提高 Stomatal conductance and total chlorophyll content in inoculation group were significantly increased | [ |
镉、锌 Cd,Zn | 紫花 苜蓿 Alfalfa | AMF | 接种组植株中叶绿素和胡萝卜素的相对含量显著高于对照组 Relative contents of chlorophyll and carotene in the inoculated plants were significantly higher than those in the control group | [ |
表1 接种AMF对植物光合作用的影响
Table 1 Effect of AMF inoculation on plant photosynthesis
重金属 Heavy metal | 宿主植物 Host plant | 菌种 Culture | 作用效果 Repair effect | 参考文献 Reference |
---|---|---|---|---|
镉 Cd | 玉米 Corn | Funneliformismosseae | 接种组叶片叶绿素含量、净光合速率和蒸腾速率增加1.1倍、2.3倍和39.4% Chlorophyll content, net photosynthetic rate and transpiration rate of inoculated leaves increased by 1.1 times, 2.3 times and 39.4% | [ |
铜 Cu | 白茅 Cogon | Rhizophagus irregularis | 接种组过氧化物酶(peroxidase, POD)活性显著增强,光合作用指标与POD呈显著正相关 Activity of peroxidase (POD) in inoculation group was significantly enhanced, and the photosynthetic index was positively correlated with POD | [ |
镉 Cd | 小麦 Wheat | Rhizophagus intraradices、Funneliformismosseae | 接种组较对照组叶绿素a含量提高,叶绿素b含量、净光合速率提高20.41%、17.07% Compared with control group, the contents of chlorophyll a, chlorophyll b and net photosynthetic rate in inoculation group increased by 20.41% and 17.07% | [ |
铅、镉 Pb、Cd | 玉米 Corn | Glomusmosseae | 接种组玉米叶片叶绿素含量、光合速率、气孔导度、蒸腾速率和胞间CO2浓度分别增加60.8%、155.0%、400.0%、89.1%和33.9% Chlorophyll content, photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO2 concentration of maize leaves in inoculation group increased by 60.8%, 155.0%, 400.0%, 89.1% and 33.9% respectively | [ |
铬 Cr | 乌桕 Chinese tallow tree | AMF | 随着Cr含量的增加,光合作用性能下降,但接种后下降不明显 With the increase of Cr content, the photosynthetic performance decreased, but this decrease was not obvious in the inoculation group | [ |
铅 Pb | 刺槐 Locust | Rhizophagus intraradices, Funneliformismosseae | 接种组总叶绿素含量、叶片净光合速率、气孔导度显著高于非菌根植物 Total chlorophyll content, net photosynthetic rate and stomatal conductance of inoculated group were significantly higher than those of non-mycorrhizal plants | [ |
镉、锌 Cd,Zn | 紫花 苜蓿 Alfalfa | Rhizophagus irregularis | 接种组气孔导度、总叶绿素含量显著提高 Stomatal conductance and total chlorophyll content in inoculation group were significantly increased | [ |
镉、锌 Cd,Zn | 紫花 苜蓿 Alfalfa | AMF | 接种组植株中叶绿素和胡萝卜素的相对含量显著高于对照组 Relative contents of chlorophyll and carotene in the inoculated plants were significantly higher than those in the control group | [ |
1 | LAL R. Carbon sequestration in dryland ecosystems [J].Environ. Manag., 2004,33(4): 528-544. |
2 | 鲁青原,郝春博.丛枝菌根真菌(AMF)在土壤固碳中的作用[J].海洋地质前沿,2016,32(8): 41-46. |
LU Q Y, HAO C B. AMF helps in carbon sequestration in soil [J]. Marine Geol. Front., 2016,32(8): 41-46. | |
3 | WIPF D, KRAJINSKI F, VAN TUINEN D, et al.. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks [J]. New Phytol., 2019,223(3):1127-1142. |
4 | ZHANG M L, CHE R X, CHENG Z B, et al.. Decades of reforestation significantly change microbial necromass, glomalin, and their contributions to soil organic carbon [J/OL]. Agric.Ecosyst. Environ., 2023,346:108362 [2023-11-28]. . |
5 | 陈媛,王立,马放,等.丛枝菌根真菌对鸢尾的促进作用研究[J].农业资源与环境学报,2014,31(3):265-272. |
