中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (6): 184-194.DOI: 10.13304/j.nykjdb.2023.0906
• 生物制造 资源生态 • 上一篇
史鹏莉1,2,3(), 刘艳萍2,3, 郭建英2,3(
), 杨振奇2,3, 范进昇4
收稿日期:
2023-12-09
接受日期:
2024-03-28
出版日期:
2025-06-15
发布日期:
2025-06-23
通讯作者:
郭建英
作者简介:
史鹏莉 E-mail:657988571@qq.com;
基金资助:
Pengli SHI1,2,3(), Yanping LIU2,3, Jianying GUO2,3(
), Zhenqi YANG2,3, Jinsheng FAN4
Received:
2023-12-09
Accepted:
2024-03-28
Online:
2025-06-15
Published:
2025-06-23
Contact:
Jianying GUO
摘要:
为分析典型草原矿区排土场边坡不同治理模式的径流和产沙特征,以锡林郭勒盟贺斯格乌拉南露天煤矿为研究对象,设置混草(HC)、混草+灌木(HCG)、混草+菱形网格整地(HCS)、混草+品字形整地(HCP)、混草+行带状整地(HCH)、裸坡(CK)6种处理,运用K-均值聚类法,划分研究区降雨类型,结合径流小区2021—2023年15场天然降雨的径流、产沙数据,分析不同治理模式的产流产沙特征及其对降雨的响应。结果表明,以降雨历时、降雨量和降雨强度为特征指标,侵蚀性降雨可分为3种类型,其中雨型Ⅰ表现为历时短、降雨量小、降雨强度大;雨型Ⅱ表现为历时中、降雨量中、降雨强度中;雨型Ⅲ表现为历时长、降雨量大、降雨强度小。各类型治理措施的累积径流量随着降雨类型的变化并无统一规律,其中,HC处理在雨型Ⅰ时的径流量最少,为36.15 L;HCS处理在雨型Ⅱ、Ⅲ时的径流量最少,分别为36.14、23.15 L。在单一植被措施下,HC处理的累积径流量和产沙量显著低于HCG处理;在复合模式下,HCS处理的径流量和产沙量显著低于其他处理。总体而言,各治理措施的多年累积径流量、产沙量呈现为HCS<HCH<HCP<HCG<HC<CK。降雨量是影响径流量与产沙量最显著的降雨指标,不同治理处理的径流量、产沙量对各降雨参数的响应特征不同。减流、减沙效果最好的HCS处理,受降雨影响最小,CK的径流量和产沙量受降雨影响最大。以上结果表明,布设治理措施均可有效防治排土场边坡的水土流失问题,其中布设混草+菱形网格整地措施的减流、减沙效果最优。
中图分类号:
史鹏莉, 刘艳萍, 郭建英, 杨振奇, 范进昇. 典型草原矿区排土场边坡不同治理模式的径流产沙特征[J]. 中国农业科技导报, 2025, 27(6): 184-194.
Pengli SHI, Yanping LIU, Jianying GUO, Zhenqi YANG, Jinsheng FAN. Characteristics of Runoff and Sediment Yield of Different Treatment Modes of Dump Slope in Typical Grassland Mining Area[J]. Journal of Agricultural Science and Technology, 2025, 27(6): 184-194.
