Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (6): 225-233.DOI: 10.13304/j.nykjdb.2021.0842
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Lei JIANG(), Fucang QIN(
), Long LI, Lu WANG, Jinyang ZHAO
Received:
2021-09-28
Accepted:
2022-01-18
Online:
2023-06-01
Published:
2023-07-28
Contact:
Fucang QIN
通讯作者:
秦富仓
作者简介:
江磊 E-mail:jianglein@126.com;
基金资助:
CLC Number:
Lei JIANG, Fucang QIN, Long LI, Lu WANG, Jinyang ZHAO. Fractal Dimension of Soil Volume of Plantation at Shixiakou Reservoir and Its Relationship with Infiltration[J]. Journal of Agricultural Science and Technology, 2023, 25(6): 225-233.
江磊, 秦富仓, 李龙, 王露, 赵金洋. 石峡口水库人工林土壤体积分形维数及其与入渗的关系[J]. 中国农业科技导报, 2023, 25(6): 225-233.
人工林类型 Plantation type | 林龄 Age/a | 郁闭度 Canopy density | 平均树高 Average height/m | 平均胸径 Average diameter at breast height/cm | 密度/ (棵·hm-2) Density/(tree·hm-2) | 海拔 Altitude/m | 枯落物平均厚度Average thickness of dead litter/cm |
---|---|---|---|---|---|---|---|
油松 Pinus tabuliformis | 14 | 0.75 | 5.2 | 14 | 900 | 1 465.6 | 1.5 |
落叶松 Larix gmelinii | 13 | 0.72 | 6.1 | 15 | 800 | 1 472.2 | 1.2 |
柠条 Caragana korshinskii | 13 | 0.78 | 2.0 | 950 | 1 448.4 | 0.5 | |
沙棘 Hippophae rhamnoides | |||||||
草地 Grassland | 1 455.5 |
Table 1 Sample plot overview
人工林类型 Plantation type | 林龄 Age/a | 郁闭度 Canopy density | 平均树高 Average height/m | 平均胸径 Average diameter at breast height/cm | 密度/ (棵·hm-2) Density/(tree·hm-2) | 海拔 Altitude/m | 枯落物平均厚度Average thickness of dead litter/cm |
---|---|---|---|---|---|---|---|
油松 Pinus tabuliformis | 14 | 0.75 | 5.2 | 14 | 900 | 1 465.6 | 1.5 |
落叶松 Larix gmelinii | 13 | 0.72 | 6.1 | 15 | 800 | 1 472.2 | 1.2 |
柠条 Caragana korshinskii | 13 | 0.78 | 2.0 | 950 | 1 448.4 | 0.5 | |
沙棘 Hippophae rhamnoides | |||||||
草地 Grassland | 1 455.5 |
人工林类型 Plantation type | 土壤容重 Soil bulk density/ (g·cm-3) | 土壤孔隙度 Soil porosity/% | 自然含水率 Moisture content/% | 有效氮 Available nitrogen/(mg·kg-1) | 速效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) | 有机质 Organic matter/(g·kg-1) |
---|---|---|---|---|---|---|---|
油松 Pinus tabuliformis | 1.28±0.02 c | 47.14±2.23 a | 5.90±0.30 a | 60±28 b | 4.25±0.20 a | 97±9 a | 6.60±1.23 b |
落叶松 Larix gmelinii | 1.27±0.02 c | 45.12±2.08 a | 5.10±0.40 a | 389±18 a | 3.01±0.18 b | 114±12 a | 14.51±2.58 a |
柠条×沙棘Caragana korshinskii ×Hippophae rhamnoides | 1.35±0.01 b | 42.33±2.11 ab | 5.60±0.50 a | 367±31 a | 1.62±0.14 c | 108±11 a | 7.36±1.89 b |
草地 Grassland | 1.40±0.02 a | 37.04±1.77 c | 4.40±0.20 b | 48±15 b | 1.36±0.21 c | 71±13 b | 3.10±1.12 c |
Table 2 Physical and chemical properties of top soil
人工林类型 Plantation type | 土壤容重 Soil bulk density/ (g·cm-3) | 土壤孔隙度 Soil porosity/% | 自然含水率 Moisture content/% | 有效氮 Available nitrogen/(mg·kg-1) | 速效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) | 有机质 Organic matter/(g·kg-1) |
---|---|---|---|---|---|---|---|
油松 Pinus tabuliformis | 1.28±0.02 c | 47.14±2.23 a | 5.90±0.30 a | 60±28 b | 4.25±0.20 a | 97±9 a | 6.60±1.23 b |
落叶松 Larix gmelinii | 1.27±0.02 c | 45.12±2.08 a | 5.10±0.40 a | 389±18 a | 3.01±0.18 b | 114±12 a | 14.51±2.58 a |
柠条×沙棘Caragana korshinskii ×Hippophae rhamnoides | 1.35±0.01 b | 42.33±2.11 ab | 5.60±0.50 a | 367±31 a | 1.62±0.14 c | 108±11 a | 7.36±1.89 b |
草地 Grassland | 1.40±0.02 a | 37.04±1.77 c | 4.40±0.20 b | 48±15 b | 1.36±0.21 c | 71±13 b | 3.10±1.12 c |
Fig. 3 Fractal dimension of soil volumeNote: Different lowercase letters indicate significant differences between different woodlands at P<0.05 level.