CHEN Y, WANG L, MA F,et al.. Role of arbuscular mycorrhizal fungi on iris [J]. J. Agric. Resour. Environ., 2014,31(3): 265-272. | |
6 | 毕银丽, 薛超, 柯增鸣, 等. 接种AMF对玉米根系及土壤水分分布的影响[J]. 菌物学报, 2023, 42(7):1539-1550. |
BI Y L, XUE C, KE Z M, et al.. Effect of AMF inoculation on distribution of maize roots and soil moisture [J]. Mycosystema, 2023, 42(7): 1539-1550. | |
7 | DEL-SAZ N F, ROMERO-MUNAR A, CAWTHRAY G R, et al.. Arbuscular mycorrhizal fungus colonization in Nicotiana tabacum decreases the rate of both carboxylate exudation and root respiration and increases plant growth under phosphorus limitation [J]. Plant Soil, 2017,416(1):97-106. |
8 | SCHIMEL D, PAVLICK R, FISHER J B, et al.. Observing terrestrial ecosystems and the carbon cycle from space [J].Glob. Change Biol., 2015, 21(5):1762-1776. |
9 | QUÉRÉ L, MORIARTY R, ANDREW R M, et al.. Global carbon budget 2015 [J]. Earth Syst. Sci. Data, 2015, 7(2):349-396. |
10 | 邢红爽,乌佳美,陈健,等.植物光合作用限制因素与植被生产力研究进展[J].生态学报,2023,43(12):5186-5199. |
XING H S, WU J M, CHEN J, et al.. Research progress on limiting factors of plant photosynthesis and vegetation productivity [J]. Acta Ecol. Sin., 2023,43(12):5186-5199. | |
11 | ZHANG H H, XU N, LI X, et al.. Arbuscular mycorrhizal fungi (Glomus mosseae) improves growth, photosynthesis and protects photosystem II in leaves of Lolium perenne L.in cadmium contaminated soil [J/OL]. Front. Plant Sci., 2018,9:1156 [2023-11-28]. . |
12 | 陈嘉欣, 颜洁, 游义红, 等. AMF对玉米生长、根系低分子有机酸分泌与Cd累积的影响[J]. 农业资源与环境学报, 2023, 40(6): 1329-1338. |
CHEN J X, YAN J, YOU Y H, et al.. Effects of AMF on growth, low-molecular-weight organic acid secreted by roots, and Cd uptake in maize [J]. J. Agric. Resour. Environ., 2023, 40(6):1329-1338. | |
13 | 梁晓霞,梁雪丽,廖敏伊,等.铜污染下丛枝菌根真菌对白茅生长及土壤酶活性的影响[J].山西大学学报(自然科学版),2023,46(4): 951-960. |
LIANG X X, LIANG X L, LIAO M Y,et al.. Effects of arbuscular mycorrhizal fungi on the growth of Imperata cylindrica and soil enzyme activities under copper pollution [J].J. Shanxi Univ. (Nat. Sci.), 2023,46(4):951-960. | |
14 | 郭晖,周慧,庄静静,等.镉胁迫下丛枝菌根真菌对小麦生理特性和根际土壤酶活性的影响[J].河南农业科学,2022,51(8):20-27. |
GUO H, ZHOU H, ZHUANG J J, et al.. Effects of arbuscular mycorrhizal fungi on wheat physiological characteristics and rhizosphere soil enzyme activities under cadmium stress [J]. J. Henan Agric. Sci., 2022,51(8): 20-27. | |
15 | 张金秀,湛方栋,王灿,等. AMF对铅锌矿区农田土壤部分理化性质、玉米生长和镉铅含量的影响[J].农业资源与环境学报,2020,37(5):727-735. |
ZHANG J X, ZHAN F D, WANG C, et al.. Effects of arbuscular mycorrhizal fungi on soil physical and chemical properties, maize growth, cadmium, and lead content of farmland from a lead-zinc mine area [J]. J. Agric. Resour. Environ., 2020,37(5): 727-735. | |
16 | CHEN Z B, HU B, HU S S, et al.. Immobilization of chromium enhanced by arbuscular mycorrhizal fungi in semi-aquatic habitats with biochar addition [J/OL]. J. Hazard. Mater., 2022,439:129562 [2023-11-28]. . |
17 | YANG Y R, HUANG B T, XU J Z, et al.. Heavy metal domestication enhances beneficial effects of arbuscular mycorrhizal fungi on lead (Pb) phytoremediation efficiency of Bidens parviflora through improving plant growth and root Pb accumulation [J]. Environ. Sci. Pollut. Res., 2022,29(22):32988-33001. |
