Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (4): 38-51.DOI: 10.13304/j.nykjdb.2021.0521
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Xixi ZUO1,2(), Yingjie SONG1,2, Xinyan MA2, Yunhui YANG1,2, Yifei WANG1,2, Zeguang GUO2, Xiongzhi ZHU2, Yue LIU1,2(
)
Received:
2021-06-26
Accepted:
2021-11-30
Online:
2022-04-15
Published:
2022-04-19
Contact:
Yue LIU
左茜茜1,2(), 宋英杰1,2, 马心妍2, 杨云卉1,2, 王轶菲1,2, 郭泽光2, 朱雄智2, 刘越1,2(
)
通讯作者:
刘越
作者简介:
左茜茜 E-mail: 609517510@qq.com;
基金资助:
CLC Number:
Xixi ZUO, Yingjie SONG, Xinyan MA, Yunhui YANG, Yifei WANG, Zeguang GUO, Xiongzhi ZHU, Yue LIU. Mining SSR Loci and Analysis the Genetic Diversity of Tartary Buckwheat Based on the Whole Genome Sequence[J]. Journal of Agricultural Science and Technology, 2022, 24(4): 38-51.
左茜茜, 宋英杰, 马心妍, 杨云卉, 王轶菲, 郭泽光, 朱雄智, 刘越. 苦荞全基因组SSR位点挖掘及遗传多样性分析[J]. 中国农业科技导报, 2022, 24(4): 38-51.
采集地点 Sampling site | 样品编号 Sample ID | 来源 Source | 数量 Amount |
---|---|---|---|
四川攀枝花 Panzhihua, Sichuan | XNZY-1 | 中国西南野生生物种质资源库 Germplasm Bank of Wild Species in Southwest China | 3 |
西藏 Tibet | XNZY-2 | ||
河北 Hebei | XNZY-5 | ||
贵州 Guizhou | GZSF-1、GZSF-3、GZSF-4 | 贵州省荞麦工程技术研究中心 Guizhou Province Buckwheat Engineering Technology Research Center | 4 |
湖南 Hunan | GZSF-2 | ||
山西 Shanxi | DTZX-1 | 云南省滇台特色农业产业化工程 研究中心 Yunnan-Taiwan Engineering Research Center for Characteristic Agriculture Industrialization of Yunnan Province | 3 |
云南 Yunnan | DTZX-2 | ||
重庆 Chongqing | DTZX-5 | ||
四川省昭觉县 Zhaojue, Sichuan | ZJJZ-1、ZJJZ-2、ZJLG、ZJSJ、ZJSY-1、ZJSY-2、ZJWQ-1、ZJWQ-2、ZJWQ-3、ZJWZ、ZJXY、EN-G-TU、CHU-G | 本课题组采集 Sampled by this lab | 13 |
四川省美姑县 Meigu, Sichuan | MG-48、MGLL、MGNY-1、MGNY-2、MGTZ、MGYD-1、MGYD-2、MGYS、EN-G-JIE、EN-G-WAZI | 本课题组采集 Sampled by this lab | 10 |
四川省布拖县 Butuo, Sichuan | BT-52、BTAE、BTDM、BTLC、BTLG、BTLJ、BTLK-1、BTLK-2、BTZE | 本课题组采集 Sampled by this lab | 9 |
总计Total | 42 |
Table 1 Origin of 42 samples
采集地点 Sampling site | 样品编号 Sample ID | 来源 Source | 数量 Amount |
---|---|---|---|
四川攀枝花 Panzhihua, Sichuan | XNZY-1 | 中国西南野生生物种质资源库 Germplasm Bank of Wild Species in Southwest China | 3 |
西藏 Tibet | XNZY-2 | ||
河北 Hebei | XNZY-5 | ||
贵州 Guizhou | GZSF-1、GZSF-3、GZSF-4 | 贵州省荞麦工程技术研究中心 Guizhou Province Buckwheat Engineering Technology Research Center | 4 |
湖南 Hunan | GZSF-2 | ||
山西 Shanxi | DTZX-1 | 云南省滇台特色农业产业化工程 研究中心 Yunnan-Taiwan Engineering Research Center for Characteristic Agriculture Industrialization of Yunnan Province | 3 |
云南 Yunnan | DTZX-2 | ||
重庆 Chongqing | DTZX-5 | ||
四川省昭觉县 Zhaojue, Sichuan | ZJJZ-1、ZJJZ-2、ZJLG、ZJSJ、ZJSY-1、ZJSY-2、ZJWQ-1、ZJWQ-2、ZJWQ-3、ZJWZ、ZJXY、EN-G-TU、CHU-G | 本课题组采集 Sampled by this lab | 13 |
四川省美姑县 Meigu, Sichuan | MG-48、MGLL、MGNY-1、MGNY-2、MGTZ、MGYD-1、MGYD-2、MGYS、EN-G-JIE、EN-G-WAZI | 本课题组采集 Sampled by this lab | 10 |
四川省布拖县 Butuo, Sichuan | BT-52、BTAE、BTDM、BTLC、BTLG、BTLJ、BTLK-1、BTLK-2、BTZE | 本课题组采集 Sampled by this lab | 9 |
总计Total | 42 |
重复基元 Repeat motif | Chr.1 | Chr.2 | Chr.3 | Chr.4 | Chr.5 | Chr.6 | Chr.7 | Chr.8 | 总计 Total | 比例 Percentage/% |
---|---|---|---|---|---|---|---|---|---|---|
AT/TA | 5 194 | 4 853 | 4 566 | 4 432 | 4 260 | 4 606 | 4 019 | 3 901 | 35 831 | 69.6 |
CT/GA | 280 | 310 | 254 | 347 | 299 | 278 | 225 | 216 | 2 209 | 4.29 |
AG/TC | 184 | 152 | 158 | 178 | 141 | 133 | 122 | 147 | 1 215 | 2.36 |
AC/TG | 137 | 124 | 99 | 119 | 83 | 111 | 92 | 105 | 870 | 1.69 |
CA/GT | 95 | 94 | 78 | 114 | 83 | 66 | 61 | 81 | 672 | 1.31 |
AAT/TTA | 180 | 171 | 183 | 144 | 160 | 144 | 155 | 144 | 1 281 | 2.49 |
