中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (1): 187-196.DOI: 10.13304/j.nykjdb.2021.0534
• 生物制造 资源生态 • 上一篇
收稿日期:
2021-07-01
接受日期:
2021-09-22
出版日期:
2023-01-15
发布日期:
2023-04-17
通讯作者:
姚拓
作者简介:
金艳丽 E-mail:1749143351@qq.com;
基金资助:
Yanli JIN1(), Xiaojun LAN1, Tuo YAO1(
), Xiaoqin DING2
Received:
2021-07-01
Accepted:
2021-09-22
Online:
2023-01-15
Published:
2023-04-17
Contact:
Tuo YAO
摘要:
为获取对当归和羌活生长具有促生作用的促生菌(plant growth promoting rhizobacteria,PGPR),以当归、羌活的根系为研究对象,利用选择性培养基分离具有固氮、溶磷和分泌3-吲哚乙酸(IAA)能力的菌株。通过对菌株的固氮酶活性、溶磷能力及分泌IAA的能力进行测定,筛选出促生性能优良的菌株;进一步通过生理生化指标和16S rDNA序列分析相结合的方法分析优良菌株的分类地位。结果表明,共筛选到12株具有固氮酶活性的菌株,其固氮酶活性为0.30~4.04 nmol C2H4·mL-1·h-1;6株溶解无机磷的菌株,溶磷量为290.98~420.33 μg·mL-1;3株产IAA的菌株, IAA分泌量为10.38~18.63 μg·mL-1。经鉴定,溶磷特性优良的菌株属于假单胞菌属(Pseudomonas)和错玫杆菌属(Falsirhodobacter),假单胞菌属为优势菌属。综合各菌株的促生特性,筛选出2株促生性能优良的菌株:WQP-5(Pseudomonasgrimontii)和MDP-8(Pseudomonasthivervalensis),为开发适用于甘肃道地药材当归与羌活专用生物菌肥提供了优良菌种。
中图分类号:
金艳丽, 兰晓君, 姚拓, 丁小琴. 当归和羌活根际促生菌筛选及特性研究[J]. 中国农业科技导报, 2023, 25(1): 187-196.
Yanli JIN, Xiaojun LAN, Tuo YAO, Xiaoqin DING. Screening and Characteristic Study of Angelicasinensis and Notopterygiumincisum Rhizosphere Growth-Promoting Bacteria[J]. Journal of Agricultural Science and Technology, 2023, 25(1): 187-196.
菌株来源 Source | 菌株编号 Strain ID | |||
---|---|---|---|---|
固氮菌株 Nitrogen-fixing strain | 溶解无机磷菌株 Inorganic phosphorus strain | 溶解有机磷菌株 Organic phosphorus strain | 分泌IAA菌株 IAA-secreting strain | |
当归 Angelicasinensis | MDN-1、MDN-2、MDN-5、 MDN-8、MDN-9、MDN-11 | MDP-7、MDP-8 | MDM-4、MDM-6 | MDM-6、MDP-4 |
羌活 Notopterygium incisum | WQN-1、WQN-2、WQN-5、 WQN-6、WQN-7、WQN-10 | WQP-1、WQP-5、WQP-6、WQP-7 | WQM-1、WQM-3、WQM-6、 WQM-9、WQM-8、WQM-10、 WQM-11、WQM-13 | WQP-5 |
表1 优良根部促生菌筛选结果
Table 1 Screening results of excellent root-growth promoting bacteria
菌株来源 Source | 菌株编号 Strain ID | |||
---|---|---|---|---|
固氮菌株 Nitrogen-fixing strain | 溶解无机磷菌株 Inorganic phosphorus strain | 溶解有机磷菌株 Organic phosphorus strain | 分泌IAA菌株 IAA-secreting strain | |
当归 Angelicasinensis | MDN-1、MDN-2、MDN-5、 MDN-8、MDN-9、MDN-11 | MDP-7、MDP-8 | MDM-4、MDM-6 | MDM-6、MDP-4 |
羌活 Notopterygium incisum | WQN-1、WQN-2、WQN-5、 WQN-6、WQN-7、WQN-10 | WQP-1、WQP-5、WQP-6、WQP-7 | WQM-1、WQM-3、WQM-6、 WQM-9、WQM-8、WQM-10、 WQM-11、WQM-13 | WQP-5 |
图1 固氮菌株的固氮酶活性注:不同小写字母表示不同菌株间差异在P<0.05水平显著。
Fig.1 Nitrogenase activity of nitrogen-fixing strainsNote:Different lowercase letters indicate significant differences between different strains at P<0.05 level.