18 | RAKLAMI A, GHARMALI A E, RAHOU Y A, et al..Compost and mycorrhizae application as a technique to alleviate Cd and Zn stress in Medicago sativa [J]. Int. J. Phytorem., 2021,23(2): 190-201. |
19 | KANWAL S, BANO A, MALIK N R. Effects of arbuscular mycorrhizal fungi on metals uptake, physiological and biochemical response of Medicago sativa L. with increasing Zn and Cd concentrations in soil [J]. Am. J. Plant Sci., 2015, 6(18):2906-2923. |
20 | 孙晓刚,年昊,殷佳慧,等.丛枝菌根真菌对铅胁迫下王族海棠生长和光合特性的影响[J].山东农业科学,2022,54(8):79-86. |
SUN X G, NIAN H, YIN J H, et al.. Effects of arbuscular mycorrhiza fungi on growth and photosynthetic characteristics of Malus'royalty'under lead stress [J]. Shandong Agric. Sci.,2022,54(8): 79-86. | |
21 | 杨虎, 戈长水, 应武, 等. 遮荫对水稻冠层叶片SPAD值及光合、形态特性参数的影响[J]. 植物营养与肥料学报, 2014, 20(3):580-587. |
YANG H, GE C S, YING W, et al.. Effect of shading on leaf SPAD value and the characteristics of photosynthesis and morphology of rice canopy [J]. J. Plant Nutr. Fert., 2014, 20(3):580-587. | |
22 | 滕秋梅, 张中峰, 李红艳, 等. 丛枝菌根真菌对镉胁迫下芦竹生长、光合特性和矿质营养的影响[J]. 土壤, 2020, 52(6):1212-1221. |
TENG Q M, ZHANG Z F, LI H Y, et al.. Effects of arbuscular mycorrhizal fungi on growth, photosynthetic characteristics and mineral nutrition of arundo donax under Cd stress [J]. Soils, 2020, 52(6):1212-1221. | |
23 | 李晓曼, 王建军. 丛枝菌根真菌对镍胁迫桂花幼苗光合作用及抗氧化酶活性的影响[J]. 江苏农业科学, 2019, 47(21):223-227. |
LI X M, WANG J J. Effects of arbuscular mycorrhizal fungi on photosynthesis and antioxidant enzyme activities of osmanthus seedlings under nickel stress [J]. Jiangsu Agric. Sci., 2019, 47(21):223-227. | |
24 | CAMPOS-SORIANO L, SEGUNDO B S. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis [J]. Plant Signal. Behav., 2011,6(4): 553-557. |
25 | BONFANTE P, GENRE A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis [J/OL]. Nat.Commun., 2010,1:48 [2023-11-28]. . |
26 | PARIHAR M, RAKSHIT A, MEENA V S, et al.. The potential of arbuscular mycorrhizal fungi in C cycling: a review [J]. Arch.Microbiol., 2020,202(7):1581-1596. |
27 | JIANG Y, WANG W, XIE Q, et al.. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi [J]. Science, 2017,356(6343):1172-1175. |
28 | 张雪. 丛枝菌根真菌对稻田系统碳氮元素平衡的影响研究[D]. 哈尔滨:哈尔滨工业大学, 2016. |
ZHANG X. Research on effects of arbuscular mycorrhizal fungi on carbon and nitrogen balance in the rice field system [D]. Harbin: Harbin Institute of Technology, 2016. | |
29 | 何俊瑜,任艳芳,王阳阳,等.不同耐性水稻幼苗根系对镉胁迫的形态及生理响应[J].生态学报,2011,31(2):522-528. |
HE J Y, REN Y F, WANG Y Y, et al.. Root morphological and physiological responses of rice seedlings with different tolerance to cadmium stress [J]. Acta Ecol. Sin., 2011,31(2):522-528. | |
30 | 李明亮,李欢,王凯荣,等.Cd胁迫下丛枝菌根对花生生长、光合生理及Cd吸收的影响[J].环境化学,2016,35(11):2344-2352. |
LI M L, LI H, WANG K R, et al.. Effect of arbuscular mycorrhizae on the growth, photosynthetic characteristics and cadmium uptake of peanut plant under cadmium stress [J].Environ. Chem., 2016, 35(11):2344-2352. | |
31 | 李元敬,刘智蕾,何兴元,等.丛枝菌根共生体中碳、氮代谢及其相互关系[J].应用生态学报,2014,25(3):903-910. |