处理Treatment | 坡度 Slope/(°) | 治理措施 Control measure | 措施类型 Measure type | 配置措施 Deposition measure |
---|---|---|---|---|
HC | 30 | 混草 Mixed grass | 植被措施 Vegetation measure | 1∶1混播紫花苜蓿与羊草 1∶1 mixed Medicago sativa and Leymus chinensis Tzvelev |
HCG | 30 | 混草+灌木 Mixed grass+shrub | 植被措施 Vegetation measure | 草灌结合种植:柠条种植株间行距为1 m×1 m,每穴2~3株,间隙1∶1撒播紫花苜蓿、羊草 Combination of grass and shrub planting : the row spacing between the plants of Caragana korshinskii is 1 m×1 m, 2~3 plants per hole, and the gap is 1∶1 broadcast sowing Medicago sativa and Leymus chinensis Tzvelev |
HCS | 30 | 混草+菱形网格整地 Mixed grass+diamond grid soil preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | 生物基可降解聚乳酸(Polylactic acid,PLA)沙袋沙障填充沙粒呈菱形布设,菱形边长为1 m,在沙幛间1∶1撒播紫花苜蓿、羊草 Biodegradable polylactic acid (PLA) sandbag sand barrier is filled with sand particles in a diamond shape, and the diamond side length is 1 m. Medicago sativa and Leymus chinensis Tzvelev are sown in the sand chamber at a ratio of 1∶1 |
HCP | 30 | 混草+品字形整地 Mixed grass+pin-shaped land preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | 聚氯乙烯(Polyvinyl chloride,PVC)桶呈品字形布设,水平间距0.75 m,垂直间距1 m,在PVC桶间1∶1撒播紫花苜蓿、羊草 Polyvinyl chloride (PVC) barrels were arranged in the shape of a glyph, with a horizontal spacing of 0.75 m and a vertical spacing of 1 m. Medicago sativa and Leymus chinensis Tzvelev were sown at a ratio of 1∶1 between PVC barrels |
HCH | 30 | 混草+行带状整地 Mixed grass+strip land preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | PVC管呈条状布设,PVC管间距1 m,在PVC管间 1∶1撒播紫花苜蓿、羊草 PVC pipes were arranged in strips, and the spacing between PVC pipes was 1 m. Medicago sativa and Leymus chinensis Tzvelev were sown in 1∶1 between PVC pipes |
CK | 30 | 无No | 对照Control | 无措施No measure |
表1 径流小区的基本情况
Table 1 Basic situation of runoff plot
处理Treatment | 坡度 Slope/(°) | 治理措施 Control measure | 措施类型 Measure type | 配置措施 Deposition measure |
---|---|---|---|---|
HC | 30 | 混草 Mixed grass | 植被措施 Vegetation measure | 1∶1混播紫花苜蓿与羊草 1∶1 mixed Medicago sativa and Leymus chinensis Tzvelev |
HCG | 30 | 混草+灌木 Mixed grass+shrub | 植被措施 Vegetation measure | 草灌结合种植:柠条种植株间行距为1 m×1 m,每穴2~3株,间隙1∶1撒播紫花苜蓿、羊草 Combination of grass and shrub planting : the row spacing between the plants of Caragana korshinskii is 1 m×1 m, 2~3 plants per hole, and the gap is 1∶1 broadcast sowing Medicago sativa and Leymus chinensis Tzvelev |
HCS | 30 | 混草+菱形网格整地 Mixed grass+diamond grid soil preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | 生物基可降解聚乳酸(Polylactic acid,PLA)沙袋沙障填充沙粒呈菱形布设,菱形边长为1 m,在沙幛间1∶1撒播紫花苜蓿、羊草 Biodegradable polylactic acid (PLA) sandbag sand barrier is filled with sand particles in a diamond shape, and the diamond side length is 1 m. Medicago sativa and Leymus chinensis Tzvelev are sown in the sand chamber at a ratio of 1∶1 |