图2 不同菌株溶解无机磷的能力注:不同小写字母表示不同菌株间差异在P<0.05水平显著。
Fig.2 Ability of different strains to dissolve inorganic phosphorusNote:Different lowercase letters indicate significant differences between different strains at P<0.05 level.
菌株编号 Strains code | 溶磷指数 Phosphate index/% | 菌株编号 Strains code | 溶磷指数 Phosphate index/% |
---|---|---|---|
MDM-4 | 401±1.49 d | WQM-8 | 241±1.47 h |
MDM-6 | 404±0.43 c | WQM-9 | 322±0.79 f |
WQM-1 | 214±0.45 i | WQM-10 | 282±1.49 g |
WQM-3 | 382±1.55 e | WQM-11 | 411±1.37 b |
WQM-6 | 280±1.30 g | WQM-13 | 434±0.70 a |
表2 不同菌株溶解有机磷能力
Table 2 Ability of different strains to dissolve organic phosphorus
菌株编号 Strains code | 溶磷指数 Phosphate index/% | 菌株编号 Strains code | 溶磷指数 Phosphate index/% |
---|---|---|---|
MDM-4 | 401±1.49 d | WQM-8 | 241±1.47 h |
MDM-6 | 404±0.43 c | WQM-9 | 322±0.79 f |
WQM-1 | 214±0.45 i | WQM-10 | 282±1.49 g |
WQM-3 | 382±1.55 e | WQM-11 | 411±1.37 b |
WQM-6 | 280±1.30 g | WQM-13 | 434±0.70 a |
图3 菌株分泌IAA能力注:不同小写字母表示不同菌株间差异在P<0.05水平显著。
Fig.3 The ability of strains to secrete IAANotes:Different lowercase letters indicate significant differences between different strains at P<0.05 level.
菌株 Strain | 细胞形态 Cell morphology | 温度 Temeperature /℃ | 运动性Sportiness | pH | 盐耐受性 Salt tolerance /% | 氧化酶 Oxidase | 接触酶 Contact enzyme | 脲酶 Urease | 硝酸盐还原 Nitrate reduction |
---|---|---|---|---|---|---|---|---|---|
MDP-4 | 杆状Rhabditiform | - | 15~45 | 6~9 | ≤4 | - | + | - | - |
MDP-7 | 杆状Rhabditiform | + | 8~40 | 6~10 | ≤3 | + | + | - | - |
MDP-8 | 杆状Rhabditiform | + | 8~40 | 5~10 | ≤2 | + | + | - | - |
MDM-4 | 杆状Rhabditiform | + | 8~37 | 5~9 | ≤5 | + | + | - | + |
MDM-6 | 杆状Rhabditiform | + | 8~40 | 5~9 | ≤1 | + | + | - | + |
WQP-1 | 杆状Rhabditiform | + | 8~40 | 5~10 | ≤3 | + | + | - | - |
WQP-5 | 杆状Rhabditiform | + | 10~40 | 6~10 | ≤1 | + | + | - | + |
WQP-6 | 杆状Rhabditiform | + | 8~40 | 6~10 | ≤1 | + | + | - | + |
WQP-7 | 杆状Rhabditiform | + | 8~40 | 5~9 | ≤3 | + | + | - | - |
WQM-3 | 杆状Rhabditiform | + | 8~40 | 6~10 | ≤5 | + | + | - | - |
WQM-11 | 杆状Rhabditiform | - | 10~40 | 5~10 | ≤5 | + | + | - | - |
WQM-13 | 杆状Rhabditiform | - | 10~40 | 6~10 | ≤3 | + | + | - | - |
表3 PGPR菌株形态学与生理生化特性
Table 3 Morphological, physiological and biochemical characteristics of PGPR Strain
菌株 Strain | 细胞形态 Cell morphology | 温度 Temeperature /℃ | 运动性Sportiness | pH | 盐耐受性 Salt tolerance /% | 氧化酶 Oxidase | 接触酶 Contact enzyme | 脲酶 Urease | 硝酸盐还原 Nitrate reduction |
---|---|---|---|---|---|---|---|---|---|
MDP-4 | 杆状Rhabditiform | - | 15~45 | 6~9 | ≤4 | - | + | - | - |
MDP-7 | 杆状Rhabditiform | + | 8~40 | 6~10 | ≤3 | + | + | - | - |
MDP-8 | 杆状Rhabditiform | + | 8~40 | 5~10 | ≤2 | + | + | - | - |