AGA/TCT | 169 | 183 | 104 | 146 | 112 | 133 | 118 | 116 | 1 081 | 2.10 |
ATA/TAT | 174 | 129 | 144 | 104 | 140 | 122 | 104 | 135 | 1 052 | 2.04 |
AAG/TTC | 139 | 120 | 104 | 120 | 100 | 108 | 85 | 85 | 861 | 1.67 |
CTT/GAA | 129 | 99 | 89 | 103 | 101 | 73 | 88 | 100 | 782 | 1.52 |
ATT/TAA | 142 | 93 | 103 | 82 | 105 | 86 | 91 | 76 | 778 | 1.51 |
CAT/GTA | 55 | 48 | 24 | 55 | 41 | 38 | 28 | 41 | 330 | 0.64 |
CAA/GTT | 54 | 33 | 36 | 34 | 36 | 31 | 27 | 30 | 281 | 0.55 |
ACT/TGA | 35 | 39 | 31 | 25 | 34 | 25 | 30 | 36 | 255 | 0.50 |
AAAT/TTTA | 60 | 45 | 0 | 35 | 42 | 39 | 48 | 40 | 309 | 0.60 |
AATA/TTAT | 27 | 23 | 35 | 33 | 20 | 19 | 26 | 20 | 203 | 0.39 |
AAGA/TTCT | 26 | 17 | 17 | 23 | 20 | 30 | 17 | 13 | 163 | 0.32 |
ATAA/TATT | 29 | 19 | 24 | 16 | 19 | 0 | 17 | 25 | 149 | 0.29 |
ATTT/TAAA | 18 | 9 | 22 | 12 | 16 | 7 | 21 | 20 | 125 | 0.24 |
AAAAT/TTTTA | 3 | 9 | 2 | 0 | 3 | 5 | 5 | 3 | 30 | 0.06 |
AGAAG/TCTTC | 0 | 7 | 3 | 3 | 0 | 10 | 6 | 4 | 27 | 0.05 |
AAATA/TTTAT | 7 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 13 | 0.03 |
AAAATA/TTTTAT | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | ≈0.00 |
TCTACC | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 4 | ≈0.00 |
GTTCAG | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 4 | ≈0.00 |
总计Total | 7 139 | 6 578 | 6 077 | 6 126 | 5 817 | 6 066 | 5 389 | 5 341 | 48 527 | — |
Table 2 Occurrence of different SSRs in tartary buckwheat genome sequence
重复基元 Repeat motif | Chr.1 | Chr.2 | Chr.3 | Chr.4 | Chr.5 | Chr.6 | Chr.7 | Chr.8 | 总计 Total | 比例 Percentage/% |
---|---|---|---|---|---|---|---|---|---|---|
AT/TA | 5 194 | 4 853 | 4 566 | 4 432 | 4 260 | 4 606 | 4 019 | 3 901 | 35 831 | 69.6 |
CT/GA | 280 | 310 | 254 | 347 | 299 | 278 | 225 | 216 | 2 209 | 4.29 |
AG/TC | 184 | 152 | 158 | 178 | 141 | 133 | 122 | 147 | 1 215 | 2.36 |
AC/TG | 137 | 124 | 99 | 119 | 83 | 111 | 92 | 105 | 870 | 1.69 |
CA/GT | 95 | 94 | 78 | 114 | 83 | 66 | 61 | 81 | 672 | 1.31 |
AAT/TTA | 180 | 171 | 183 | 144 | 160 | 144 | 155 | 144 | 1 281 | 2.49 |
AGA/TCT | 169 | 183 | 104 | 146 | 112 | 133 | 118 | 116 | 1 081 | 2.10 |
ATA/TAT | 174 | 129 | 144 | 104 | 140 | 122 | 104 | 135 | 1 052 | 2.04 |
AAG/TTC | 139 | 120 | 104 | 120 | 100 | 108 | 85 | 85 | 861 | 1.67 |
CTT/GAA | 129 | 99 | 89 | 103 | 101 | 73 | 88 | 100 | 782 | 1.52 |
ATT/TAA | 142 | 93 | 103 | 82 | 105 | 86 | 91 | 76 | 778 | 1.51 |
CAT/GTA | 55 | 48 | 24 | 55 | 41 | 38 | 28 | 41 | 330 | 0.64 |
CAA/GTT | 54 | 33 | 36 | 34 | 36 | 31 | 27 | 30 | 281 | 0.55 |
ACT/TGA | 35 | 39 | 31 | 25 | 34 | 25 | 30 | 36 | 255 | 0.50 |
AAAT/TTTA | 60 | 45 | 0 | 35 | 42 | 39 | 48 | 40 | 309 | 0.60 |
AATA/TTAT | 27 | 23 | 35 | 33 | 20 | 19 | 26 | 20 | 203 | 0.39 |
AAGA/TTCT | 26 | 17 | 17 | 23 | 20 | 30 | 17 | 13 | 163 | 0.32 |
ATAA/TATT | 29 | 19 | 24 | 16 | 19 | 0 | 17 | 25 | 149 | 0.29 |
ATTT/TAAA | 18 | 9 | 22 | 12 | 16 | 7 | 21 | 20 | 125 | 0.24 |
AAAAT/TTTTA | 3 | 9 | 2 | 0 | 3 | 5 | 5 | 3 | 30 | 0.06 |
AGAAG/TCTTC | 0 | 7 | 3 | 3 | 0 | 10 | 6 | 4 | 27 | 0.05 |
AAATA/TTTAT | 7 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 13 | 0.03 |
AAAATA/TTTTAT | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | ≈0.00 |
TCTACC | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 4 | ≈0.00 |
GTTCAG | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 4 | ≈0.00 |
总计Total | 7 139 | 6 578 | 6 077 | 6 126 | 5 817 | 6 066 | 5 389 | 5 341 | 48 527 | — |
重复类型 Repeat type | Chr.1 | Chr.2 | Chr.3 | Chr.4 | Chr.5 | Chr.6 | Chr.7 | Chr.8 | |