LI Y J, LIU Z L, HE X Y, et al.. Metabolism and interaction of C and N in the arbuscular mycorrhizal symbiosis [J]. Chin. J.Appl. Ecol., 2014, 25(3): 903-910. | |
32 | KAISER C, KILBURN M R, CLODE P L, et al.. Exploring the transfer of recent plant photosynthates to soil microbes:mycorrhizal pathway vs direct root exudation [J]. New Phytol.,2015,205(4):1537-1551. |
33 | 贾丙瑞.凋落物分解及其影响机制[J].植物生态学报,2019,43(8):648-657. |
JIA B R. Litter decomposition and its underlying mechanisms [J]. Chin. J. Plant Ecol., 2019, 43(8): 648-657. | |
34 | 何跃军,钟章成,董鸣. AMF对喀斯特土壤枯落物分解和对宿主植物的养分传递[J].生态学报,2012,32(8):2525-2531. |
HE Y J, ZHONG Z C, DONG M. Nutrients transfer for host plant and litter decompositon by AMF in Karst soil [J]. Acta Ecol. Sin., 2012,32(8):2525-2531. | |
35 | TU C, BOOKER L F, WATSON M D, et al.. Mycorrhizal mediation of plant N acquisition and residue decomposition: impact of mineral N inputs [J]. Glob. Change Biol., 2006, 12(5):793-803. |
36 | FREY D S. Mycorrhizal fungi as mediators of soil organic matter dynamics [J]. Ann. Review Ecol. Evol. Syst., 2019, 50(1): 237-259. |
37 | TANG N, CLEMENTE H S A N, ROY S, et al.. A survey of the gene repertoire of Gigaspora rosea unravels conserved features among glomeromycota for obligate biotrophy [J/OL]. Front. Microbiol., 2016, 7:233. [2023-11-28]. . |
38 | GUI H, HYDE K, XU J C, et al.. Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development [J/OL]. Sci. Rep., 2017,7:42184 [2023-11-28]. . |
39 | MEI L L, ZHANG P, CUI G W, et al.. Arbuscular mycorrhizal fungi promote litter decomposition and alleviate nutrient limitations of soil microbes under warming and nitrogen application [J/OL].Appl. Soil Ecol., 2022,171:104318 [2023-11-28]. . |
40 | COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al.. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? [J]. Glob. Change Biol., 2013,19(4):988-995. |
41 | SCHMIDT M W I, TORN M S, ABIVEN S, et al.. Persistence of soil organic matter as an ecosystem property [J].Nature, 2011,478: 49-56. |
42 | 覃圣峰,杨怡森,马俊卿,等.酸性土壤条件下接种丛枝菌根真菌缓解铝对玉米生长抑制作用的研究[J].江苏农业科学,2022,50(2):59-66. |
43 | WRIGHT S F, FRANKE-SNYDER M, MORTON J B, et al..Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots [J]. Plant Soil, 1996,181(2):193-203. |
44 | DRIVER J D, HOLBEN W E, RILLIG M C. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi [J]. Soil Biol. Biochem., 2005,37(1):101-106. |
45 | RILLIG M C, WRIGHT S F, NICHOLS K A, et al.. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils [J].Plant Soil, 2001,233(2):167-177. |
46 | 巩晓芳,祝英,彭轶楠,等.当归不同生长时期根际丛枝真菌分布及土壤养分和酶活性的动态变化[J].微生物学通报,2017,44(11):2596-2605. |
GONG X F, ZHU Y, PENG Y N, et al.. Dynamics of arbuscular mycorrhizal fungi distributions, soil nutrients and enzyme activities in rhizosphere soil at different growth stages of Angelica sinensis [J]. Microbiol. China, 2017,44(11): 2596-2605. | |
47 | DAHIYA G, BHARDWAJ K K, AHLAWAT I, et al.. Glomalin: a miracle protein for carbon sequestration [J]. Int. J. Plant Soil Sci., 2022, 34(9): 80-86. |
48 | 郭良栋,田春杰.菌根真菌的碳氮循环功能研究进展[J].微生物学通报,2013,40(1):158-171. |
GUO L D, TIAN C J. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen [J]. Microbiol. China,2013,40(1):158-171. | |