MDM-4 | 杆状Rhabditiform | + | 8~37 | 5~9 | ≤5 | + | + | - | + |
MDM-6 | 杆状Rhabditiform | + | 8~40 | 5~9 | ≤1 | + | + | - | + |
WQP-1 | 杆状Rhabditiform | + | 8~40 | 5~10 | ≤3 | + | + | - | - |
WQP-5 | 杆状Rhabditiform | + | 10~40 | 6~10 | ≤1 | + | + | - | + |
WQP-6 | 杆状Rhabditiform | + | 8~40 | 6~10 | ≤1 | + | + | - | + |
WQP-7 | 杆状Rhabditiform | + | 8~40 | 5~9 | ≤3 | + | + | - | - |
WQM-3 | 杆状Rhabditiform | + | 8~40 | 6~10 | ≤5 | + | + | - | - |
WQM-11 | 杆状Rhabditiform | - | 10~40 | 5~10 | ≤5 | + | + | - | - |
WQM-13 | 杆状Rhabditiform | - | 10~40 | 6~10 | ≤3 | + | + | - | - |
菌株Strain | 序列检索号 Serial access number | 相近的分类单元 Similar taxa | 相似度 Similarity/% |
---|---|---|---|
MDP-4 | MT974198 | 醋酸钙不动杆菌Acinetobactercalcoaceticus/Acinetobacterlactucae/Acinetobacterpittii | 99.93/99.00/98.44 |
MDP-7 | MT974366 | Pseudomonasthivervalensis/Pseudomonasbrassicacearum/Pseudomonaskilonensis | 99.65/99.58/99.51 |
MDP-8 | MT974316 | Pseudomonas thivervalensis/Pseudomonasbrassicacearum/Pseudomonaskilonensis | 99.86/99.79/99.72 |
MDM-4 | MT974315 | 猴假单胞菌Pseudomonassimiae/Pseudomonasextremorientalis/Pseudomonaspoae | 99.85/99.37/99.30 |
MDM-6 | MT974321 | Pseudomonasbrassicacearum/Pseudomonasthivervalensis/地中海假单胞菌Pseudomonasmediterranea | 99.37/99.29/99.22 |
WQP-1 | MT974185 | Pseudomonaslaurylsulfatiphila/Pseudomonaslaurylsulfativorans/Pseudomonasbaetica | 99.58/99.51/99.30 |
WQP-5 | MT974215 | 格氏假单胞菌Pseudomonasgrimontii/Pseudomonasrhodesiae/Pseudomonasextremaustralis | 100.00/99.72/99.72 |
表4 菌株16S rRNA序列相似性与检索号
Table 4 16S rRNA sequence similarity and access number of strains
菌株Strain | 序列检索号 Serial access number | 相近的分类单元 Similar taxa | 相似度 Similarity/% |
---|---|---|---|
MDP-4 | MT974198 | 醋酸钙不动杆菌Acinetobactercalcoaceticus/Acinetobacterlactucae/Acinetobacterpittii | 99.93/99.00/98.44 |
MDP-7 | MT974366 | Pseudomonasthivervalensis/Pseudomonasbrassicacearum/Pseudomonaskilonensis | 99.65/99.58/99.51 |
MDP-8 | MT974316 | Pseudomonas thivervalensis/Pseudomonasbrassicacearum/Pseudomonaskilonensis | 99.86/99.79/99.72 |
MDM-4 | MT974315 | 猴假单胞菌Pseudomonassimiae/Pseudomonasextremorientalis/Pseudomonaspoae | 99.85/99.37/99.30 |
MDM-6 | MT974321 | Pseudomonasbrassicacearum/Pseudomonasthivervalensis/地中海假单胞菌Pseudomonasmediterranea | 99.37/99.29/99.22 |
WQP-1 | MT974185 | Pseudomonaslaurylsulfatiphila/Pseudomonaslaurylsulfativorans/Pseudomonasbaetica | 99.58/99.51/99.30 |
WQP-5 | MT974215 | 格氏假单胞菌Pseudomonasgrimontii/Pseudomonasrhodesiae/Pseudomonasextremaustralis | 100.00/99.72/99.72 |
菌株编号 Strains code | 保藏编号 Deposit number | 初步鉴定结果 Preliminary identification result |
---|---|---|
MDP-4 | GAU-00194 | 醋酸钙不动杆菌Acinetobactercalcoaceticus |