---|---|---|---|---|---|---|---|---|---|
四核苷酸重复 Tetranucleotide | 基元类型 Motif type | 31 | 28 | 28 | 34 | 26 | 31 | 29 | 26 |
特异类型 Specific motif type | 4 | 3 | 4 | 7 | 6 | 4 | 5 | 2 | |
五核苷酸重复 Pentanucleotide | 基元类型 Motif type | 38 | 38 | 34 | 28 | 33 | 30 | 28 | 29 |
特异类型 Specific motif type | 9 | 14 | 13 | 9 | 8 | 9 | 9 | 7 | |
六核苷酸重复 Hexanucleotide | 基元类型 Motif type | 23 | 24 | 18 | 18 | 14 | 19 | 18 | 10 |
特异类型 Specific motif type | 17 | 17 | 11 | 14 | 9 | 13 | 14 | 9 |
Table 3 Distribution of specific species of Tartary buckwheat genomic SSR
重复类型 Repeat type | Chr.1 | Chr.2 | Chr.3 | Chr.4 | Chr.5 | Chr.6 | Chr.7 | Chr.8 | |
---|---|---|---|---|---|---|---|---|---|
四核苷酸重复 Tetranucleotide | 基元类型 Motif type | 31 | 28 | 28 | 34 | 26 | 31 | 29 | 26 |
特异类型 Specific motif type | 4 | 3 | 4 | 7 | 6 | 4 | 5 | 2 | |
五核苷酸重复 Pentanucleotide | 基元类型 Motif type | 38 | 38 | 34 | 28 | 33 | 30 | 28 | 29 |
特异类型 Specific motif type | 9 | 14 | 13 | 9 | 8 | 9 | 9 | 7 | |
六核苷酸重复 Hexanucleotide | 基元类型 Motif type | 23 | 24 | 18 | 18 | 14 | 19 | 18 | 10 |
特异类型 Specific motif type | 17 | 17 | 11 | 14 | 9 | 13 | 14 | 9 |
SSR引物类型 SSR primer type | 总引物数量 Total primers number | 有效引物数量 Effective primers number | 多态性引物数量 Polymorphic primers number | 基序长度 Sequence length /bp |
---|---|---|---|---|
复合型 Compound | 3 | 3 | 2 | 55、66 |
二核苷酸 Dinucleotide | 119 | 86 | 11 | 14~66 |
三核苷酸 Trinucleotide | 26 | 23 | 4 | 15、27、48、63 |
四核苷酸Tetranucleotide | 7 | 7 | — | — |
五核苷酸Pentanucleotide | 1 | 1 | — | — |
总计Total | 156 | 120 | — | — |
Table 4 Statistics of different SSR primer types
SSR引物类型 SSR primer type | 总引物数量 Total primers number | 有效引物数量 Effective primers number | 多态性引物数量 Polymorphic primers number | 基序长度 Sequence length /bp |
---|---|---|---|---|
复合型 Compound | 3 | 3 | 2 | 55、66 |
二核苷酸 Dinucleotide | 119 | 86 | 11 | 14~66 |
三核苷酸 Trinucleotide | 26 | 23 | 4 | 15、27、48、63 |
四核苷酸Tetranucleotide | 7 | 7 | — | — |
五核苷酸Pentanucleotide | 1 | 1 | — | — |
总计Total | 156 | 120 | — | — |
引物Primer | 序列Sequence(5’-3’) | Na | Ne | I | Ho | He | PIC |
---|---|---|---|---|---|---|---|
P1 | F:TGATTATATTCAATTGACCGATCTT R:CTGTGATTGTTTTCGTCAGAGG | 9 | 3.773 | 1.684 | 0.905 | 0.095 | 0.708 |
P2 | F:TTCTTGGAATGCACCAATGA R:GCAGTTTTGGGGCAACTTTA | 3 | 1.243 | 0.397 | 0.976 | 0.024 | 0.183 |
P5 | F:TTTGCATTGGGATCTCCTCT R:CCTCCTGCATTTACCCAAAA | 6 | 3.500 | 1.382 | 0.048 | 0.952 | 0.664 |
P24 | F:GCCAGCTTGTCCGTGTTTAC R:CCAGACCAGACCCACTTGTT | 8 | 1.823 | 1.056 | 1.000 | 0.000 | 0.434 |
P40 | F:GGCAACCAATCCCTCTACAA R:CCATTCTCAAGCCACCAAAT | 9 | 4.698 | 1.772 | 0.952 | 0.048 | 0.759 |
P41 | F:GCCTTCTTCACGTGTCCTGT R:GCCCAGCCCTAATATTCGAT | 11 | 4.813 | 1.939 | 0.976 | 0.024 | 0.774 |
P72 | F:TTTGGAAGTTGGTTCGAAGG R:TCAGCATTAAGGTCAGCACG | 5 | 1.377 | 0.627 | 1.000 | 0.000 | 0.264 |
P79 | F:TTTTTATCAGAGGCGCACAA R:AGTTGGCAGGGATTTTCCTT | 6 | 2.365 | 1.066 | 0.810 | 0.191 | 0.502 |
P82 | F:GTCGCGGAGGTTATCCACTA R:TGGACCACAGTCACAGGCTA | 6 | 2.852 | 1.261 | 0.929 | 0.071 | 0.587 |
P89 | F:GCGCGATTTACTCCTTCATA R:TCCCCTCAATCTTGTATTTTCA | 2 | 1.214 | 0.320 | 0.951 | 0.049 | 0.161 |
P90 | F:CGATCCTTCTCGCGTTTTAC R:ATGACGTATCTCCCGACGTG | 14 | 4.246 | 2.004 | 0.905 | 0.095 | 0.751 |
P91 | F:ATTCCATTGTCGAGCAAACC R:GTGCAGTCCCGCGTATTTAT | 13 | 5.188 | 2.101 | 0.905 | 0.095 | 0.794 |
P102 | F:CTGGAAAGAAGCAAAGGCTG R:ATGCAAACATTGCCCACATA | 3 | 1.519 | 0.635 | 0.976 | 0.024 | 0.313 |
P115 | F:TCATGAGGCAGATGAAGGTG R:CGACAACACAAATCAACGAAA | 6 | 2.495 | 1.211 | 0.881 | 0.119 | 0.557 |
