中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (7): 97-107.DOI: 10.13304/j.nykjdb.2021.0402
李飞翔(), 王鹏(
), 王云飞, 葛越锋, 唐凯怿, 李得志
收稿日期:
2021-05-12
接受日期:
2021-07-26
出版日期:
2022-07-15
发布日期:
2022-08-15
通讯作者:
王鹏
作者简介:
李飞翔 E-mail:lifeixiang147258@163.com;
基金资助:
Feixiang LI(), Peng WANG(
), Yunfei WANG, Yuefeng GE, Kaiyi TANG, Dezhi LI
Received:
2021-05-12
Accepted:
2021-07-26
Online:
2022-07-15
Published:
2022-08-15
Contact:
Peng WANG
摘要:
为获得基于黏结颗粒模型(BPM)玉米包衣种子离散元仿真所需的精确接触参数,基于堆积试验对玉米包衣种子的仿真参数进行标定。对郑单958玉米包衣种子分类筛选后,通过激光扫描仪对轮廓较好的种子进行扫描,得到点云数据,并通过CATIA软件对点云数据进行处理,最终得到玉米种子仿真模型。设计Plackett-Burman试验,通过Isight软件的近似模型与DOE联合模块对试验结果进行分析,筛选出对堆积角影响显著的参数:玉米种子-玉米种子静摩擦系数、法向刚度与切向刚度。基于Isight软件RSM优化模块,根据Box-Behnken试验结果建立堆积角与显著性参数的二阶回归模型,得到参数的最佳组合:玉米种子-玉米种子静摩擦系数0.269、法向刚度2.54×108 N·m-3、切向刚度5.93×107 N·m-3。将标定参数仿真所得堆积角与真实试验值进行对比,二者相对误差为0.98%。上述结果表明,响应面分析可用于标定玉米包衣种子的离散元仿真参数,为玉米气力式排种器的结构设计与参数优化提供参考。
中图分类号:
李飞翔, 王鹏, 王云飞, 葛越锋, 唐凯怿, 李得志. 基于堆积试验的玉米包衣种子离散元参数标定[J]. 中国农业科技导报, 2022, 24(7): 97-107.
Feixiang LI, Peng WANG, Yunfei WANG, Yuefeng GE, Kaiyi TANG, Dezhi LI. Calibration of Discrete Element Parameters of Corn Coated Seeds Based on Stacking Test[J]. Journal of Agricultural Science and Technology, 2022, 24(7): 97-107.
仿真参数 Simulation parameter | 数值 Value |
---|---|
玉米种子密度 Density of corn seed/(kg·m-3) | 1 197 |
玉米种子泊松比 Poisson’s ratio of corn seed | 0.4 |
玉米种子剪切模量 Shear modulus of corn seed/Pa | 1.37×108 |
玉米种子-玉米种子恢复系数 Corn seed-corn seed restitution coefficient | 0.18~0.36 |
玉米种子-玉米种子静摩擦系数 Corn seed-corn seed static friction coefficient | 0.20~0.45 |
玉米种子-玉米种子滚动摩擦系数 Corn seed-corn seed rolling friction coefficient | 0.02~0.08 |
法向刚度 Normal Stiffness /(N·m-3) | 7×107~7×109 |
切向刚度 Shear stiffness /(N·m-3) | 5×107~5×109 |
法向临界应力 Critical normal stress/Pa | 3×106~1×107 |
切向临界应力 Critical shear stress/Pa | 2×106~8×106 |
黏结半径 Bonded disk radius/mm | 0.5~1.0 |
表1 离散元仿真参数
Table 1 Parameter in DEM simulation
仿真参数 Simulation parameter | 数值 Value |
---|---|
玉米种子密度 Density of corn seed/(kg·m-3) | 1 197 |
玉米种子泊松比 Poisson’s ratio of corn seed | 0.4 |
玉米种子剪切模量 Shear modulus of corn seed/Pa | 1.37×108 |
玉米种子-玉米种子恢复系数 Corn seed-corn seed restitution coefficient | 0.18~0.36 |
玉米种子-玉米种子静摩擦系数 Corn seed-corn seed static friction coefficient | 0.20~0.45 |
玉米种子-玉米种子滚动摩擦系数 Corn seed-corn seed rolling friction coefficient | 0.02~0.08 |
法向刚度 Normal Stiffness /(N·m-3) | 7×107~7×109 |
切向刚度 Shear stiffness /(N·m-3) | 5×107~5×109 |
法向临界应力 Critical normal stress/Pa | 3×106~1×107 |
切向临界应力 Critical shear stress/Pa | 2×106~8×106 |
黏结半径 Bonded disk radius/mm | 0.5~1.0 |
符号 Symbol | 参数 Parameter | 低水平 Low level | 高水平 High level |