MDP-7 | GAU-00253 | Pseudomonas sp. |
MDP-8 | GAU-00254 | Pseudomonasthivervalensis |
MDM-4 | GAU-00219 | 猴假单胞菌Pseudomonassimiae |
MDM-6 | GAU-00220 | 地中海假单胞菌Pseudomonasmediterranea |
WQP-1 | GAU-00179 | Pseudomonaslaurylsulfatiphila |
WQP-5 | GAU-00210 | 格式假单胞菌Pseudomonasgrimontii |
WQP-6 | GAU-00211 | 地中海假单胞菌Pseudomonasmediterranea |
WQP-7 | GAU-00212 | Pseudomonasfrederiksbergensis |
WQM-3 | GAU-00189 | Pseudomonas sp. |
WQM-11 | GAU-00277 | 沙漠错玫杆菌Falsirhodobacterdeserti |
WQM-13 | GAU-00278 | 沙漠错玫杆菌Falsirhodobacterdeserti |
表5 PGPR初步鉴定
Table 5 Preliminary identification of PGPR
菌株编号 Strains code | 保藏编号 Deposit number | 初步鉴定结果 Preliminary identification result |
---|---|---|
MDP-4 | GAU-00194 | 醋酸钙不动杆菌Acinetobactercalcoaceticus |
MDP-7 | GAU-00253 | Pseudomonas sp. |
MDP-8 | GAU-00254 | Pseudomonasthivervalensis |
MDM-4 | GAU-00219 | 猴假单胞菌Pseudomonassimiae |
MDM-6 | GAU-00220 | 地中海假单胞菌Pseudomonasmediterranea |
WQP-1 | GAU-00179 | Pseudomonaslaurylsulfatiphila |
WQP-5 | GAU-00210 | 格式假单胞菌Pseudomonasgrimontii |
WQP-6 | GAU-00211 | 地中海假单胞菌Pseudomonasmediterranea |
WQP-7 | GAU-00212 | Pseudomonasfrederiksbergensis |
WQM-3 | GAU-00189 | Pseudomonas sp. |
WQM-11 | GAU-00277 | 沙漠错玫杆菌Falsirhodobacterdeserti |
WQM-13 | GAU-00278 | 沙漠错玫杆菌Falsirhodobacterdeserti |
菌株Strain | 序列检索号 Serial access number | 相近的分类单元 Similar taxa | 相似度 Similarity/% |
---|---|---|---|
WQP-6 | MT974250 | Pseudomonaslini/Pseudomonasprosekii/地中海假单胞菌Pseudomonasmediterranea | 98.96/98.82/98.68 |
WQP-7 | MT974420 | Pseudomonasfrederiksbergensis/Pseudomonassilesiensis/孟氏假单胞菌Pseudomonasmandelii | 99.65/99.65/99.58 |
WQM-3 | MT974213 | Pseudomonassilesiensis/孟氏假单胞菌Pseudomonasmandelii/Pseudomonasfrederiksbergensis | 99.51/99.44/99.30 |
WQM-11 | MT974329 | 沙漠错玫杆菌Falsirhodobacterdeserti/Falsirhodobacterhalotolerans/Rhodobacterovatus | 98.59/98.06/95.57 |
WQM-13 | MT974352 | 沙漠错玫杆菌Falsirhodobacterdeserti/Falsirhodobacterhalotolerans/Rhodobacterovatus | 98.59/98.06/95.57 |
表4 菌株16S rRNA序列相似性与检索号 (续表Continued)
Table 4 16S rRNA sequence similarity and access number of strains
菌株Strain | 序列检索号 Serial access number | 相近的分类单元 Similar taxa | 相似度 Similarity/% |
---|---|---|---|
WQP-6 | MT974250 | Pseudomonaslini/Pseudomonasprosekii/地中海假单胞菌Pseudomonasmediterranea | 98.96/98.82/98.68 |
WQP-7 | MT974420 | Pseudomonasfrederiksbergensis/Pseudomonassilesiensis/孟氏假单胞菌Pseudomonasmandelii | 99.65/99.65/99.58 |
WQM-3 | MT974213 | Pseudomonassilesiensis/孟氏假单胞菌Pseudomonasmandelii/Pseudomonasfrederiksbergensis | 99.51/99.44/99.30 |
WQM-11 | MT974329 | 沙漠错玫杆菌Falsirhodobacterdeserti/Falsirhodobacterhalotolerans/Rhodobacterovatus | 98.59/98.06/95.57 |
