1 |
HUR J, STEIN B D, LEE J H. A vaccine candidate for post-weaning diarrhea in swine constructed with a live attenuated Salmonella delivering Escherichia coli K88ab, K88ac, FedA, and FedF fimbrial antigens and its immune responses in a murine model [J]. Can. J. Vet. Res., 2012, 76(3):186-194.
|
2 |
CASEY T A, BOSWORTH B T. Design and evaluation of a multiplex polymerase chain reaction assay for the simultaneous identification of genes for nine different virulence factors associated with Escherichia coli that cause diarrhea and edema disease in swine [J]. J. Vet. Diagn. Invest., 2009, 21(1):25-30.
|
3 |
BEIER R C, BISCHOFF K M, ZIPRIN R L, et al.. Nisbet DJ: chlorhexidine susceptibility, virulence factors, and antibiotic resistance of beta-hemolytic Escherichia coli isolated from neonatal swine with diarrhea [J]. Bull. Environ. Contam. Toxicol., 2005, 75(5):835-844.
|
4 |
WADA Y, KATO M, YAMAMOTO S, et al.. Invasive ability of Escherichia coli O18 isolated from swine neonatal diarrhea [J]. Vet. Pathol., 2004, 41(4):433-437.
|
5 |
STAHL C H, CALLAWAY T R, LINCOLN L M, et al.. Inhibitory activities of colicins against Escherichia coli strains responsible for postweaning diarrhea and edema disease in swine [J]. Antimicrob. Agents Chemother., 2004, 48(8):3119-3121.
|
6 |
THOMAS P W, CHO E J, BETHEL C R, et al.. Discovery of an effective small-molecule allosteric inhibitor of New Delhi metallo-beta-lactamase (NDM) [J]. ACS Infect. Dis., 2022, 8(4):811-824.
|
7 |
QUAN J, DAI H, LIAO W, et al.. Etiology and prevalence of ESBLs in adult community-onset urinary tract infections in East China: a prospective multicenter study [J]. J. Infect., 2021, 83(2):175-181.
|
8 |
XIONG Y, ZHANG C, GAO W, et al.. Genetic diversity and co-prevalence of ESBLs and PMQR genes among plasmid-mediated AmpC beta-lactamase-producing Klebsiella pneumoniae isolates causing urinary tract infection [J]. J. Antibiot. (Tokyo), 2021, 74(6):397-406.
|
9 |
JOMEHZADEH N, AHMADI K, JAVAHERIZADEH H, et al.. The first evaluation relationship of integron genes and the multidrug-resistance in class a ESBLs genes in enteropathogenic Escherichia coli strains isolated from children with diarrhea in Southwestern Iran [J]. Mol. Biol. Rep., 2021, 48(1):307-313.
|
10 |
BABAZADEH F, TEIMOURPOUR R, ARZANLOU M, et al.. Phenotypic and molecular characterization of extended-spectrum beta-lactamase/AmpC- and carbapenemase-producing Klebsiella pneumoniae in Iran [J]. Mol. Biol. Rep., 2022, 49(6):4769-4776.
|
11 |
FAVIER P, RAFFO C, TORRES D, et al.. Third-generation cephalosporins programmed restriction in the context of an outbreak of AmpC beta-lactamase-producing gram-negative bacilli in critical units: a real-life experience [J]. Rev. Chilena Infectol., 2021, 38(5):597-604.
|
12 |
MUDDASSIR M, MUNIR S, RAZA A, et al.. Epidemiology and high incidence of metallo-beta-lactamase and AmpC-beta-lactamases in nosocomial [J] Iran. J. Basic Med. Sci., 2021, 24(10):1373-1379.
|
13 |
FETAHAGIC M, IBRAHIMAGIC A, UZUNOVIC S, et al.. Detection and characterisation of extended-spectrum and plasmid-mediated AmpC beta-lactamase produced by Escherichia coli isolates found at poultry farms in Bosnia and Herzegovina [J]. Arh. Hig. Rada Toksikol., 2021, 72(4):305-314.
|
14 |
MATHILDE L, LAURENT P, PATRICE N. Rapid multiplex polymerase chain reaction for detection of mcr-1 to mcr-5 genes [J]. Diag. Microbiol. Infect. Dis., 2018, 92(4):267-269.
|
15 |
DONG F, LU J, WANG Y, et al.. A five-year surveillance of carbapenemase-producing Klebsiella pneumoniae in a pediatric hospital in China reveals increased predominance of NDM-1 [J]. Biomed. Environ. Sci., 2017, 30(8):562-569.
|
16 |
DOMINGUEZ-PEREZ R A, DE LA TORRE-LUNA R, AHUMADA-CANTILLANO M, et al.. Detection of the antimicrobial resistance genes blaTEM-1, cfxA, tetQ, tetM, tetW and ermC in endodontic infections of a Mexican population [J]. J. Glob. Antimicrob. Resist., 2018, 15:20-24.
|
17 |
WAGNER K, MANCINI S, RITTER C, et al.. Evaluation of the AID AmpC line probe assay for molecular detection of AmpC-producing Enterobacterales [J]. J. Glob. Antimicrob. Resist., 2019, 19:8-13.