P126 | F:GCAAAATCTTTTAACAACATTAAGGA R:TTTGCTAGAAAACATTGCACTTTC | 4 | 1.709 | 0.824 | 0.929 | 0.071 | 0.389 |
P128 | F:CGGTCATCATCGAAGTCAAA R:CTGGACCAACACTCCTGGAT | 5 | 1.279 | 0.495 | 0.952 | 0.048 | 0.209 |
P132 | F:CTTGCTTAATCATGGCGGAT R:CAGCCCTCCATTCTTCTCTG | 4 | 2.114 | 0.859 | 0.881 | 0.119 | 0.431 |
总计Total | 114 | — | — | — | — | — | |
平均Average | 6.706 | 2.718 | 1.155 | 0.881 | 0.119 | 0.499 |
Table 5 Genetic diversity information of 17 pairs of primers
引物Primer | 序列Sequence(5’-3’) | Na | Ne | I | Ho | He | PIC |
---|---|---|---|---|---|---|---|
P1 | F:TGATTATATTCAATTGACCGATCTT R:CTGTGATTGTTTTCGTCAGAGG | 9 | 3.773 | 1.684 | 0.905 | 0.095 | 0.708 |
P2 | F:TTCTTGGAATGCACCAATGA R:GCAGTTTTGGGGCAACTTTA | 3 | 1.243 | 0.397 | 0.976 | 0.024 | 0.183 |
P5 | F:TTTGCATTGGGATCTCCTCT R:CCTCCTGCATTTACCCAAAA | 6 | 3.500 | 1.382 | 0.048 | 0.952 | 0.664 |
P24 | F:GCCAGCTTGTCCGTGTTTAC R:CCAGACCAGACCCACTTGTT | 8 | 1.823 | 1.056 | 1.000 | 0.000 | 0.434 |
P40 | F:GGCAACCAATCCCTCTACAA R:CCATTCTCAAGCCACCAAAT | 9 | 4.698 | 1.772 | 0.952 | 0.048 | 0.759 |
P41 | F:GCCTTCTTCACGTGTCCTGT R:GCCCAGCCCTAATATTCGAT | 11 | 4.813 | 1.939 | 0.976 | 0.024 | 0.774 |
P72 | F:TTTGGAAGTTGGTTCGAAGG R:TCAGCATTAAGGTCAGCACG | 5 | 1.377 | 0.627 | 1.000 | 0.000 | 0.264 |
P79 | F:TTTTTATCAGAGGCGCACAA R:AGTTGGCAGGGATTTTCCTT | 6 | 2.365 | 1.066 | 0.810 | 0.191 | 0.502 |
P82 | F:GTCGCGGAGGTTATCCACTA R:TGGACCACAGTCACAGGCTA | 6 | 2.852 | 1.261 | 0.929 | 0.071 | 0.587 |
P89 | F:GCGCGATTTACTCCTTCATA R:TCCCCTCAATCTTGTATTTTCA | 2 | 1.214 | 0.320 | 0.951 | 0.049 | 0.161 |
P90 | F:CGATCCTTCTCGCGTTTTAC R:ATGACGTATCTCCCGACGTG | 14 | 4.246 | 2.004 | 0.905 | 0.095 | 0.751 |
P91 | F:ATTCCATTGTCGAGCAAACC R:GTGCAGTCCCGCGTATTTAT | 13 | 5.188 | 2.101 | 0.905 | 0.095 | 0.794 |
P102 | F:CTGGAAAGAAGCAAAGGCTG R:ATGCAAACATTGCCCACATA | 3 | 1.519 | 0.635 | 0.976 | 0.024 | 0.313 |
P115 | F:TCATGAGGCAGATGAAGGTG R:CGACAACACAAATCAACGAAA | 6 | 2.495 | 1.211 | 0.881 | 0.119 | 0.557 |
P126 | F:GCAAAATCTTTTAACAACATTAAGGA R:TTTGCTAGAAAACATTGCACTTTC | 4 | 1.709 | 0.824 | 0.929 | 0.071 | 0.389 |
P128 | F:CGGTCATCATCGAAGTCAAA R:CTGGACCAACACTCCTGGAT | 5 | 1.279 | 0.495 | 0.952 | 0.048 | 0.209 |
P132 | F:CTTGCTTAATCATGGCGGAT R:CAGCCCTCCATTCTTCTCTG | 4 | 2.114 | 0.859 | 0.881 | 0.119 | 0.431 |
总计Total | 114 | — | — | — | — | — | |
平均Average | 6.706 | 2.718 | 1.155 | 0.881 | 0.119 | 0.499 |
群体 Group | Na | Ne | I | Ho | He | Nei |
---|---|---|---|---|---|---|
B群体(布拖县) Group B (Butuo County) | 2.647 | 1.563 | 0.520 | 0.830 | 0.170 | 0.278 |
C群体(CHU-GE) Group C(CHU-GE) | 1.063 | 1.063 | 0.043 | 0.938 | 0.063 | 0.031 |
D群体(云南滇台中心) Group D (Yunnan-Taiwan Engineering Research Center) | 2.000 | 1.892 | 0.580 | 0.941 | 0.059 | 0.376 |
E群体(EN-G系列黄苦荞) Group E (EN-G series yellow Tartary buckwheat) | 2.235 | 1.992 | 0.642 | 0.824 | 0.177 | 0.395 |
G群体(贵州师范大学) Group G (Guizhou Normal University) | 2.294 | 2.151 | 0.664 | 0.927 | 0.074 | 0.401 |
M群体(美姑县) Group M (Meigu County) | 3.353 | 2.406 | 0.899 | 0.890 | 0.110 | 0.484 |
X群体(中国西南野生生物种质资源库) Group X (Germplasm Bank of Wild Species in Southwest China) | 2.529 | 2.308 | 0.803 | 0.824 | 0.177 | 0.497 |
Z群体(昭觉县) Group Z (Zhaojue County) | 3.471 | 2.272 | 0.887 | 0.909 | 0.091 | 0.475 |
平均值Average | 2.449 | 1.956 | 0.630 | 0.885 | 0.115 | 0.367 |
Table 6 Statistics of genetic analysis of different populations
群体 Group | Na | Ne | I | Ho | He | Nei |
---|---|---|---|---|---|---|
B群体(布拖县) Group B (Butuo County) | 2.647 | 1.563 | 0.520 | 0.830 | 0.170 | 0.278 |