---|---|---|---|
A | 玉米种子-玉米种子恢复系数 Corn seed-corn seed restitution coefficient | 0.18 | 0.36 |
B | 玉米种子-玉米种子静摩擦系数 Corn seed-corn seed static friction coefficient | 0.2 | 0.4 |
C | 玉米种子-玉米种子滚动摩擦系数 Corn seed-corn seed rolling friction coefficient | 0.02 | 0.04 |
D | 法向刚度 Normal stiffness/(N·m-3) | 7.0×107 | 1.4×108 |
E | 切向刚度 Shear stiffness /(N·m-3) | 5×107 | 1×108 |
F | 法向临界应力 Critical normal stress/Pa | 3×106 | 6×106 |
G | 切向临界应力 Critical shear stress/Pa | 2×106 | 4×106 |
H | 黏结半径 Bonded disk radius/mm | 0.5 | 1.0 |
V1 | 虚拟参数1 Virtual parameter 1 | -1 | 1 |
V2 | 虚拟参数2 Virtual parameter 2 | -1 | 1 |
V3 | 虚拟参数3 Virtual parameter 3 | -1 | 1 |
表2 Plackett-Burman试验参数
Table 2 Parameter of Plackett-Burman test
符号 Symbol | 参数 Parameter | 低水平 Low level | 高水平 High level |
---|---|---|---|
A | 玉米种子-玉米种子恢复系数 Corn seed-corn seed restitution coefficient | 0.18 | 0.36 |
B | 玉米种子-玉米种子静摩擦系数 Corn seed-corn seed static friction coefficient | 0.2 | 0.4 |
C | 玉米种子-玉米种子滚动摩擦系数 Corn seed-corn seed rolling friction coefficient | 0.02 | 0.04 |
D | 法向刚度 Normal stiffness/(N·m-3) | 7.0×107 | 1.4×108 |
E | 切向刚度 Shear stiffness /(N·m-3) | 5×107 | 1×108 |
F | 法向临界应力 Critical normal stress/Pa | 3×106 | 6×106 |
G | 切向临界应力 Critical shear stress/Pa | 2×106 | 4×106 |
H | 黏结半径 Bonded disk radius/mm | 0.5 | 1.0 |
V1 | 虚拟参数1 Virtual parameter 1 | -1 | 1 |
V2 | 虚拟参数2 Virtual parameter 2 | -1 | 1 |
V3 | 虚拟参数3 Virtual parameter 3 | -1 | 1 |
序号No. | 参数 Parameter | θ:堆积角Repose angle /(°) | |||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | ||
1 | 0.36 | 0.2 | 0.04 | 1.4 | 0.50 | 6.0 | 4 | 1.00 | 23.03 |
2 | 0.18 | 0.4 | 0.04 | 0.7 | 1.00 | 6.0 | 4 | 0.50 | 27.07 |
3 | 0.18 | 0.2 | 0.02 | 0.7 | 0.50 | 3.0 | 2 | 0.50 | 25.11 |
4 | 0.36 | 0.4 | 0.02 | 1.4 | 1.00 | 6.0 | 2 | 0.50 | 27.92 |
5 | 0.18 | 0.4 | 0.04 | 1.4 | 0.50 | 3.0 | 2 | 1.00 | 23.63 |
6 | 0.36 | 0.2 | 0.02 | 0.7 | 1.00 | 3.0 | 4 | 1.00 | 25.22 |
7 | 0.18 | 0.2 | 0.04 | 0.7 | 1.00 | 6.0 | 2 | 1.00 | 30.31 |
8 | 0.36 | 0.2 | 0.04 | 1.4 | 1.00 | 3.0 | 2 | 0.50 | 24.62 |
9 | 0.18 | 0.2 | 0.02 | 1.4 | 0.50 | 6.0 | 4 | 0.50 | 22.38 |
10 | 0.18 | 0.4 | 0.02 | 1.4 | 1.00 | 3.0 | 4 | 1.00 | 28.26 |
11 | 0.27 | 0.3 | 0.03 | 1.05 | 0.75 | 4.5 | 3 | 0.75 | 25.97 |
12 | 0.36 | 0.4 | 0.04 | 0.7 | 0.50 | 3.0 | 4 | 0.50 | 28.52 |
13 | 0.36 | 0.4 | 0.02 | 0.7 | 0.50 | 6.0 | 2 | 1.00 | 25.44 |
表3 Plackett-Burman 试验设计及结果
Table 3 Design and results of Plackett-Burman test
序号No. | 参数 Parameter | θ:堆积角Repose angle /(°) | |||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | ||
1 | 0.36 | 0.2 | 0.04 | 1.4 | 0.50 | 6.0 | 4 | 1.00 | 23.03 |
2 | 0.18 | 0.4 | 0.04 | 0.7 | 1.00 | 6.0 | 4 | 0.50 | 27.07 |