49 | SON Y J, KEVIN S, DAVID M A C, et al.. Carbon sequestration in artificial silicate soils facilitated by arbuscular mycorrhizal fungi and glomalin-related soil protein [J]. Eur. J. Soil Sci., 2020, 72(2):863-870. |
50 | 权常欣,马玲玲,林钊凯,等.广东省森林球囊霉素相关土壤蛋白含量及影响因素[J].生态环境学报,2020,29(2):240-249. |
QUAN C X, MA L L, LIN Z K, et al.. Patterns and influence factors of glomalin-related soil protein in Guangdong forests [J].Ecol. Environ. Sci., 2020,29(2):240-249. | |
51 | 张梦歌,石兆勇,杨梅,等.热带山地雨林土壤球囊霉素的分布特征[J].生态环境学报,2020,29(3):457-463. |
ZHANG M G, SHI Z Y, YANG M, et al.. Elevational distribution of glomalin-rated soil proteins in a tropical montane rain forest [J]. Ecol. Environ. Sci., 2020,29(3):457-463. | |
52 | WANG Q, WANG W J, ZHONG Z L, et al.. Variation in glomalin in soil profiles and its association with climatic conditions, shelterbelt characteristics, and soil properties in poplar shelterbelts of Northeast China [J]. J. For. Res., 2020,31(1): 279-290. |
53 | 王诚煜,冯海艳,杨忠芳,等.内蒙古中北部球囊霉素相关土壤蛋白的分布及其环境影响[J].干旱区研究,2013,30(1):22-28. |
WANG C Y, FENG H Y, YANG Z F, et al.. Glomalin-related soil protein distribution and its environmental affecting factors in the northeast Inner Mongolia [J]. Arid Zone Res., 2013,30(1):22-28. | |
54 | AGNIHOTRI R, SHARMA M P, PRAKASH A, et al..Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: review of mechanisms and controls [J/OL]. Sci.Total Environ., 2022,806(2):150571 [2023-11-28]. . |
55 | GOMES V M, ASSIS I R, HOBBS R J, et al.. Glomalin-related soil protein reflects the heterogeneity of substrate and vegetation in the campo rupestre ecosystem [J]. J.Soil Sci.Plant Nutr., 2021,21(1):733-743. |
56 | 蒋婧,宋明华.植物与土壤微生物在调控生态系统养分循环中的作用[J].植物生态学报,2010,34(8):979-988. |
JIANG J, SONG M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling [J].Chin. J. Plant Ecol., 2010,34(8):979-988. | |
57 | 杨聪, 陈胜伦, 刘豫, 等. 纳米氢氧化镁、黑麦草套种和丛枝菌根对萝卜Cd含量和土壤Cd化学形态及微生物数量的影响[J]. 农学学报, 2019, 9(7):37-43. |
YANG C, CHEN S L, LIU Y, et al.. Effects of nano-magnesium hydroxide, ryegrass and arbuscular mycorrhiza on radish Cd concentration and soil Cd chemical forms and microbial populations [J]. J. Agric. Sci., 2019, 9(7):37-43. | |
58 | 杜红,李玉鹏,程文,等.丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J].浙江农业学报,2022,34(5):1039-1048. |
DU H, LI Y P, CHENG W, et al.. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress [J]. Acta Agric. Zhejiangensis, 2022,34(5):1039-1048. | |
59 | 赵亚丽,郭海斌,薛志伟,等.耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响[J].应用生态学报,2015,26(6):1785-1792. |
ZHAO Y L, GUO H B, XUE Z W, et al.. Effects of tillage and straw returning on microorganism quantity,enzyme activities in soils and grain yield [J]. Chin. J. Appl. Ecol., 2015,26(6):1785-1792. | |
60 | 祁红英,王其传,吴亚胜,等.丛枝菌根真菌对番茄生长、根际酶活和微生物数量的影响[J].长江蔬菜,2017(24):55-58. |
QI H Y, WANG Q C, WU Y S, et al.. Effects of AMF on growth,rhizosphere enzyme activity and microbial numbers of tomato [J]. J. Changjiang Veg., 2017(24):55-58. | |
61 | 胡振兴, 刘灵, 陈丽萍, 等. 干旱胁迫下丛枝菌根对大豆抗氧化代谢及根围微生物的影响[J]. 中国生态农业学报, 2018, 26(4):526-537. |