|
18 |
李海利,方剑玉,游一,等.中草药提取物对多重耐药猪胸膜肺炎放线杆菌体外抑菌效果研究[J].中国兽药杂志,2022,56(2):70-77.
|
|
LI H L, FANG J Y, YOU Y, et al.. In vitro antibacterial experiment and antibacterial effect of Chinese herbal medicine extracts on multi-drug resistant Actinobacillus pleuropneumoniae of pigs [J]. Chin. J. Vet. Drug, 2022, 56(2):70-77.
|
19 |
ABDEL AAL A M, KHALIL N O, RASHED H G, et al.. Genetic detection of AmpC beta-lactamase among gram negative isolates “a single center experience” [J]. Egypt. J. Immunol., 2021, 28(4):195-205.
|
20 |
SHAH A, ALAM S, KABIR M, et al.. Migratory birds as the vehicle of transmission of multi drug resistant extended spectrum beta lactamase producing Escherichia fergusonii, an emerging zoonotic pathogen [J]. Saudi J. Biol. Sci., 2022, 29(5):3167-3176.
|
21 |
BAKR K I, ABDUL-RAHMAN S M, MUHAMMAD HAMASALIH R. Molecular detection of beta-lactamase genes in Klebsiella pneumoniae and Escherichia coli isolated from different clinical sources [J]. Cell Mol. Biol. (Noisy-le-grand), 2022, 67(4):170-180.
|
22 |
LU J, WANG L, WEI Y, et al.. Trends and risk factors of extended-spectrum beta-lactamase urinary tract infection in Chinese children: a nomogram is built and urologist should act in time [J]. Transl. Pediatr., 2022, 11(6):859-868.
|
23 |
GHARAIBEH M H, ALYAFAWI D A, ELNASSER Z A, et al.. Emergence of mcr-1 gene and carbapenemase-encoding genes among colistin-resistant Klebsiella pneumoniae clinical isolates in Jordan [J]. J. Infect. Public Health., 2022, 15(8):922-929.
|
24 |
XU T, XUE C X, CHEN Y, et al.. Frequent convergence of mcr-9 and carbapenemase genes in Enterobacter cloacae complex driven by epidemic plasmids and host incompatibility [J]. Emerg. Microbes Infect., 2022, 11(1):1959-1972.
|
25 |
TALAT A, USMANI A, KHAN A U. Detection of E. coli IncX1 plasmid-mediated mcr-5.1 gene in an Indian hospital sewage water using shotgun metagenomic sequencing: a first report [J]. Microb. Drug Resist., 2022, 28(7):759-764.
|
26 |
KASSEM, I I, ASSI A, OSMAN M, et al.. Letter to the editor: first report of the detection of the plasmid-borne colistin resistance gene, mcr-1.26, in multidrug-resistant Escherichia coli isolated from a domesticated pigeon [J]. Microb. Drug Resist., 2022, 28(7):821-823.
|
27 |
OTEO J, MENCIA A, BAUTISTA V, et al.. Colonization with enterobacteriaceae-producing ESBLs, AmpCs, and OXA-48 in wild avian species, Spain 2015-2016 [J]. Microb. Drug Resist., 2018, 24(7):932-938.
|
28 |
SALAMANDANE A, MALFEITO-FERREIRA M, BRITO L. A high level of antibiotic resistance in Klebsiella and Aeromonas isolates from street water sold in Mozambique, associated with the prevalence of extended-spectrum and AmpC ss-lactamases [J]. J. Environ. Sci. Health B., 2022, 57(7):561-567.
|
29 |
GARCIA-FIERRO R, DRAPEAU A, DAZAS M, et al.. Comparative phylogenomics of ESBL-, AmpC- and carbapenemase-producing Klebsiella pneumoniae originating from companion animals and humans [J]. J. Antimicrob. Chemother., 2022, 77(5):1263-1271.
|
30 |
MUNTEAN M M, MUNTEAN A A, GUERIN F, et al.. Optimization of the rapid carbapenem inactivation method for use with AmpC hyperproducers-authors’ response [J]. J. Antimicrob. Chemother., 2022, 77(4):1210-1211.
|
31 |
GONZALEZ MESA L, RAMOS MORI A, NADAL BECERRA L, et al.. Phenotypic and molecular identification of extended-spectrum beta-lactamase (ESBL) TEM and SHV produced by clinical isolates Escherichia coli and Klebsiella spp. in hospitals [J]. Rev. Cubana Med. Trop., 2007, 59(1):52-58.
|
32 |
BROWN R P, APLIN R T, SCHOFIELD C J, et al.. Mass spectrometric studies on the inhibition of TEM-2 beta-lactamase by clavulanic acid derivatives [J]. J. Antibiot. (Tokyo), 1997, 50(2):184-185.
|
33 |
BROWN R P, APLIN R T, SCHOFIELD C J. Inhibition of TEM-2 beta-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry [J]. Biochemistry, 1996, 35(38):12421-12432.
|
34 |
BRET L, CHANAL C, SIROT D, et al.. Characterization of an inhibitor-resistant enzyme IRT-2 derived from TEM-2 beta-lactamase produced by Proteus mirabilis strains [J]. J. Antimicrob. Chemother., 1996, 38(2):183-191.
|