C群体(CHU-GE) Group C(CHU-GE) | 1.063 | 1.063 | 0.043 | 0.938 | 0.063 | 0.031 |
D群体(云南滇台中心) Group D (Yunnan-Taiwan Engineering Research Center) | 2.000 | 1.892 | 0.580 | 0.941 | 0.059 | 0.376 |
E群体(EN-G系列黄苦荞) Group E (EN-G series yellow Tartary buckwheat) | 2.235 | 1.992 | 0.642 | 0.824 | 0.177 | 0.395 |
G群体(贵州师范大学) Group G (Guizhou Normal University) | 2.294 | 2.151 | 0.664 | 0.927 | 0.074 | 0.401 |
M群体(美姑县) Group M (Meigu County) | 3.353 | 2.406 | 0.899 | 0.890 | 0.110 | 0.484 |
X群体(中国西南野生生物种质资源库) Group X (Germplasm Bank of Wild Species in Southwest China) | 2.529 | 2.308 | 0.803 | 0.824 | 0.177 | 0.497 |
Z群体(昭觉县) Group Z (Zhaojue County) | 3.471 | 2.272 | 0.887 | 0.909 | 0.091 | 0.475 |
平均值Average | 2.449 | 1.956 | 0.630 | 0.885 | 0.115 | 0.367 |
群体 Group | C | D | E | G | M | X | Z |
---|---|---|---|---|---|---|---|
B | 0.340 3 | 0.807 2 | 0.746 8 | 0.790 4 | 0.908 2 | 0.386 7 | 0.791 5 |
C | 0.474 3 | 0.528 2 | 0.412 8 | 0.513 | 0.303 9 | 0.576 5 | |
D | 0.816 6 | 0.787 5 | 0.862 9 | 0.454 8 | 0.832 2 | ||
E | 0.726 8 | 0.853 7 | 0.453 2 | 0.864 6 | |||
G | 0.828 9 | 0.546 7 | 0.783 5 | ||||
M | 0.462 2 | 0.897 8 | |||||
X | 0.487 3 |
Table 7 Genetic distance of 8 populations
群体 Group | C | D | E | G | M | X | Z |
---|---|---|---|---|---|---|---|
B | 0.340 3 | 0.807 2 | 0.746 8 | 0.790 4 | 0.908 2 | 0.386 7 | 0.791 5 |
C | 0.474 3 | 0.528 2 | 0.412 8 | 0.513 | 0.303 9 | 0.576 5 | |
D | 0.816 6 | 0.787 5 | 0.862 9 | 0.454 8 | 0.832 2 | ||
E | 0.726 8 | 0.853 7 | 0.453 2 | 0.864 6 | |||
G | 0.828 9 | 0.546 7 | 0.783 5 | ||||
M | 0.462 2 | 0.897 8 | |||||
X | 0.487 3 |
1 | 林汝法.中国荞麦[M].北京:中国农业出版社, 1994:1-251. |
2 | CHEN Q F. A study of resource of Fagopyrum (Polygonaceae) native to China [J]. Bot. J. Linn. Soc., 1999, 130(1):53-64. |
3 | 赵钢,唐宇,王安虎.发展中国的苦荞生产[J].作物杂志, 2002, 18(4):11-12. |
4 | 屈洋,周瑜,王钊,等.苦荞产区种质资源遗传多样性和遗传结构分析[J].中国农业科学, 2016, 49(11):2049-2062. |
QU Y, ZHOU Y, WANG Z, et al... Analysis of genetic diversity and structure of tartary buckwheat resources from production regions [J]. Sci. Agric. Sin., 2016, 49(11):2049-2062. | |
5 | 杨明君,郭忠贤,杨媛,等.我国荞麦种植简史[J].内蒙古农业科技, 2007, (5):85-86. |
6 | 范昱.中国苦荞种质资源性状评价和荞麦属植物亲缘关系分析[D].成都:成都大学, 2019. |
FAN Y. Evaluation of tartary buckwheat germplasm resources in China and genetic relationship analysis of Fagopyrum Mill genus plants [D]. Chengdu: Chengdu University, 2019. | |
7 | 吴韬,肖丽,李伟丽.苦荞的营养与功能成分研究进展[J].西华大学学报(自然科学版), 2021, 40(2):91-109. |
WU T, XIAO L, LI W L. Research progress of chemicals in tartary buckwheat [J]. J. Xihua Univ.(Nat. Sci.), 2021, 40(2):91-109. | |
8 | 王亦君,冯舒涵,程锦堂,等.大黄蒽醌类化学成分和药理作用研究进展[J].中国实验方剂学杂志, 2018, 24(13):227-234. |
WANG Y J, FENG S H, CHENG J T, et al.. Research progresson chemical constituents and pharmacological action of anthraquinone in Rhei Radix et Rhizoma [J]. Chin. J. Exp. Traditional Medical Formulae, 2018, 24(13):227-234. | |
9 | WU X Q, GE X S, LIANG S X, et al.. A novel selective accelerated solvent extraction for effective separation and rapid simultaneous determination of six anthraquinones in tartary buckwheat and its products by UPLC-DAD [J]. Food Anal. Methods, 2015, 8(5):1124-1132. |
10 | 祝寅淏,王帅,李瑶,等.黄酮类化合物药理作用的研究进展[J].吉林医药学院学报, 2018, 39(3):219-223. |
11 | ZHANG L, LI X, MA B, et al.. The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance [J]. Mol. Plant, 2017, 10(9):1224-1237. |
12 | DING S, WANG S, HE K, et al.. Large-scale analysis reveals that the genome features of simple sequence repeats are generally conserved at the family level in insects [J]. BMC Genomics, 2017, 18(1):848. |