HU Z Z, LIU L, CHEN L P, et al.. Effects of arbuscular mycorrhiza fungi on antioxidant metabolism and rhizospheric microorganisms of soybean (Glycine max) under drought stress [J]. Chin. J. Eco-Agric., 2018, 26(4):526-537. | |
62 | 张旭冉,张卫青.土壤团聚体研究进展[J].北方园艺,2020(21):131-137. |
ZHANG X R, ZHANG W Q. Research progress of soil aggregates [J]. Northern Hortic., 2020(21):131-137. | |
63 | 李林芝,马源,张小燕,等.不同退化程度高寒草甸土壤团聚体及其有机碳分布特征[J].草地学报,2023,31(1):210-219. |
LI L Z, MA Y, ZHANG X Y, et al.. Distribution characteristics of soil aggregates and its organic carbon with different degradation degrees in alpine meadow [J].Acta Agrestia Sin., 2023,31(1):210-219. | |
64 | SHI Z H, YAN F L, LI L, et al.. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China [J]. Catena, 2010,81(3):240-248. |
65 | BARTHÈS B, ROOSE E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels [J]. Catena, 2002,47(2):133-149. |
66 | LEHMANN J, RILLIG C M, THIES J, et al.. Biochar effects on soil biota—a review [J]. Soil Biol. Biochem., 2011, 43(9):1812-1836. |
67 | ŠIMANSKÝ V, BALASHOV E, HORÁK J. Water stability of soil aggregates and their ability to sequester carbon in soils of vineyards in Slovakia [J]. Arch. Agron. Soil Sci., 2016, 62(2):177-197. |
68 | 纪玲玲.AM真菌驱动的土壤团聚体形成过程与稳定机制[D].武汉:华中农业大学,2020. |
JI L L. The formation and stabilization mechanism of soil aggregates driven by arbuscular mycorrhizal fungi [D]. Wuhan:Huazhong Agricultural University, 2020. | |
69 | 甘佳伟,韩晓增,邹文秀.球囊霉素及其在土壤生态系统中的作用[J].土壤与作物,2022,11(1):41-53. |
GAN J W, HAN X Z, ZOU W X. Glomalin and its roles in soil ecosystem: a review [J]. Soils Crops, 2022,11(1):41-53. | |
70 | WANG Q, HONG H L, LIAO R, et al.. Glomalin-related soil protein: the particle aggregation mechanism and its insight into coastal environment improvement [J/OL]. Ecotoxicol. Environ.Saf., 2021,227:112940 [2023-11-28]. . |
71 | 张金秀, 苏琳, 蒋明, 等. 丛枝菌根真菌减少污染土壤Cd淋溶流失的效应研究[J]. 农业环境科学学报, 2022, 41(9):1936-1943. |
ZHANG J X, SU L, JIANG M, et al.. Effect of arbuscular mycorrhizal fungi on Cd leaching loss in contaminated soil and its preliminary mechanism [J]. J. Agro-Environ. Sci., 2022, 41(9): 1936-1943. | |
72 | 吴强盛,袁芳英,费永俊,等.菌根真菌对白三叶根际团聚体稳定性、球囊霉素相关土壤蛋白和糖类物质的影响[J].草业学报,2014,23(4):269-275. |
WU Q S, YUAN F Y, FEI Y J, et al.. Effects of arbuscular mycorrhizal fungi on aggregate stability, GRSP, and carbohydrates of white clover [J]. Acta Pratac. Sin., 2014,23(4):269-275. | |
73 | 叶佳舒,李涛,胡亚军,等.干旱条件下AM真菌对植物生长和土壤水稳定性团聚体的影响[J].生态学报,2013,33(4):1080-1090. |
YE J S, LI T, HU Y J, et al.. Influences of AM fungi on plant growth and water-stable soil aggregates under drought stresses [J]. Acta Ecol. Sin., 2013,33(4):1080-1090. | |
74 | RILLIG M C, WRIGHT S F, EVINER V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation:comparing effects of five plant species [J]. Plant Soil, 2002,238(2):325-333. |
75 | SEKARAN U, SAGAR K L, KUMAR S. Soil aggregates, aggregate-associated carbon and nitrogen,and water retention as influenced by short and long-term no-till systems [J/OL]. Soil Till. Res., 2021,208:104885 [2023-11-28]. . |
76 | 卢赛,谷海红,艾艳君,等.球囊霉素相关土壤蛋白对钒钛磁铁尾矿生态环境的修复效果研究[J].金属矿山,2023(3):250-258. |