HCP | 30 | 混草+品字形整地 Mixed grass+pin-shaped land preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | 聚氯乙烯(Polyvinyl chloride,PVC)桶呈品字形布设,水平间距0.75 m,垂直间距1 m,在PVC桶间1∶1撒播紫花苜蓿、羊草 Polyvinyl chloride (PVC) barrels were arranged in the shape of a glyph, with a horizontal spacing of 0.75 m and a vertical spacing of 1 m. Medicago sativa and Leymus chinensis Tzvelev were sown at a ratio of 1∶1 between PVC barrels |
HCH | 30 | 混草+行带状整地 Mixed grass+strip land preparation | 植被措施+整地措施 Vegetation measure+soil preparation measure | PVC管呈条状布设,PVC管间距1 m,在PVC管间 1∶1撒播紫花苜蓿、羊草 PVC pipes were arranged in strips, and the spacing between PVC pipes was 1 m. Medicago sativa and Leymus chinensis Tzvelev were sown in 1∶1 between PVC pipes |
CK | 30 | 无No | 对照Control | 无措施No measure |
降雨类型 Rainfall type | 频次 Frequency | 参数 Parameter | 降雨历时 Rainfall duration/min | 降雨量 Rainfall/mm | 降雨强度 Rainfall intensity/(mm·h-1) | I30/ (mm·h-1) | 降雨侵蚀力R/ (mJ·mm·hm-2·h-1) |
---|---|---|---|---|---|---|---|
Ⅰ | 84 | 平均Mean | 251.05 | 7.05 | 1.89 | 6.85 | 46.62 |
最小值Min | 60 | 0.13 | 0.14 | 0.22 | 0.01 | ||
P25 | 120 | 3.21 | 0.85 | 2.88 | 1.58 | ||
中位数Median | 240 | 4.67 | 1.31 | 4.16 | 3.74 | ||
P75 | 360 | 7.26 | 2.30 | 7.84 | 14.51 | ||
最大值Max | 480 | 78.18 | 9.77 | 63.55 | 1 369.80 | ||
Ⅱ | 54 | 平均Mean | 761.11 | 11.11 | 0.88 | 6.98 | 33.14 |
最小值Min | 540 | 2.81 | 0.18 | 1.50 | 1.04 | ||
P25 | 600 | 5.67 | 0.55 | 3.18 | 3.79 | ||
中位数Median | 720 | 8.48 | 0.68 | 5.06 | 8.79 | ||
P75 | 900 | 12.88 | 1.13 | 8.25 | 29.12 | ||
最大值Max | 1 200 | 30.36 | 2.97 | 38.28 | 499.64 | ||
Ⅲ | 19 | 平均Mean | 1 762.11 | 20.21 | 0.70 | 7.63 | 43.19 |
最小值Min | 1 380 | 9.34 | 0.33 | 1.77 | 2.98 | ||
P25 | 1 500 | 15.69 | 0.50 | 4.18 | 11.99 | ||
中位数Median | 1 740 | 19.38 | 0.64 | 5.44 | 28.35 | ||
P75 | 1 980 | 24.95 | 0.85 | 11.95 | 67.56 | ||
最大值Max | 2 400 | 33.52 | 1.29 | 19.97 | 131.34 |
表2 不同降雨雨型指标特征
Table 2 Characteristics of different rainfall pattern indexes
降雨类型 Rainfall type | 频次 Frequency | 参数 Parameter | 降雨历时 Rainfall duration/min | 降雨量 Rainfall/mm | 降雨强度 Rainfall intensity/(mm·h-1) | I30/ (mm·h-1) | 降雨侵蚀力R/ (mJ·mm·hm-2·h-1) |
---|---|---|---|---|---|---|---|
Ⅰ | 84 | 平均Mean | 251.05 | 7.05 | 1.89 | 6.85 | 46.62 |
最小值Min | 60 | 0.13 | 0.14 | 0.22 | 0.01 | ||
P25 | 120 | 3.21 | 0.85 | 2.88 | 1.58 | ||
中位数Median | 240 | 4.67 | 1.31 | 4.16 | 3.74 | ||
P75 | 360 | 7.26 | 2.30 | 7.84 | 14.51 | ||
最大值Max | 480 | 78.18 | 9.77 | 63.55 | 1 369.80 | ||
Ⅱ | 54 | 平均Mean | 761.11 | 11.11 | 0.88 | 6.98 | 33.14 |
最小值Min | 540 | 2.81 | 0.18 | 1.50 | 1.04 | ||
P25 | 600 | 5.67 | 0.55 | 3.18 | 3.79 | ||