13 | 马名川,刘龙龙,刘璋,等.苦荞全基因组 SSR 位点特征分析与分子标记开发[J].作物杂志, 2021(1):38-46. |
MA M C, LIU L L, LIU Z, et al... Analysis of SSR lci in whole genome and development of molecular markers in tartary buckwheat [J]. Crops, 2021(1):38-46. | |
14 | 杜伟,王东航,侯思宇,等.基于苦荞全长转录组测序开发SSR标记及遗传多样性分析[J]. 植物生理学报, 2020, 56 (7):1432-1444. |
DU W, WANG D H, HOU S Y, et al... Development of SSR markers based on full-length transcriptome sequencing and its application for genetic diversity analysis in Fagopyrum tataricum [J]. Plant Physiol. J., 2020, 56(7):1432-1444. | |
15 | 贺润丽,尹桂芳,李春花,等.苦荞种皮转录组SSR位点信息分析及其分子标记的开发[J]. 分子植物育种, 2020, 18(18):213-220. |
HE R L, YIN G F, LI C H, et al... Development of molecular markers and SSR loci information analysis of transcriptome in tartary buckwheat seed coat [J]. Mol. Plant Breeding, 2020, 18(18):213-220. | |
16 | 李春花,陈蕤坤,王艳青,等.利用SSR标记构建云南苦荞种质资源分子身份证[J].分子植物育种, 2019, 17(5):1575-1582. |
LI C H, CHEN R K, WANG Y Q, et al.. Establishment of the molecular ID for Yunnan tartary buckwheat germplasm resources based on SSR marker [J]. Mol. Plant Breeding,2019, 17(5):1575-1582. | |
17 | 黎瑞源,潘凡,陈庆富,等.苦荞转录组EST-SSR发掘及多态性分析[J].中国农业科技导报, 2015, 17(4):42-52. |
LI R Y, PAN F, CHEN Q F, et al... Excavation and polymorphism analysis of EST-SSR from transcriptome of tartary buckwheat [J]. J. Agric. Sci. Technol., 2015, 17(4):42-52. | |
18 | 韩瑞霞,张宗文,吴斌,等.苦荞SSR引物开发及其在遗传多样性分析中的应用[J].植物遗传资源学报, 2012, 13(5):759-764. |
HAN R X, ZHANG Z W, WU B, et al.. Development of SSR markers and application in analysis of genetic diversity in tartary buckwheat(Fagopyrum tataricum)[J]. J. Plant Genetic Resour., 2012, 13(5):759-764. | |
19 | 刘越,范增华,孙洪波,等.裂叶牵牛获得表达序列标签资源的简单序列重复信息分析[J]. 中国药学杂志, 2011, 46(23):1790-1794. |
LIU Y, FAN Z H, SUN H B, et al.. Analysis of SSR information in EST resource of Pharbitis nil [J]. Chin. Pharm. J., 2011, 46(23):1790-1794. | |
20 | TEMNYKH S, PARK W D, AYRES N, et al... Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.) [J]. Theor. Appl. Genet., 2000, 100(5):697-712. |
21 | ZHANG P, DREISIGACKER S, MELCHINGER A E, et al.. Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers [J]. Mol. Breeding, 2005, 15(1):1-10. |
22 | HOU S Y, SUN Z X, HU B L, et al.. Genetic diversity of buckwheat cultivars (Fagopyrum tartaricum Gaertn.) assessed with SSR markers developed from genome survey sequences [J]. Plant Mol. Biol. Rep., 2016, 34:233-241. |
23 | FANG X M, HUANG K H, NIE J, et al.. Genome-wide mining, characterization, and development of microsatellite markers in Tartary buckwheat (Fagopyrum tataricum Garetn.) [J]. Euphytica, 2019, 215:183-193. |
24 | VARSHNEY R K, GRANER A, SORRELLS M E. Genic microsatellite markers in plants:features and applications [J]. Trends Biotechnol., 2005, 23(1):48-55. |
25 | ZHAO H S, YANG L, PENG Z H, et al.. Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys [J/OL]. Sci. Rep., 2015, 5:8018 [2022-01-09].. |
26 | 李水根,关媛,李秀芬,等.观赏樱属植物基因组SSR分子标记开发及鉴定[J/OL].分子植物育种,2021 [2022-01-09].. |
LI S G, GUAN Y, LI X F, et al.. Development and characterization of genome-SSR markers in flowering cherries [J/OL]. Mol. Plant Breeding, 2021 [2022-01-09]. . | |
27 | 张曼,田娟,孙墨可,等.基于向日葵全基因组序列的SSR标记开发及鉴定[J/OL].分子植物育种, 2021 [2022-01-09]. . |
ZHANG M, TIAN J, SUN M K, et al.. Development of SSR molecular markers based on whole genome of Sunflower [J/OL]. Mol. Plant Breeding, 2021 [2022-01-09]. . | |
28 | 何志凯,耿平美惠,张勇洪,等.药用植物益智的基因组调研及SSR分子标记开发[J/OL].分子植物育种, 2021 [2022-01-09]. . |