LU S, GU H H, AI Y J, et al.. Study on remediation effect of glomalin related soil protein on the ecological environment of vanadium-titanium magnetite tailings [J]. Met. Mine, 2023(3):250-258. | |
77 | DRIGO B, PIJL A S, DUYTS H, et al.. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2 [J]. Proc. Natl. Acad. Sci. USA, 2010,107(24):10938-10942. |
78 | GAMPER H, HARTWIG U A, LEUCHTMANN A. Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8 yr of selection under elevated atmospheric CO2 partial pressure [J].New Phytol., 2005,167(2):531-542. |
79 | MAJDI H, NYLUND J E, ÅGREN G I. Root respiration data and minirhizotron observations conflict with root turnover estimates from sequential soil coring [J]. Scandinavian J. For. Res., 2007,22(4):299-303. |
80 | GEORGE K, NORBY R J, HAMILTON J G, et al.. Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO2 [J]. New Phytol., 2003,160(3):511-522. |
81 | NIELSEN L K, ESHEL A. The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes [J]. J. Exp. Bot., 2001,52(355): 329-339. |
82 | BOWSHER A W, EVANS S, TIEMANN L K, et al.. Effects of soil nitrogen availability on rhizodeposition in plants: a review [J]. Plant Soil, 2018,423(1):59-85. |
83 | ZENG W J, CHEN J B, LIU H Y, et al.. Soil respiration and its autotrophic and heterotrophic components in response to nitrogen addition among different degraded temperate grasslands [J]. Soil Biol. Biochem., 2018,124:255-265. |
84 | CHEN W, KOIDE R T, ADAMS T S, et al.. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees [J]. Proc. Natl. Acad. Sci. USA, 2016,113(31): 8741-8746. |
85 | COTRUFO M F, SOONG J L, HORTON A J, et al.. Formation of soil organic matter via biochemical and physical pathways of litter mass loss [J]. Nat. Geosci., 2015,8: 776-779. |
86 | LEHMANN J, KLEBER M. The contentious nature of soil organic matter [J]. Nature, 2015,528:60-68. |
87 | ZHANG Y, DONG L B, SHANG G Z P. Appropriate N addition improves soil aggregate stability through AMF and glomalin-related soil proteins in a semiarid agroecosystem [J]. Land Degrad. Dev., 2022, 34(3):710-722. |
88 | CARRILLO Y, DIJKSTRA F A, LECAIN D, et al.. Mediation of soil C decomposition by arbuscular mycorrizhal fungi in grass rhizospheres under elevated CO2 [J]. Biogeochemistry, 2016,127(1):45-55. |
89 | CARDON Z G, HUNGATE B A, CAMBARDELLA C A, et al..Contrasting effects of elevated CO2 on old and new soil carbon pools [J].Soil Biol. Biochem., 2001,33(3): 365-373. |
90 | WEI L, VOSÁTKA M, CAI B, et al.. The role of arbuscular mycorrhiza fungi in the decomposition of fresh residue and soil organic carbon: a mini-review [J]. Soil Sci. Soc. Am. J., 2019, 83(3):511-517. |
91 | XU Q F, LU J Y, DIJKSTRA F A, et al.. Elevated CO2 and nitrogen interactively affect the rhizosphere priming effect of Cunninghamia lanceolata [J/OL]. Soil Biol. Biochem., 2023,187: 109219 [2023-11-28]. . |
92 | FOFANA A F, GRACE N, JOSEPH S, et al.. Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil [J/OL]. Front. Fungal Biol., 2022, 3: 72389 [2023-11-28]. . |