中位数Median | 720 | 8.48 | 0.68 | 5.06 | 8.79 | ||
P75 | 900 | 12.88 | 1.13 | 8.25 | 29.12 | ||
最大值Max | 1 200 | 30.36 | 2.97 | 38.28 | 499.64 | ||
Ⅲ | 19 | 平均Mean | 1 762.11 | 20.21 | 0.70 | 7.63 | 43.19 |
最小值Min | 1 380 | 9.34 | 0.33 | 1.77 | 2.98 | ||
P25 | 1 500 | 15.69 | 0.50 | 4.18 | 11.99 | ||
中位数Median | 1 740 | 19.38 | 0.64 | 5.44 | 28.35 | ||
P75 | 1 980 | 24.95 | 0.85 | 11.95 | 67.56 | ||
最大值Max | 2 400 | 33.52 | 1.29 | 19.97 | 131.34 |
图4 不同治理模式下径流小区的累积径流量、产沙量及减流率、减沙率注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 4 Cumulative runoff yield, sediment yield and runoff reduction rate, sediment reduction rate of runoff plots under different management modesNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图5 不同雨型下径流小区累积径流量、产沙量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 5 Cumulative runoff and sediment yield of runoff plots under different rainfall patternsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
年份Year | 径流量Runoff yield/L | 产沙量Sediment yield/G |
---|---|---|
2021 | 201.43±1.49 a | 828.03±3.73 a |
2022 | 35.35±0.78 b | 179.57±3.42 b |
2023 | 31.36±1.46 c | 115.18±2.63 c |
表3 2021—2023年研究区的径流量与产沙量
Table 3 Runoff and sediment yield in the study area from 2021 to 2023
年份Year | 径流量Runoff yield/L | 产沙量Sediment yield/G |
---|---|---|
2021 | 201.43±1.49 a | 828.03±3.73 a |
2022 | 35.35±0.78 b | 179.57±3.42 b |
2023 | 31.36±1.46 c | 115.18±2.63 c |
指标Index | 降雨历时Rainfall duration | 降雨强度Rainfall intensity | I30 | 降雨动能E | 降雨 侵蚀力R | 径流量Runoff yield | 产沙量Sediment yield |
---|---|---|---|---|---|---|---|
降雨量Rainfall | 0.88** | 0.20 | 0.87** | 0.99** | 0.92** | 0.80** | 0.82** |
降雨历时Rainfall duration | -0.10 | 0.66** | 0.83** | 0.71** | 0.57* | 0.67** | |
降雨强度Rainfall intensity | 0.40 | 0.23 | 0.25 | 0.28 | 0.18 | ||
最大30 min降雨强度I30 | 0.92** | 0.94** | 0.72** | 0.62* | |||
降雨动能E | . | 0.97** | 0.79** | 0.78** | |||
降雨侵蚀力R | 0.77** | 0.76** | |||||
径流量Runoff | 0.86** |
表4 径流量、泥沙量与降雨特征参数的相关性分析
Table 4 Correlation analysis between runoff, sediment and rainfall characteristic parameters
指标Index | 降雨历时Rainfall duration | 降雨强度Rainfall intensity | I30 | 降雨动能E | 降雨 侵蚀力R | 径流量Runoff yield | 产沙量Sediment yield |
---|---|---|---|---|---|---|---|
降雨量Rainfall | 0.88** | 0.20 | 0.87** | 0.99** | 0.92** | 0.80** | 0.82** |
降雨历时Rainfall duration | -0.10 | 0.66** | 0.83** | 0.71** | 0.57* | 0.67** | |
降雨强度Rainfall intensity | 0.40 | 0.23 | 0.25 | 0.28 | 0.18 | ||
最大30 min降雨强度I30 | 0.92** | 0.94** | 0.72** | 0.62* | |||
降雨动能E | . | 0.97** | 0.79** | 0.78** | |||
降雨侵蚀力R | 0.77** | 0.76** | |||||
径流量Runoff | 0.86** |
处理Treatment | 指标 Index | 降雨量 Rainfall | 降雨历时 Rainfall duration | 降雨强度 Rain intensity | 最大30 min雨强I30 | 降雨动能E | 降雨侵蚀力R | 径流量 Runoff yield | 泥沙量 Sediment yield |