WQM-13 | MT974352 | 沙漠错玫杆菌Falsirhodobacterdeserti/Falsirhodobacterhalotolerans/Rhodobacterovatus | 98.59/98.06/95.57 |
1 | 张明.甘肃不同产地当归质量及补血活血作用的比较研究[D]. 兰州:甘肃中医药大学,2015. |
ZHANG M. The comparative study about the quality and the effect on enriching and invigorating blood of Gansu different reginal Angelica [D]. Lanzhou: Gansu University of Chinese Medicine, 2015. | |
2 | 付红.当归提取物抗皮肤衰老及美白功效体外实验研究[J]. 医药论坛杂志,2017,38(12):142-143. |
3 | 李鸿昌.对中药羌活化学成分及药理作用的研究[J]. 当代医药论丛,2019,17(15):195-197. |
4 | 陈小莉,方子森,张恩和.甘肃羌活资源特征及开发利用[J]. 草业科学,2005,22(1):1-3. |
CHEN X L, FANG Z S, ZHANG E H. Resources characteristics and exploitation of rhizoma et radix Notopterygii in Gansu province [J]. Pratac. Sci., 2005, 22(1):1-3. | |
5 | 高凌花,方子森.甘肃野生羌活资源综合分析与评价[J]. 草业科学,2007,24(9):11-14. |
GAO L H, FANG Z E. Integrative analysis and evaluation of wild rhizoma et radix Notopterygii resource in Gansu [J]. Pratac. Sci., 2007, 24(9):11-14. | |
6 | 罗鑫,王雪晶,赵祎武,等.羌活化学成分研究[J]. 中草药,2016,47(9):1492-1495. |
LUO X, WANG X J, ZHAO Y W, et al.. Chemical constituents from Notopterygiumincisum [J]. Chin. Herb. Med., 2016, 47(9):1492-1495. | |
7 | 孟祥才,沈莹,杜虹韦.道地药材概念及其使用规范的探讨[J]. 中草药,2019,50(24):6135-6141. |
MENG X C, SHEN Y, DU H W. Discussion on concept of genuine medicinal materials and its use standard [J]. Chin. Herb. Med., 2019, 50(24):6135-6141. | |
8 | 肖婉君,郭凤霞,陈垣,等.施用有机肥对当归药材性状、产量及抗病性的影响[J]. 草业学报,2021,30(3):89-199. |
XIAO W J, GUO F X, CHEN H, et al.. Effect of organic fertilizer application on the medicinal character, yield and disease resistance of Angelica sinensis [J]. Acta Pratac. Sin., 2021, 30(3):189-199. | |
9 | 李仲春.我国农业面源污染现状及防治对策[J]. 现代农业科技,2012(14):213-214. |
LI Z C. Present situation and prevention countermeasures for agricultural non-point pollution in China [J]. Modern Agric.Sci. Tech., 2012(14):213-214. | |
10 | 丁锁,臧宏伟.我国农业面源污染现状及防治对策[J]. 现代农业科技,2009(23):275-276. |
DING S, ZANG H W. Present situation and prevention countermeasures for agricultural non-point pollution in China [J]. Modern Agric. Sci. Tech., 2009(23):275-276. | |
11 | 张建贵.优良生防细菌抑菌特性及其菌剂研制[D]. 兰州:甘肃农业大学,硕士学位论文,2019. |
ZHANG J G. Antibacterial characteristics of excellent biocontrol bacteria and development of microorganism inoculant [D]. Lanzhou: Gansu Agricultural University, Master Dissertation, 2019. | |
12 | 张维理,张认连,冀宏杰,等.中德农业源污染管控制度比较研究[J]. 中国农业科学,2020,53(5):965-976. |
ZHANG W L, ZHANG R L, JI H J, et al.. A Comparative study between China and Germany on the control system for agricultural source pollution [J]. Sci. Agric. Sin., 2020, 53(5):965-976. | |
13 | KLOEPPER J W, SCHOTH M N. Plant growth-rhizobacteria and plant growth under gnotobiotic conditions [J]. Phytopathology, 1981, 71:642-644. |