3 | 0.18 | 0.2 | 0.02 | 0.7 | 0.50 | 3.0 | 2 | 0.50 | 25.11 |
4 | 0.36 | 0.4 | 0.02 | 1.4 | 1.00 | 6.0 | 2 | 0.50 | 27.92 |
5 | 0.18 | 0.4 | 0.04 | 1.4 | 0.50 | 3.0 | 2 | 1.00 | 23.63 |
6 | 0.36 | 0.2 | 0.02 | 0.7 | 1.00 | 3.0 | 4 | 1.00 | 25.22 |
7 | 0.18 | 0.2 | 0.04 | 0.7 | 1.00 | 6.0 | 2 | 1.00 | 30.31 |
8 | 0.36 | 0.2 | 0.04 | 1.4 | 1.00 | 3.0 | 2 | 0.50 | 24.62 |
9 | 0.18 | 0.2 | 0.02 | 1.4 | 0.50 | 6.0 | 4 | 0.50 | 22.38 |
10 | 0.18 | 0.4 | 0.02 | 1.4 | 1.00 | 3.0 | 4 | 1.00 | 28.26 |
11 | 0.27 | 0.3 | 0.03 | 1.05 | 0.75 | 4.5 | 3 | 0.75 | 25.97 |
12 | 0.36 | 0.4 | 0.04 | 0.7 | 0.50 | 3.0 | 4 | 0.50 | 28.52 |
13 | 0.36 | 0.4 | 0.02 | 0.7 | 0.50 | 6.0 | 2 | 1.00 | 25.44 |
参数 Parameter | 效应 Effect | 均方和 Sum of squares | 影响率 Contribution/% | 排序 Ranking |
---|---|---|---|---|
A | -0.335 | 0.336 | 0.51 | 6 |
B | 1.695 | 8.619 | 13.06 | 3 |
C | 0.475 | 0.677 | 1.03 | 4 |
D | 1.972 | 11.662 | 17.67 | 2 |
E | 2.548 | 19.482 | 29.52 | 1 |
F | 0.132 | 0.052 | 0.08 | 7 |
G | -0.425 | 0.542 | 0.82 | 5 |
H | 0.045 | 0.006 | 0.01 | 8 |
表4 Plackett-Burman 试验参数显著性分析
Table 4 Analysis of significance of parameters in Plackett-Burman test
参数 Parameter | 效应 Effect | 均方和 Sum of squares | 影响率 Contribution/% | 排序 Ranking |
---|---|---|---|---|
A | -0.335 | 0.336 | 0.51 | 6 |
B | 1.695 | 8.619 | 13.06 | 3 |
C | 0.475 | 0.677 | 1.03 | 4 |
D | 1.972 | 11.662 | 17.67 | 2 |
E | 2.548 | 19.482 | 29.52 | 1 |
F | 0.132 | 0.052 | 0.08 | 7 |
G | -0.425 | 0.542 | 0.82 | 5 |
H | 0.045 | 0.006 | 0.01 | 8 |
序号 No. | H:玉米种子-玉米种子静摩擦系数 Corn seed-corn seed static friction coefficient | J:法向刚度 Normal stiffness/(108 N·m-3) | K:切向刚度 Shear stiffness/(108 N·m-3) | h:堆积高度 Stack height/mm | θ:堆积角 Stacking angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|---|
1 | 0.2 | 0.7 | 0.5 | 37.51 | 26.57 | 10.11 |
2 | 0.3 | 18.2 | 13.0 | 43.76 | 30.26 | 2.37 |
3 | 0.4 | 35.7 | 25.5 | 50.76 | 32.39 | 9.57 |
4 | 0.5 | 53.2 | 38.0 | 48.22 | 33.74 | 14.14 |
5 | 0.6 | 70.7 | 50.5 | 49.68 | 34.52 | 16.78 |
表5 最陡爬坡试验及结果
Table 5 Design and results of steepest ascent test
序号 No. | H:玉米种子-玉米种子静摩擦系数 Corn seed-corn seed static friction coefficient | J:法向刚度 Normal stiffness/(108 N·m-3) | K:切向刚度 Shear stiffness/(108 N·m-3) | h:堆积高度 Stack height/mm | θ:堆积角 Stacking angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|---|
1 | 0.2 | 0.7 | 0.5 | 37.51 | 26.57 | 10.11 |
2 | 0.3 | 18.2 | 13.0 | 43.76 | 30.26 | 2.37 |
3 | 0.4 | 35.7 | 25.5 | 50.76 | 32.39 | 9.57 |
4 | 0.5 | 53.2 | 38.0 | 48.22 | 33.74 | 14.14 |
5 | 0.6 | 70.7 | 50.5 | 49.68 | 34.52 | 16.78 |