---|---|---|---|---|---|---|---|---|---|
HC | 径流量 Runoff yield | 0.85** | 0.70** | 0.18 | 0.74** | 0.86** | 0.82** | — | — |
产沙量 Sediment yield | 0.72** | 0.62* | 0.11 | 0.52* | 0.68** | 0.66** | 0.78** | ||
HCG | 径流量 Runoff yield | 0.80** | 0.64** | 0.21 | 0.73** | 0.82** | 0.80** | — | — |
产沙量 Sediment yield | 0.73** | 0.63* | 0.16 | 0.57* | 0.69** | 0.70** | 0.68** | — | |
HCS | 径流量 Runoff yield | 0.33 | 0.13 | 0.20 | 0.39 | 0.33 | 0.32 | — | — |
产沙量 Sediment yield | 0.61* | 0.35 | 0.24 | 0.57* | 0.64* | 0.71** | 0.54* | — | |
HCP | 径流量 Runoff yield | 0.64* | 0.31 | 0.43 | 0.63* | 0.63* | 0.61* | — | — |
产沙量 Sediment yield | 0.73** | 0.59* | 0.19 | 0.52* | 0.68** | 0.65** | 0.67** | — | |
HCH | 径流量 Runoff yield | 0.57* | 0.31 | 0.25 | 0.55* | 0.57* | 0.55* | — | — |
产沙量 Sediment yield | 0.78** | 0.68** | 0.16 | 0.54* | 0.76** | 0.69** | 0.42 | — | |
CK | 径流量 Runoff yield | 0.87** | 0.70** | 0.23 | 0.70** | 0.85** | 0.81** | — | — |
产沙量 Sediment yield | 0.84** | 0.66** | 0.20 | 0.65** | 0.82** | 0.80** | 0.95** | — |
表5 降雨特征参数与侵蚀特征参数的相关性分析
Table 5 Correlation analysis between rainfall characteristic parameters and erosion characteristic parameters
处理Treatment | 指标 Index | 降雨量 Rainfall | 降雨历时 Rainfall duration | 降雨强度 Rain intensity | 最大30 min雨强I30 | 降雨动能E | 降雨侵蚀力R | 径流量 Runoff yield | 泥沙量 Sediment yield |
---|---|---|---|---|---|---|---|---|---|
HC | 径流量 Runoff yield | 0.85** | 0.70** | 0.18 | 0.74** | 0.86** | 0.82** | — | — |
产沙量 Sediment yield | 0.72** | 0.62* | 0.11 | 0.52* | 0.68** | 0.66** | 0.78** | ||
HCG | 径流量 Runoff yield | 0.80** | 0.64** | 0.21 | 0.73** | 0.82** | 0.80** | — | — |
产沙量 Sediment yield | 0.73** | 0.63* | 0.16 | 0.57* | 0.69** | 0.70** | 0.68** | — | |
HCS | 径流量 Runoff yield | 0.33 | 0.13 | 0.20 | 0.39 | 0.33 | 0.32 | — | — |
产沙量 Sediment yield | 0.61* | 0.35 | 0.24 | 0.57* | 0.64* | 0.71** | 0.54* | — | |
HCP | 径流量 Runoff yield | 0.64* | 0.31 | 0.43 | 0.63* | 0.63* | 0.61* | — | — |
产沙量 Sediment yield | 0.73** | 0.59* | 0.19 | 0.52* | 0.68** | 0.65** | 0.67** | — | |
HCH | 径流量 Runoff yield | 0.57* | 0.31 | 0.25 | 0.55* | 0.57* | 0.55* | — | — |
产沙量 Sediment yield | 0.78** | 0.68** | 0.16 | 0.54* | 0.76** | 0.69** | 0.42 | — | |
CK | 径流量 Runoff yield | 0.87** | 0.70** | 0.23 | 0.70** | 0.85** | 0.81** | — | — |
产沙量 Sediment yield | 0.84** | 0.66** | 0.20 | 0.65** | 0.82** | 0.80** | 0.95** | — |
1 | 张庆,刘璐瑶,徐雪,等.内蒙古草原家庭牧场可持续发展研究[J].草业学报,2021,30(9):168-181. |
ZHANG Q, LIU L Y, XU X, et al.. Sustainable development of family ranches in the Inner Mongolian grassland [J]. Acta Pratac. Sin., 2021,30(9):168-181. | |
2 | 翟娜.季节性轮牧和刈割对内蒙古典型草原土壤线虫的影响[D].呼和浩特:内蒙古师范大学,2019. |