14 | VESSEY J K. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant Soil,2003, 255:571-586. |
15 | WELLER D M, RAAIJMAKERS J M, GARDENER B B, et al.. Microbial populations responsible for specifificsoil suppressiveness to plant pathogens [J]. Annu. Rev. Phytopathol., 2002, 40:309-348. |
16 | 李海云,蒋永梅,姚拓,等.蔬菜作物根际促生菌分离筛选、鉴定及促生特性测定[J]. 植物保护学报,2018, 45(4):836-845. |
LI H Y, JIANG Y M, Yao T, et al.. Isolation, screening, identification and growth promoting characteristics of plant growth promoting rhizobacteria of vegetable crops [J]. J. Plant Prot., 2018, 45(4):836-845. | |
17 | 撖冬荣,侯栋,姚拓,等.莴笋根部促生菌筛选与促生特性测定[J]. 干旱地区农业研究,2020,38(03):127-133. |
HAN D R, HOU D, YAO T, et al.. Lettuce root growth promoting bacteria screening and determination of growth promoting properties [J]. Agric. Res. Arid Areas, 2020, 38(3):127-133. | |
18 | 高亚敏,姚拓,李海云,等.高寒草甸嵩草、珠芽蓼根际优良植物根际促生菌的分离筛选及促生特性研究[J]. 草业学报,2019,28(11):114-123. |
GAO Y M, YAO T, LI H Y, et al.. Isolation, screening, and growth-promoting characteristics of plant growth promoting rhizobacteriain the rhizosphere of Kobresiamyosuroides and Polygonumviviparum in alpine meadow pasture [J]. Acta Pratac. Sin., 2019, 28(11):114-123. | |
19 | 李海云,姚拓,张榕,等.红三叶根际促生菌中具生防效果菌株筛选、鉴定及特性研究[J]. 植物营养与肥料学报,2018,24(3):743-750. |
LI H Y, YAO T, ZHANG R, et al.. Screening, identification and characterization of biocontrol bacteria from PGPR in Trifolium pretense [J]. J. Plant Nutr. Fert., 2018, 24(3):743-750. | |
20 | 马骢毓,姚拓.黑果枸杞根际促生菌筛选与特性研究[J]. 草原与草坪,2018,38(2):73-79. |
MA C Y, YAO T. Identification of plant growth promoting rhizobacteria Lycium ruthenicum and their effectives [J]. Grassl. Turf., 2018, 38(2):73-79. | |
21 | 肖艳红,李菁,刘祝祥,等.药用植物根际微生物研究进展[J]. 中草药,2013,44(4):497-504. |
XIAO Y H, LI J, LIU Z X, et al.. Advances in studies on rhizospheric microorganism of medicinal plants [J]. Chin. Herb. Med., 2013, 44(4):497-504. | |
22 | 席琳乔,李德锋,王静芳,等.棉花根际促生菌固氮和分泌生长激素能力的测定[J]. 干旱区研究,2008(5):690-694. |
XI L Q, LI D F, WANG J F, et al.. Measurement of nitrogen fixation capability and excreted IAA capability of PGPB isolated from cotton rhizosphere in salina [J]. Arid Zone Res., 2008(5):690-694. | |
23 | 陆瑞霞,王小利,李显刚,等.地八角根际溶磷菌溶磷能力及菌株特性研究[J]. 中国草地学报,2012,34(4):101-108. |
LU R X, WANG X L, LI X G, et al.. Capability of dissolving phosphate and characteristics of phosphate-dissolving bacteria in rhizosphere of Astragalus bhotanensisin Guizhou [J]. Chin. J. Grassl., 2012, 34(4):101-108. | |
24 | 郭艺鹏,王海儒,孙林琦,等.枣根际解磷细菌的分离筛选及16S rDNA鉴定[J]. 河南农业大学学报,2015,49(6):811-816,837. |
GUO Y P, WANG H R, SUN L Q, et al.. Screening and 16S rDNA identification of phosphate-solubilizing bacteria inrhizosphere soils of jujube [J]. J. Henan Agric.Univ., 2015, 49(6):811-816,837. | |