序号 No. | H:玉米种子-玉米种子静摩擦系数 Corn seed-corn seed static friction coefficient | J:法向刚度 Normal stiffness/ (108 N·m-3) | K:切向刚度 Shear stiffness/ (108 N·m-3) | θ:堆积角 Stacking angle/(°) |
---|---|---|---|---|
1 | 0.3 | 18.2 | 13 | 31.12 |
2 | 0.4 | 18.2 | 25.5 | 33.61 |
3 | 0.2 | 0.7 | 13 | 26.57 |
4 | 0.4 | 35.7 | 13 | 31.56 |
5 | 0.2 | 35.7 | 13 | 24.23 |
6 | 0.3 | 35.7 | 0.5 | 30.25 |
7 | 0.2 | 18.2 | 0.5 | 27.14 |
8 | 0.3 | 0.7 | 25.5 | 32.56 |
9 | 0.4 | 0.7 | 13 | 32.87 |
10 | 0.3 | 0.7 | 0.5 | 33.53 |
11 | 0.3 | 18.2 | 13 | 31.08 |
12 | 0.3 | 18.2 | 13 | 31.06 |
13 | 0.3 | 35.7 | 25.5 | 32.36 |
14 | 0.2 | 18.2 | 25.5 | 27.65 |
15 | 0.4 | 18.2 | 0.5 | 33.31 |
表6 Box-Behnken 试验及结果
Table 6 Design and results of Box-Behnken test
序号 No. | H:玉米种子-玉米种子静摩擦系数 Corn seed-corn seed static friction coefficient | J:法向刚度 Normal stiffness/ (108 N·m-3) | K:切向刚度 Shear stiffness/ (108 N·m-3) | θ:堆积角 Stacking angle/(°) |
---|---|---|---|---|
1 | 0.3 | 18.2 | 13 | 31.12 |
2 | 0.4 | 18.2 | 25.5 | 33.61 |
3 | 0.2 | 0.7 | 13 | 26.57 |
4 | 0.4 | 35.7 | 13 | 31.56 |
5 | 0.2 | 35.7 | 13 | 24.23 |
6 | 0.3 | 35.7 | 0.5 | 30.25 |
7 | 0.2 | 18.2 | 0.5 | 27.14 |
8 | 0.3 | 0.7 | 25.5 | 32.56 |
9 | 0.4 | 0.7 | 13 | 32.87 |
10 | 0.3 | 0.7 | 0.5 | 33.53 |
11 | 0.3 | 18.2 | 13 | 31.08 |
12 | 0.3 | 18.2 | 13 | 31.06 |
13 | 0.3 | 35.7 | 25.5 | 32.36 |
14 | 0.2 | 18.2 | 25.5 | 27.65 |
15 | 0.4 | 18.2 | 0.5 | 33.31 |
方差来源 Soruce of variation | 均方 Mean square | 自由度 Freedom | 平方和 Quadratic sum | F值 F value | P值 P value |
---|---|---|---|---|---|
R2=0.997 4 RAdj2=0.992 8 Predicted R2=0.958 9 CV=0.801% Adep precision=46.973 | |||||
模型Model | 116.03 | 9 | 12.89 | 214.62 | < 0.000 1 |
H | 82.95 | 1 | 82.95 | 1 380.88 | < 0.000 1 |
J | 6.35 | 1 | 6.35 | 105.79 | 0.000 1 |
K | 0.475 3 | 1 | 0.475 3 | 7.91 | 0.037 4 |
HJ | 0.265 2 | 1 | 0.265 2 | 4.42 | 0.089 6 |
HK | 0.011 0 | 1 | 0.011 0 | 0.183 5 | 0.686 2 |
JK | 2.37 | 1 | 2.37 | 39.48 | 0.001 5 |
H2 | 14.97 | 1 | 14.97 | 249.16 | <0.000 1 |
J2 | 0.260 9 | 1 | 0.260 9 | 4.34 | 0.091 6 |
K2 | 6.77 | 1 | 6.77 | 112.72 | 0.000 1 |
残差 Residual | 0.300 3 | 5 | 0.060 1 | ||
失拟项 Lack of fit | 0.298 5 | 3 | 0.099 5 | 106.60 | 0.093 |
纯误差Pure error | 0.001 9 | 2 | 0.000 9 | ||
总和Sum | 116.33 | 14 |
表7 Box-Behnken 试验方差分析
Table 7 ANOVA of quadraticl of Box-Behnken test
方差来源 Soruce of variation | 均方 Mean square | 自由度 Freedom | 平方和 Quadratic sum | F值 F value | P值 P value |
---|---|---|---|---|---|
R2=0.997 4 RAdj2=0.992 8 Predicted R2=0.958 9 CV=0.801% Adep precision=46.973 | |||||
模型Model | 116.03 | 9 | 12.89 | 214.62 | < 0.000 1 |
H | 82.95 | 1 | 82.95 | 1 380.88 | < 0.000 1 |
J | 6.35 | 1 | 6.35 | 105.79 | 0.000 1 |