ZHAI N. Effects of seasonal rotational grazing and mowing on soil nematodes in typical grasslands of Inner Mongolia [D]. Hohhot: Inner Mongolia Normal University, 2019. | |
3 | 杨天成,李晓佳.不同草地利用方式对内蒙古典型草原群落特征及草地健康的影响[J].草业科学,2022,39(5):841-849. |
YANG T C, LI X J. Effects of land use patterns on community characteristics and grassland health in Inner Mongolia [J]. Pratac. Sci., 2022,39(5):841-849. | |
4 | 魏忠义,白中科.露天矿大型排土场水蚀控制的径流分散概念及其分散措施[J].煤炭学报,2003,28(5):486-490. |
WEI Z Y, BAI Z K.The concept and measures of runoff-dispersing on water erosion control in the large dump of opencast mine [J]. J. China Coal Soc., 2003,28(5):486-490. | |
5 | 史倩华,李垚林,王文龙,等.不同植被措施对露天煤矿排土场边坡径流产沙影响[J].草地学报,2016,24(6):1263-1271. |
SHI Q H, LI Y L, WANG W L, et al.. Effects of different re-vegetation measures on runoff and sediment yielding of dump side slopes in open pit mine [J]. Acta Agrestia Sin., 2016, 24(6):1263-1271. | |
6 | 王彤彤.露天煤矿排土场植被恢复植物筛选及土壤适应性研究[D].呼和浩特:内蒙古农业大学,2022. |
WANG T T. Study on plant selection and adaptability of plants to soil on restoration in open pit coal mine waste dump [D]. Hohhot: Inner Mongolia Agricultural University, 2022. | |
7 | 王尚义,石瑛,牛俊杰,等.煤矸石山不同植被恢复模式对土壤养分的影响:以山西省河东矿区1号煤矸石山为例[J].地理学报,2013,68(3):372-379. |
WANG S Y, SHI Y, NIU J J,et al..Influence of vegetation restoration models on soil nutrient of coal gangue pile:a case study of No.1 Coal Gangue Pile in Hedong,Shanxi [J]. Acta Geogr. Sin., 2013,68(3):372-379. | |
8 | 薛东明,郭小平,张晓霞.干旱矿区排土场不同边坡生态修复模式下减流减沙效益[J].水土保持学报,2021,35(6):15-21, 30. |
XUE D M, GUO X P, ZHANG X X.Runoff and sediment reduction under different slope ecological restoration modes of waste dump in arid mining area [J]. J. Soil Water Conserv., 2021,35(6):15-21, 30. | |
9 | 郭建英,李锦荣,何京丽,等.典型草原煤矿排土场边坡不同治理措施次降雨水蚀过程分析[J].水土保持研究,2017,24(5):1-5, 13. |
GUO J Y, LI J R, HE J L,et al..Analysis on water erosion process caused by secondly rainfall under different slope treatment measures at dump site in typical steppe [J]. Res. Soil Water Conserv., 2017,24(5):1-5, 13. | |
10 | 田秀民,马春霞,鲁旭东,等.微地形重塑对大型排土场平台水沙及植被的影响[J].水土保持研究,2021,28(3):74-82. |
TIAN X M, MA C X, LU X D, et al.. Impact of microtopographic reconstruction on runoff and sediment yield and vegetation of large waste dump platform [J]. Res. Soil Water Conserv., 2021,28(3):74-82. | |
11 | 苏银萍.改良剂及肥料对短毛蓼修复Mn污染土壤效率的影响[D].桂林:广西师范大学,2014. |
SU Y P. Effects of the amendments and fertilizer on the repair efficiency of polygonum pubescens Blume in Mn contaminated soils [D]. Guilin: Guangxi Normal University, 2014. | |
12 | 候月卿,赵立欣,孟海波,等.生物炭和腐植酸类对猪粪堆肥重金属的钝化效果[J].农业工程学报,2014,30(11):205-215. |