HE Z K, GENG P M H, ZHANG Y H, et al.. Genome survey and SSR molecular marker development of medicinal plant Alpinia oxyphylla Miq [J/OL]. Mol. Plant Breeding, 2021 [2022-01-09]. . | |
29 | 周文才,唐山,何小三,等.光皮树基因组SSR特征分析[J/OL].分子植物育种,2021 [2022-01-09].. |
ZHOU W C, TANG S, HE X S, et al.. Analysis of SSR Characteristics in Genome of Swida wilsoniana [J/OL]. Mol. Plant Breeding,2021 [2022-01-09]. . | |
30 | 张淑文,梁森苗,郑锡良,等. 杨梅基因组SSR引物的开发与应用[J].园艺学报, 2019, 46(1):149-156. |
ZHANG S W, LIANG S M, ZHENG X L, et al.. Development of genomic SSR and application in Chinese bayberry [J]. Acta Hortic. Sin., 2019, 46(1):149-156. | |
31 | 原志敏.玉米全基因组SSRs分子标记开发与特征分析[D].四川雅安:四川农业大学, 2013. |
YUAN Z M. Development and characterization of SSR markers providing genome-wide coverage and High Resolution in Maize [D]. Sichuan Yaan: Sichuan Agricultural University, 2013. | |
32 | 石桃雄,黎瑞源,郭菊卉,等.基于普通荞麦种子表达序列标签微卫星标记的开发[J].贵州农业科学, 2014, 42(3):1-5. |
SHI T X, LI R Y, GUO J H, et al.. Development of SSR molecular markers based on expressed sequence tags from seeds of Fagopyrum esculentum [J]. Guizhou Agric. Sci., 2014, 42(3):1-5. | |
33 | 蒋爽,张学英,安海山,等.枇杷全基因组SSR标记开发及其多态性研究[J].园艺学报,2021(5):170-179. |
JIANG S, ZHANG X Y, AN H S, et al.. A study on the development and analysis of polymorphism of SSR markers in the whole genome of Loquat [J]. Acta Hortic, Sinica, 2021(5):170-179. | |
34 | 乔舒婷,董文其,胡齐赞,等.基于丝瓜全基因组序列SSR分子标记开发[J/OL].分子植物育种,2021 [2022-01-09]. . |
QIAO S T, DONG W Q, HU Q Z, et al.. Development of SSR molecular markers based on whole genome sequences of sponge gourd [J/OL]. Mol. Plant Breeding, 2021 [2022-01-09]. . | |
35 | 詹海仙,王颖莉,杜晨晖,等.基于甘草全基因组序列的SSR分子标记开发[J].分子植物育种, 2020, 18(18):221-228. |
ZHAN H X, WANG Y L, DU C H, et al.. SSR molecular markers development based on whole genome sequences in Glycyrrhiza uralensis Fisch [J]. Mol. Plant Breeding, 2020, 18(18):221-228. | |
36 | 刘松卫,卢迎春,宋婉玲,等.基于灯盏花全基因组SSR位点分析及多态性引物开发[J].分子植物育种, 2018, 16(12):4003-4009. |
LIU S W, LU Y C, SONG W L, et al.. SSR loci analysis based on Erigeron breviscapus genome and polymorphism primers development [J]. Mol. Plant Breeding, 2018, 16(12):4003-4009. | |
37 | 洪文娟,郝兆祥,刘康佳,等.基于石榴全基因组序列的SSR标记开发及鉴定[J].北京林业大学学报, 2019, 41(8):38-47. |
HONG W J, HAO Z X, LIU K J, et al.. Development and identification of SSR molecular markers based on whole genomic sequences of Punica granatum [J]. J. Beijing Forestry Univ.,2019, 41(8):38-47. | |
38 | SENTHILKUMARAN R, BISHT I S, BHAT K V, et al.. Diversity in buckwheat (Fagopyrum spp.) landrace populations from north-western Indian Himalayas [J]. Genetic Resour. Crop Evol., 2008, 55(2):287-302. |
39 | BOTSTEIN D, WHITE R L, SKOLNICK M, et al.. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. Am. J. Human Genetics, 1980, 32:314-331. |
40 | 高帆,张宗文,吴斌.中国苦荞SSR分子标记体系构建及其在遗传多样性分析中的应用[J]. 中国农业科学, 2012, 45(6):1042-1053. |
GAO F, ZHANG Z W, WU B. Construction and application of SSR molecular markers system for genetic diversity analysis of Chinese tartary buckwheat germplasm resources [J]. Sci. Agric. Sin., 2012, 45(6):1042-1053. | |
41 | 杨学文,丁素荣,胡陶,等.104份苦荞种质的遗传多样性分析[J].作物杂志, 2013 (6):13-18. |
YANG X W, DING S R, HU T, et al.. Genetic diversity of 104 tartary buckwheat accessions [J]. Crops, 2013 (6):13-18. | |
42 | 张久盘,常克勤,杨崇庆,等.基于ITS和RLKs序列的苦荞种质资源遗传多样性分析[J].南方农业, 2020, 14(3):157-160. |
43 | SONG Y J, FANG Q, JARVIS D, et al.. Network analysis of seed flow, a traditional method for conserving tartary buckwheat (Fagopyrum tataricum) landraces in Liangshan, Southwest China [J/OL]. Sustainability, 2019, 11(16):4263 [2021-01-09]. . |