25 | KING E O, WARD M K, RANEY D E. Two simple media for the demonstration of pyocyanin and fluorescin [J]. J. Lab. Clin. Med., 1954, 44(2):301-307. |
26 | 张英,朱颖,姚拓,等.分离自牧草根际四株促生菌株(PGPR)互作效应研究[J]. 草业学报,2013,22(1):29-37. |
ZHANG Y, ZHU Y, YAO T, et al.. Interactions of four PGPRs isolated from pasture rhizosphere [J]. Acta Pratac. Sin., 2013, 22(1):29-37. | |
27 | 张英.西藏阿里高寒草原四种牧草根际促生菌资源筛选及促生机理研究[D]. 兰州:甘肃农业大学,2013. |
ZHANG Y. Screening plant growth promoting rhizobacteria resources and their promotion mechanisms from rhizosphere of four forages in Ali Alpine grassland of Tibet [D]. Lanzhou: Gansu Agricultural University,2013. | |
28 | SHENOY V V, KALAGUDI G M. Enhancing plant phosphorus use efficiency for sustainable cropping [J]. Biotechnol. Adv., 2005, 23:501-513. |
29 | GLICKMANN E, DESSAUX Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria [J]. Appl. Environ. Microbiol., 1995, 61(2):793-796. |
30 | 东秀珠,蔡妙英.常见细菌系统鉴定手册[M]. 北京:科学出版社,2001. |
DONG X Z, CAI M Y. Manual of Identification of Common Bacterial Systems [M]. Beijing: Science Press, 2001. | |
31 | 刘小龙,芦云,罗明,等. 3种旱生禾草内生固氮菌的分离及促生性能测定[J]. 草地学报,2012,20(4):759-767. |
LIU X L, LU Y, LUO M, et al.. Isolating endophytic diazotrophic bacteria from three Xerophil gramineae grasses to determine their nitrogen fixation and plant growth-promoting [J]. Acta Pratac. Sin., 2012, 20(4):759-767. | |
32 | 初旭,胡霞,刘静,等.杉木根际溶磷菌的筛选鉴定及溶磷能力分析[J]. 西南林业大学学报(自然科学),2021,41(2):85-92. |
CHU X, HU X, LIU J, et al.. Screening and capacity analysis of phosphorus dissolving bacteria in the rhizosphere of Cunninghamia lanceolata [J]. J. Southwest For. Univ. (Nat. Sci.), 2021, 41(2):85-92. | |
33 | ELLIOTT J M, MATHRE D E, SANDS D C. Identification and characterization of rhizosphere competent bacteria of wheat [J]. Appl. Environ. Microbiol., 1987, 53(2):2793-2799. |
34 | 宁爽.内生假单胞菌BTa14、Bar25促生抗病作用及机理的研究[D]. 烟台:烟台大学,2019. |
NING S. Study on the grow th-promoting disease-resistance effects and mechanisms of endophytic pseudomonas Bta14 and Bar25 [D]. Shangong Yantai: Yantai University, 2019. | |
35 | 李海碧.甘蔗根际假单胞菌的分离鉴定及其对甘蔗的促生作用[D]. 南宁:广西大学,2017. |
LI H B. Isolationand characterization of pseudomonase species from sugarcane rhizopheric soil and their influence on the growtn of sugarcane[D]. Nanning: Guangxi University, 2017. | |
36 | 张艺灿,刘凤之,王海波.根际溶磷微生物促生机制研究进展[J]. 中国土壤与肥料,2020(2):1-9. |
ZHANG Y C, LIU F Z, WANG H B. Research progress on plant-growth-promoting mechanisms of phosphate-solubilizing rhizosphere microbes [J]. Soil Fert. Sci. China, 2020(2):1-9. | |
37 | 刘丹丹,李敏,刘润进.我国植物根围促生细菌研究进展[J]. 生态学杂志,2016,35(3):815-824. |