93 | MOSCA E, MONTECCHIO L, SCATTOLIN L, et al.. Enzymatic activities of three ectomycorrhizal types of Quercus robur L. in relation to tree decline and thinning [J]. Soil Biol. Biochem., 2007, 39(11):2897-2904. |
94 | STADDON P L, RAMSEY C B, OSTLE N, et al.. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C [J]. Science, 2003,300(5622):1138-1140. |
95 | BICHARANLOO B, BAGHERI SHIRVAN M, CAVAGNARO T R, et al.. Nitrogen addition and defoliation alter belowground carbon allocation with consequences for plant nitrogen uptake and soil organic carbon decomposition [J/OL]. Sci. Total Environ., 2022, 846:157430 [2023-11-28]. . |
96 | RU Z W, BAHAREH B, MILAD S B, et al.. A novel 13C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition [J/OL]. New Phytol., 2020, 230(2):17118 [2023-11-28]. . |
97 | KOWALCHUK G A. Bad news for soil carbon sequestration? [J]. Science, 2012,337(6098):1049-1050. |
98 | JEEWANI P H, LUO Y, YU G H, et al.. Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions [J/OL]. Soil Biol. Biochem., 2021, 162:108417 [2023-11-28]. . |
99 | KABIR A H, DEBNATH T, DAS U, et al.. Arbuscular mycorrhizal fungi alleviate Fe-deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense [J]. Plant Physiol. Biochem., 2020,150:254-262. |
100 | COURTY P E, BRÉDA N, GARBAYE J. Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break [J]. Soil Biol. Biochem., 2007,39(7):1655-1663. |
101 | FERNANDEZ C W, KENNEDY P G. Revisiting the'Gadgil effect': do interguild fungal interactions control carbon cycling in forest soils? [J]. New Phytol., 2016,209(4):1382-1394. |
102 | ISHIDA T A, NARA K, HOGETSU T. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests [J]. New Phytol.,2007,174(2):430-440. |
103 | HUANG J S, LIU W X, YANG S, et al.. Plant carbon inputs through shoot, root, and mycorrhizal pathways affect soil organic carbon turnover differently [J/OL]. Soil Biol. Biochem., 2021, 160: 108322 [2023-11-28]. . |
104 | TEDERSOO L, JAIRUS T, HORTON B M, et al.. Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers [J]. New Phytol., 2008,180(2):479-490. |
105 | KIERS E T, DUHAMEL M, BEESETTY Y, et al.. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis [J].Science, 2011,333(6044):880-882. |
106 | KUZYAKOV Y. Priming effects:Interactions between living and dead organic matter [J]. Soil Biol. Biochem., 2010,42(9):1363-1371. |
107 | KONG D, MA C, ZHANG Q, et al.. Leading dimensions in absorptive root trait variation across 96 subtropical forest species [J]. New Phytol., 2014,203(3):863-872. |
108 | BRUNDRETT M C, TEDERSOO L. Evolutionary history of mycorrhizal symbioses and global host plant diversity [J]. New Phytol., 2018,220(4):1108-1115. |
109 | VERBRUGGEN E, JANSA J, HAMMER C E, et al.. Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? [J]. J. Ecol., 2016, 104(1):261-269. |
[1] | 赵昕, 吴子龙, 韩超, 张浩, 宋炜, 李子怡. 丛枝菌根真菌对镉胁迫下狗尾草生长及镉富集的影响[J]. 中国农业科技导报, 2025, 27(5): 193-202. |
[2] | 蒲子天, 王菲, 李畅, 王鑫鑫. 丛枝菌根真菌影响植物氮素吸收和转运的研究进展[J]. 中国农业科技导报, 2024, 26(11): 171-179. |
[3] | 樊娅萍, 宋柏权, 王倡宪. 土壤灭菌与丛枝菌根真菌在缓解连作障碍中的研究进展[J]. 中国农业科技导报, 2024, 26(10): 158-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||