K | 0.475 3 | 1 | 0.475 3 | 7.91 | 0.037 4 |
HJ | 0.265 2 | 1 | 0.265 2 | 4.42 | 0.089 6 |
HK | 0.011 0 | 1 | 0.011 0 | 0.183 5 | 0.686 2 |
JK | 2.37 | 1 | 2.37 | 39.48 | 0.001 5 |
H2 | 14.97 | 1 | 14.97 | 249.16 | <0.000 1 |
J2 | 0.260 9 | 1 | 0.260 9 | 4.34 | 0.091 6 |
K2 | 6.77 | 1 | 6.77 | 112.72 | 0.000 1 |
残差 Residual | 0.300 3 | 5 | 0.060 1 | ||
失拟项 Lack of fit | 0.298 5 | 3 | 0.099 5 | 106.60 | 0.093 |
纯误差Pure error | 0.001 9 | 2 | 0.000 9 | ||
总和Sum | 116.33 | 14 |
1 | 史嵩,张东兴,杨丽,等.基于 EDEM 软件的气压组合孔式排种器充种性能模拟与验证[J].农业工程学报,2015,31(3):62-69. |
SHI S, ZHANG D X, YANG L, et al.. Simulation and verification of the filling performance of the pneumatic combined hole-type seed metering device based on EDEM software [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(3):62-69. | |
2 | 张国忠,罗锡文,臧英,等.水稻气力式排种器群布吸孔吸种盘吸种精度试验[J].农业工程学报,2013,29(6):13-20. |
ZHANG G Z, LUO X W, ZANG Y, et al.. Seed suction accuracy test of rice pneumatic seed metering device group cloth suction plate [J]. Trans. Chin. Soc. Agric. Eng., 2013, 29(6):13-20. | |
3 | 马征,李耀明,徐立章.农业工程领域颗粒运动研究综述[J].农业机械学报,2013,44(2):22-29. |
MA Z, LI Y M, XU L Z. A review of particle motion research in the field of agricultural engineering [J]. Trans. Chin. Soc. Agric. Mach., 2013, 44(2):22-29. | |
4 | 闫聪杰.甩盘雾化式大豆包衣装置的设计与试验[D].哈尔滨:东北农业大学,2020. |
YAN C J. The design and experiment of a spinning disk atomization soybean coating device [D]. Harbin: Northeast Agricultural University, 2020. | |
5 | 曲芳.基于唐冠螺壳体结构大豆种子包衣搅拌装置关键技术研究[D].哈尔滨:东北农业大学,2019. |
QU F. Research on the key technology of soybean seed coating and stirring device based on the snail shell structure [D]. Harbin: Northeast Agricultural University,2019. | |
6 | 胡建平,郭坤,周春健,等.磁吸滚筒式排种器种箱振动供种仿真与试验[J].农业机械学报,2014,45(8):61-65. |
HU J P, GUO K, ZHOU C J, et al.. Simulation and experiment of seed box vibration of magnetic drum seed metering device [J]. Trans. Chin. Soc. Agric. Mach., 2014, 45(8):61-65. | |
7 | 孙舒畅.基于DEM-CFD耦合的气吸式玉米精密排种器工作过程仿真分析[D].长春:吉林大学,2016. |
SUN S C. Simulation analysis of the working process of the air-suction corn precision metering device based on DEM-CFD coupling [D]. Changchun: Jilin University, 2016. | |
8 | 王燕.基于离散元法的深松铲结构与松土效果研究[D].长春:吉林农业大学,2014. |
WANG Y. Research on the structure and soil loosening effect of deep loosening shovel based on discrete element method [D]. Changchun: Jilin Agricultural University,2014. | |
9 | 王云霞,梁志杰,张东兴,等.基于离散元的玉米种子颗粒模型种间接触参数标定[J].农业工程学报,2016,32(22):36-42. |
WANG Y X, LIANG Z J, ZHANG D X, et al.. Calibration of interspecific contact parameters of corn seed particle model based on discrete element [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(22):36-42. | |