LIU D D, LI M, LIU R J. Recent advances in the study of plant growth-promoting rhizobacteria in China [J]. Chin. J. Ecol., 2016, 35(3):815-824. | |
38 | 朱荣贵,方春玉,周健,等.一株聚磷菌的分离、鉴定及其除磷特性分析[J]. 基因组学与应用生物学,2020, 39(12):5625-5630. |
ZHU R G, FANG C Y, ZHOU J, et al.. Analysis of the isolation and identification of a phosphorus-accumulating bacterium and its characteristic of phosphorus removal [J]. Genomics Appl. Biol., 2020, 39(12):5625-5630. | |
39 | 白由路.高效施肥技术研究的现状与展望[J]. 中国农业科学,2018,51(11):2116-2125. |
BAI Y L. The Situation and prospect of research on efficient fertilization [J]. Sci. Agric. Sin., 2018, 51(11):2116-2125. | |
40 | 郭凤仙,刘越,唐丽,等.药用植物根际微生物研究现状与展望[J]. 中国农业科技导报,2017,19(5):12-21. |
GUO F X, LIU Y, TANG L, et al.. Research status and prospect on rhizosphere microbiome of medicinal plants [J]. J. Agric. Sci. Technol., 2017, 19(5):12-21. | |
41 | 曾美娟,钟永嘉,刁勇.药用植物根际促生菌促生机理研究进展[J]. 生物技术通报,2017,33(11):13-18. |
ZENG M J, ZHONG Y J, DIAO Y. Promoting mechanism of plant growth-promoting rhizobacteria in medicinal plants [J]. Biotechnol. Bull., 2017, 33(11):13-18. |
[1] | 孟玉, 陶刚, 黄德棋, 姚遐俊. 溶磷真菌的多样性及其在农业与生态中的应用[J]. 中国农业科技导报, 2022, 24(11): 208-217. |
[2] | 邢馨竹, 杨占武, 孔佑宾, 李文龙, 杜汇, 李喜焕, 张彩英. 大豆类胡萝卜素裂解双加氧酶GmCCD8固氮功能解析[J]. 中国农业科技导报, 2022, 24(1): 46-53. |
[3] | 李爱花, 蒋顺媛, 郭娜, 黄璐琦. 中药植物羌活种子休眠解除的代谢组分析[J]. 中国农业科技导报, 2021, 23(5): 44-51. |
[4] | 段赛菲, 黄艳娜, 王金斌, 束仕元, 周茂超, 唐雪明, . 常压室温等离子体诱变选育高固氮酶活褐球固氮菌[J]. 中国农业科技导报, 2021, 23(5): 194-201. |
[5] | 杨华1,李江2,张维1,周正富1,燕永亮1,郭嘉3,刘相国3,郝东云3,林敏1,柯秀彬1*. 施氏假单胞菌在玉米根际的固氮效率和促生效果研究[J]. 中国农业科技导报, 2021, 23(4): 76-84. |
[6] | 张志东1,顾美英1,唐琦勇1,楚敏1,朱静1,孙建1,杨蓉1,徐万里2*. 盐爪爪根际耐盐促生菌的筛选及穴栽验证[J]. 中国农业科技导报, 2021, 23(3): 186-192. |
[7] | 王新南1,罗家豪1,郝俊杰2,张晓艳2,刘璐1,付丽平1,王家林1,韩燕红3,刘全兰1*. 蚕豆幼苗内生固氮菌促生长特性的研究[J]. 中国农业科技导报, 2020, 22(6): 33-39. |
[8] | 张凯晔1,2,刘晓琳2,董小燕2,3,刘润进4,贺立恒1*,解志红2,3*. 田菁种子内生菌的分离及其对萌发的影响[J]. 中国农业科技导报, 2020, 22(6): 40-48. |
[9] | 李刚强1,王楠1,李永斌2,李云龙2,王克功3,王睿3,贺建元3,刘德虎1,张丽霞4,王琦5,陈三凤2*. 两种固氮芽孢杆菌菌剂在小麦—玉米轮作区大田试验效果评价[J]. 中国农业科技导报, 2020, 22(4): 147-152. |
[10] | 隋傅1,2,刘晓琳1,2,解志红1,3*. 茎瘤固氮根瘤菌ORS571受体TlpA1对琥珀酸的感应机理[J]. 中国农业科技导报, 2020, 22(10): 77-84. |
[11] | 王楠1,李刚强1,李云龙2,李永斌2,张浩玮2,王民洋2,王莉瑛2,刘德虎1,陈三凤2*. 固氮类芽孢杆菌的分离鉴定及其促生、抑菌活性的测定[J]. 中国农业科技导报, 2019, 21(5): 95-103. |
[12] | 黄义1,刘伟2,陆超1,陆伟1,战嵛华1,张维1,燕永亮1*. 施氏假单胞菌固氮调控蛋白NifA调节电子传递体rnf1基因簇的表达[J]. 中国农业科技导报, 2018, 20(8): 39-45. |
[13] | 陆超1,刘伟2,黄义1,杨智敏1,3,尚立国1,张宏扬1,战嵛华1,陆伟1,燕永亮1*,林敏1. 固氮施氏假单胞菌电子传递复合体rnf基因簇的功能鉴定[J]. 中国农业科技导报, 2018, 20(4): 44-51. |
[14] | 尚立国,弓湃,战嵛华,邓志平,燕永亮*. 固氮施氏假单胞菌全局性调控因子RsmA的进化分析及表达特性研究[J]. , 2014, 16(3): 62-69. |
[15] | 陈清华,韩云蕾,马尧,燕永亮,平淑珍,陆伟*. 生物固氮基因簇结构与进化研究进展[J]. , 2013, 15(4): 129-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||