[1] | YU Haitian, LYU Meiyuan, WAN Shuwei, YANG Feng, HU Chaoqin, YANG Xin, ZHANG Xiaoyan, WANG Yubao, HE Chunhua, LIN Deming, WANG Liping. Genetic Diversity Analysis of Indian Chickpea (Cicer arietinum L.) Resources and Screening of Excellent Germplasm [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 54-64. |
[2] | LI Danyang, SUN Lingwei, WU Caifeng, ZHANG Shushan, ZHANG Defu, DAI Jianjun. SSR Genetic Diversity Analysis of Yangtze River Delta White Goats from Conservation Populations [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 74-81. |
[3] | WANG Xiangdong1, WANG Yongcun1, MA Yanzhi2*, SONG Yushuang2,3, FU Lijun1, LI Jiayao2. Application of ISSR in Genetic Diversity Analysis of Zingiber officinale Rosc.#br# [J]. Journal of Agricultural Science and Technology, 2018, 20(7): 42-47. |
[4] | GAN Min1, LI Jinhe2, LI Jinchang3, SHANG Xunwu2, WANG Huajun2, MA Xiaole2, MENG Yaxiong2, WANG Juncheng2, LI Baochun1*. Analysis of Germplasm Agronomic Traits and Molecular Cytogenetics on Wheat-triticale Hybrids Resistant to Stripe Rust [J]. Journal of Agricultural Science and Technology, 2017, 19(6): 29-38. |
[5] | WANG Jin, LI Yu-rong*, ZHANG Jia-nan, CHENG Zeng-shu, CHEN Si-long, SONG Ya-hui,. Identification of Drought Resistance in Peanut (Arachis hypogaea L.) Main Cultivar in China and Analysis of its Genetic Diversity [J]. , 2015, 17(1): 57-64. |
[6] | ZHANG San-yan1,2, MA Rui2, SHI Peng-jun2, HUANG Huo-qing2, XU Bo1*. Preliminary Studies on Genetic Diversity of L-arabinose Isomerase in Sheep Rumen Bacteria [J]. , 2015, 17(1): 95-101. |
[7] | LI Peng-fei, HUO Xiu-ai, CHENG Yong-qiang, DAI Liang, YANG Bing-yan, DUAN Hui-ju. Assessment of Genetic Diversity in Watermelon Based on SRAP Analysis [J]. , 2013, 15(2): 89-96. |
[8] | LI Xu-juan1, CHEN Yang-ling1, WANG Hai-bo1,2, GONG Ming1, ZOU Zhu-rong1*. Progress on Ligation-independent PCR-mediated Approaches for Genomic Walking [J]. , 2013, 15(2): 193-199. |
[9] | LIU Xin*, HU Xiao-ming*, BAI Chun-ling, CHENG Lei, GAO Yu, LIU Yang, LI Guang-pe. Effect of Cytochalasin B on Microtubules, Microfilaments and Chromosomes during in Vitro Maturation of Bovine Oocytes [J]. , 2011, 13(6): 54-60. |
[10] | WANG Hong-fei1, LI Hong-qi2, CONG Hua1, ZHANG Yan-feng1, XIAO Jing1, SONG Yu1, Y. Genetic Diversity of Wheat Landraces from Xinjiang Region using SSR Markers [J]. , 2010, 12(6): 98-104. |
[11] | ZHANG Yun-feng1, HUANG Guang-he1, FAN Ying-hu1, TAN Xue-lin2. Research on Genetic Diversity of Common Bean Local Germplasm in Nujinag Area of Yunnan [J]. , 2009, 11(S2): 70-73. |
[12] |
CAI Ping1, WAN Tao2, ZHANG Hong-bo2, YI Wei-dong2, LI Fang-zhen2, MENG Xian-guo2.
RAPD Analysis on Genetic Diversity of Picea mongolica (H.Q.Wu.)W.D.Xu and its Close Relative Species P. koraiensis Nakai and P. meyeri Rehd. et Wils [J]. , 2009, 11(6): 102-110. |
[13] | WANG Jin-yan, PAN Li-juan, YANG Qin-li, YU Shan-lin. Genetic Diversity of Peanut Cultivars in Northern China [J]. , 2009, 11(6): 43-49. |
[14] | ZHENG Xiao-mei, WU Ning-feng. Biological Function of DNA Methylation [J]. , 2009, 11(1): 33-39. |
[15] | WANG Wan-qun1|A-la-tan-fu1|2|ZHAN Li-ran1|3|SHI Yi-pin1|ZHANG Ke-cheng1. Preparation of HMW DNA for Streptomyces albulus var. wuyiensis and Determination of the Optimum Conditions for Restriction Enzyme Digestion [J]. , 2008, 10(S1): 116-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||