10 | 王美美,王万章,杨立权.基于响应面法的玉米籽粒离散元参数标定[J].华南农业大学学报,2018,39(3):111-117. |
WANG M M, WANG W Z, YANG L Q. Discrete element parameter calibration of corn kernels based on response surface method [J]. J. South China Agric. Univ., 2018, 39(3):111-117. | |
11 | 李秀清.基于离散元方法的锤片粉碎机玉米粉碎过程模拟及锤片性能试验研究[D].呼和浩特:内蒙古农业大学,2020. |
LI X Q. Simulation of corn crushing process of hammer mill based on discrete element method and experimental research on hammer performance [D]. Hohhot: Inner Mongolia Agricultural University, 2020. | |
12 | QUIST J, EVERTSSON C M. Cone crusher modelling and simulation using DEM [J]. Minerals Eng., 2016, 85:92-105. |
13 | JOHANSSON M, QUIST J, EVERTSSON M, et al.. Cone crusher performance evaluation using DEM simulations and laboratory experiments for model validation [J]. Minerals Eng., 2017, 103:93-101. |
14 | 刘俊安.基于离散元方法的深松铲参数优化及松土综合效应研究[D].北京:中国农业大学,2018. |
LIU J A. Research on parameter optimization of deep loosening shovel and comprehensive effect of loosening soil based on discrete element method [D]. Beijing: China Agricultural University, 2018. | |
15 | ROESSLER T, KATTERFELD A. Scaling of the angle of repose test and its influence on the calibration of DEM parameters using upscaled particles [J]. Powder Technol., 2018, 330:58-66. |
16 | FRANKOWSKI P, MORGENEYER M. Calibration and validation of DEM rolling and sliding friction coefficients in angle of repose and shear measurements [C]// AIP Conference Proceedings. USA: AIP Publishing, 2013: 851-854. |
17 | 侯占峰,戴念祖,陈智,等.冰草种子物性参数测定与离散元仿真参数标定[J].农业工程学报,2020,36(24):46-54. |
HOU Z F, DAI N Z, CHEN Z, et al.. Determination of physical parameters of wheatgrass seeds and calibration of discrete element simulation parameters [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(24):46-54. | |
18 | 余世科.基于离散元法的多尺度内聚颗粒模型构建及冲击破碎能耗分析[D].赣州:江西理工大学,2015. |
YU S K. Construction of multi-scale cohesive particle model based on discrete element method and analysis of energy consumption for impact crushing [D]. Ganzhou: Jiangxi University of Science and Technology, 2015. | |
19 | OMAC I, GUTIERREZ M. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM [J]. J. Rock Mech. Geotech. Eng., 2017, 9(1):92-104. |
20 | TAN Y, YANG D, SHENG Y. Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC [J]. J. Eur. Ceramic Soc., 2009, 29(6):1029-1037. |
21 | SUN Z, TANG H, ESPINOZA D N, et al.. Discrete element modeling of grain crushing and implications on reservoir compaction [J]. J. Pet. Sci. Eng., 2018, 171:431-439. |
22 | 赵惠君.玉米颗粒与钢板间滚动摩擦系数对颗粒堆内接触力影响研究[D].哈尔滨:东北农业大学,2018. |