HOU Y Q, ZHAO L X, MENG H B, et al.. Passivating effect of biochar and humic acid materials on heavy metals during composting of pig manure [J]. Trans. Chin. Soc. Agric. Eng., 2014,30(11):205-215. | |
13 | 李政,胡桂清,瞿涛,等.伊犁河谷不同管理草地产流产沙对降雨与土壤类型的响应[J].水土保持研究,2022,29(5):62-69. |
LI Z, HU G Q, QU T, et al..Responses of runoff and sediment yield to rainfall,soil types under different managed grasslands in Yili valley [J]. Res. Soil Water Conserv., 2022,29(5):62-69. | |
14 | 杜映妮,周怡雯,李朝霞,等.丹江口库区不同降雨类型下典型植被措施的水土保持效应[J].水土保持学报,2023,37(2):51-57, 66. |
DU Y N, ZHOU Y W, LI C X, et al.. Effects of typical vegetation measures on soil and water conservation under different rainfall regimes in Danjiangkou reservoir area [J]. J. Soil Water Conserv., 2023,37(2):51-57, 66. | |
15 | 李勉,姚文艺,史学建.淤地坝拦沙减蚀作用与泥沙沉积特征研究[J].水土保持研究,2005,12(5):107-111. |
LI M, YAO W Y, SHI X J. Study on the effect of silt dams for conserving soil and water and its sedimentation characteristic [J]. Res. Soil Water Conserv., 2005,12(5):107-111. | |
16 | 武志强,付福林,张锐.川掌沟流域治沟骨干工程建设的重大作用[J].中国水土保持,2000(6):41-42. |
WU Z Q, FU F L, ZHANG R. The important role of key dam construction in Chuanzhanggou watershed [J]. Soil Water Conserv. China, 2000(6):41-42. | |
17 | 曾茂林,朱小勇,康玲玲,等.水土流失区淤地坝的拦泥减蚀作用及发展前景[J].水土保持研究,1999,6(2):126-133. |
ZENG M L, ZHU X Y, KANG L L, et al.. Effects of sediment reduction and erosion control and development prospects of warping dam in water and soil loss areas [J]. Res.Soil Water Conserv., 1999,6(2):126-133. | |
18 | 李景宗,刘立斌.近期黄河潼关以上地区淤地坝拦沙量初步分析[J].人民黄河,2018,40(1):1-6. |
LI J Z, LIU L B. Analysis on the sediment retaining amount by warping dams above Tongguan section of the Yellow River in recent years [J]. Yellow River, 2018,40(1):1-6. | |
19 | 杨振奇,郭建英,秦富仓,等.天然降雨条件下裸露砒砂岩区人工植被的减流减沙效应[J].水土保持研究,2022,29(1):100-104, 112. |
YANG Z Q, GUO J Y, QIN F C, et al.. Effects of artificial vegetation on runoff and sediment reduction by in exposed feldspathic sandstone region under natural rainfall [J]. Res. Soil Water Conserv., 2022,29(1):100-104, 112. | |
20 | 曹美晨,辛艳,任正龑,等.半干旱黄土丘陵沟壑区不同土地利用坡面的降雨侵蚀特征[J].泥沙研究, 2022,47(6):43-50. |
CAO M C, XIN Y, REN Z Y, et al.. Characteristics of rainfall erosion on different land use slopes in semi-arid loess hilly and gully region [J]. J. Sediment Res., 2022,47(6):43-50. | |
21 | 陈洋,张海东,于东升,等.南方红壤区植被结构类型与降雨模式对林下水土流失的影响[J].农业工程学报,2020,36(5):150-157. |
CHEN Y, ZHANG H D, YU D S, et al.. Effects of vegetation structure types and rainfall patterns on soil and water loss of understory vegetation in red soil areas of South China [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(5):150-157. | |
22 | 杨波,王文龙,郭明明,等.矿区排土场边坡不同植被配置模式的控蚀效益研究[J].土壤学报,2019,56(6):1347-1358. |