ZHAO H J. Research on the influence of the coefficient of rolling friction between corn grains and steel plate on the contact force in the grain pile [D]. Harbin: Northeast Agricultural University, 2018. | |
23 | 陈泽仁.玉米种子颗粒群体建模方法研究[D].长春:吉林大学,2019. |
CHEN Z R. Research on the method of maize seed particle population modeling [D]. Changchun: Jilin University, 2019. | |
24 | 周文秀.玉米籽粒的物理力学特性研究[D].哈尔滨:东北农业大学,2015. |
ZHOU W X. Research on the physical and mechanical properties of corn kernels [D]. Harbin: Northeast Agricultural University, 2015. | |
25 | 侯明涛.玉米籽粒力学特性试验与脱粒试验台设计研究[D].郑州:河南农业大学,2017. |
HOU M T. Study on the design of corn kernel mechanical properties test and threshing test bench [D]. Zhengzhou: Henan Agricultural University, 2017. | |
26 | 李玉环,杨丽,张东兴,等.气吸式玉米高速精量排种器直线投种过程分析与试验[J].农业工程学报,2020,36(9):26-35. |
LI Y H, YANG L, ZHANG D X, et al.. Analysis and experiment of linear seeding process of air-suction corn high-speed precision metering device [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(9):26-35. | |
27 | 于庆旭.气吸窝眼轮式三七精密排种器设计与试验[D].昆明:昆明理工大学,2019. |
YU Q X. Design and test of the precision seed metering device with air suction socket and eye wheel [D]. Kunming: Kunming University of Science and Technology, 2019. | |
28 | 杨航,刘芳,李加祥,等.基于CFD-DEM耦合的气吸式三七播种器工作参数仿真分析[J].中国农机化学报,2019,40(1):22-25. |
YANG H, LIU F, LI J X, et al.. Simulation analysis of working parameters of air-suction panax notoginseng planter based on CFD-DEM coupling [J]. Chin. J. Agric. Mach. Chem., 2019, 40(1):22-25. | |
29 | 杨薇.玉米育种精量播种关键技术与装备研究[D].北京:中国农业机械化科学研究院,2019. |
YANG W. Research on the key technology and equipment of maize breeding precision seeding [D]. Beijing: Chinese Academy of Agricultural Mechanization Sciences, 2019. | |
30 | 代文龙.新型气吸式玉米精密排种器结构设计与试验研究[D].长春:吉林农业大学,2019. |
DAI W L. Structural design and experimental research of a new type of suction corn precision seed metering device [D]. Changchun: Jilin Agricultural University, 2019. |
[1] | 宋世圣, 孙松林, 方芹, 彭才望, 周婷, 朱海英. 黑水虻生物转化餐厨垃圾有机肥离散元模型参数标定[J]. 中国农业科技导报, 2022, 24(6): 123-132. |
[2] | 闫建伟, 魏松, 胡冬军, 刘启合, 张富贵. 白萝卜种子颗粒模型离散元接触参数标定与试验[J]. 中国农业科技导报, 2022, 24(5): 119-128. |
[3] | 全伟, 吴明亮, 官春云, 罗海峰. 油菜钵苗移栽机成穴器外形优化试验研究[J]. 中国农业科技导报, 2021, 23(10): 97-106. |
[4] | 刘妤,刘羽平,张拓. 基于离散元与多体动力学的微耕机旋耕刀轴负荷分析[J]. 中国农业科技导报, 2020, 22(11): 79-86. |
[5] | 向伟1,2,吴明亮1*,吕江南2,马兰2,全伟1,刘佳杰2,肖乐3. 基于EDEM的油菜移栽成穴装置作业性能仿真与试验研究[J]. 中国农业科技导报, 2019, 21(7): 70-81. |
[6] | 刘羽平,张拓,刘妤*. 稻谷颗粒模型离散元接触参数标定与试验[J]. 中国农业科技导报, 2019, 21(11): 70-76. |
[7] | 马俊华1*,王自霞2*,刘建军1,梦俊文1,赵学梅2,周晓梅2. 玉米种子萌发初期生理特性的变化研究[J]. , 2011, 13(4): 99-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||