YANG B, WANG W L, GUO M M, et al.. Erosion-controlling effects of revegetation on slope of refuse dump in mining area relative to vegetation pattern [J]. Acta Pedol. Sin., 2019,56(6):1347-1358. | |
23 | 李鹏飞.基于无人机遥感的排土(矸)场立地对植被盖度影响研究[D].北京:北京林业大学, 2020. |
LI P F. Influence study of sites on vegetation coverage in dumps and gangue fields based on UAV remote sensing technology [D]. Beijing: Beijing Forestry University, 2020. | |
24 | MAITI S K. Bioreclamation of coalmine overburden dumps:with special empasis on micronutrients and heavy metals accumulation in tree species [J]. Environ. Monit. Assess., 2007,125(1/2/3):111-122. |
25 | 郭建英,何京丽,李锦荣,等.典型草原大型露天煤矿排土场边坡水蚀控制效果[J].农业工程学报,2015,31(3):296-303. |
GUO J Y, HE J L, LI J R, et al.. Effects of different measures on water erosion control of dump slope at opencast coal mine in typical steppe [J]. Trans. Chin.Soc. Agric. Eng., 2015,31(3):296-303. | |
26 | 秦伟,左长清,晏清洪,等.红壤裸露坡地次降雨土壤侵蚀规律[J].农业工程学报,2015,31(2):124-132. |
QIN W, ZUO C Q, YAN Q H, et al.. Regularity of individual rainfall soil erosion in bare slope land of red soil [J]. Trans. Chin. Soc. Agric. Eng., 2015,31(2):124-132. | |
27 | 邓羽松,丁树文,刘辰明,等.鄂东南花岗岩崩岗崩壁土壤水分特征研究[J].水土保持学报,2015,29(4):132-137. |
DENG Y S, DING S W, LIU C M, et al.. Soil moisture characteristics of collapsing gully wall in granite area of southeastern Hubei [J]. J. Soil Water Conserv., 2015,29(4):132-137. | |
28 | 游微,樊军,魏修彬,等.粗质地土壤坡度和前期含水量对土壤侵蚀的影响[J].水土保持学报,2017,31(4):18-24. |
YOU W, FAN J, WEI X B, et al.. Effect of soil slope and antecedent soil water content on soil erosion in coarse texture soil [J]. J. Soil Water Conserv., 2017,31(4):18-24. | |
29 | 邵奕铭,高光耀,刘见波,等.自然降雨下黄土丘陵区草灌植物垂直覆盖结构的减流减沙效应[J].生态学报,2022,42(1):322-331. |
SHAO Y M, GAO G Y, LIU J B, et al.. Effects of vertical cover structure of grass and shrub on reducing runoff and soil loss under natural rainfall in the loess hilly region [J]. Acta Ecol. Sin., 2022,42(1):322-331. | |
30 | 张哲,方政,董智,等.鲁中南山区侵蚀性降雨及典型作物对坡面产流产沙影响研究[J].西南大学学报(自然科学版),2024,46(1):69-76. |
ZHANG Z, FANG Z, DONG Z, et al.. Effects of erosive rainfall and typical crops on slope runoff and sediment yield in mountainous area of central-south of Shandong province [J]. J. Southwest Univ. (Nat. Sci.), 2024,46(1):69-76. | |
31 | 张春霞,董智,高波,等.侵蚀性雨型分类及不同植被类型对棕壤坡面土壤侵蚀的影响[J].水土保持研究,2023,30(2):36-41, 49. |
ZHANG C X, DONG Z, GAO B, et al.. Effects of erosive rainfall patterns and different vegetation types on soil erosion in slope with brown soil [J]. Res. Soil Water Conserv., 2023,30(2):36-41, 49. |
[1] | 梁美霞, 章鑫强, 林炳青. 南方红壤侵蚀流域不同情景措施的减沙效应模拟[J]. 中国农业科技导报, 2024, 26(10): 177-185. |
[2] | 张丽娟, 秦宇坤, 程慧煌, 李永旗, 罗海华. 鄱阳湖区赣北棉田地表径流氮磷流失特征研究[J]. 中国农业科技导报, 2022, 24(6): 166-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||