粒径分布 PSD | 土壤体积分形维数 Dv | 土壤理化性质 Soil properties | 土壤体积分形维数 Dv |
---|---|---|---|
细黏粒Fine clay | 0.271 | 土壤容重Soil bulk density | 0.875** |
粗黏粒Coarse clay | 0.156 | 土壤孔隙度Soil porosity | -0.543* |
细粉粒Fine powder | 0.935** | 自然含水率Moisture content | 0.127 |
中粉粒Medium powder | 0.673** | 有机质Organic matter | 0.056 |
粗粉粒Coarse powder | -0.352* | 有效氮Available nitrogen | 0.456* |
细砂粒Fine sand | -0.771** | 速效磷Available phosphorus | -0.763** |
粗砂粒Coarse sand | 0.466* | 速效钾Available potassium | 0.050 |
石砾Gravel | 0.058 |
Table 3 Relationship between soil volume fractal dimension and soil physical and chemical properties
粒径分布 PSD | 土壤体积分形维数 Dv | 土壤理化性质 Soil properties | 土壤体积分形维数 Dv |
---|---|---|---|
细黏粒Fine clay | 0.271 | 土壤容重Soil bulk density | 0.875** |
粗黏粒Coarse clay | 0.156 | 土壤孔隙度Soil porosity | -0.543* |
细粉粒Fine powder | 0.935** | 自然含水率Moisture content | 0.127 |
中粉粒Medium powder | 0.673** | 有机质Organic matter | 0.056 |
粗粉粒Coarse powder | -0.352* | 有效氮Available nitrogen | 0.456* |
细砂粒Fine sand | -0.771** | 速效磷Available phosphorus | -0.763** |
粗砂粒Coarse sand | 0.466* | 速效钾Available potassium | 0.050 |
石砾Gravel | 0.058 |
因子Factor | A | B | C | D | E | F | G | H | I | J | K | L | M |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 0.673** | ||||||||||||
C | 0.876** | 0.890** | |||||||||||
D | -0.144 | 0.218 | -0.024 | ||||||||||
E | -0.236 | 0.187 | -0.036 | 0.123 | |||||||||
F | -0.624** | -0.546* | -0.664** | 0.419 | 0.374 | ||||||||
G | -0.182 | -0.214 | -202 | 0.346 | 0.251 | 0.830** | |||||||
H | 0.750* | 0.645** | 0.762** | -0.060 | -0.078 | -0.196 | 0.305 | ||||||
I | 0.601* | 0.571* | 0.584* | -0.215 | -0.158 | -0.849** | 0.784** | 0.204 | |||||
J | -0.812** | -0.780** | -0.838** | -0.042 | -0.071 | 0.326 | -0.133 | -0.950** | -0.437 | ||||
K | -0.514 | -0.259 | -0.367 | -0.132 | -0.147 | -0.028 | -0.242 | -0.676** | -0.163 | 0.637** | |||
L | -0.874** | -0.610** | -0.810** | 0.063 | 0.109 | 0.342 | -0.173 | -0.870** | -0.293 | 0.847** | 0.612* | ||
M | 0.181* | 0.112* | 0.117* | 0.254 | 0.147 | 0.029 | -0.003 | 0.254* | 0.004 | -0.015 | -0.145 | 0.026 | |
N | 0.121 | 0.117 | 0.177 | -0.033 | -0.044 | 0.084 | 0.295 | 0.263 | -0.049 | -0.267 | 0.041 | -0.213 | 0.382 |
Table 4 Relationship between infiltration characteristics and soil physical properties
因子Factor | A | B | C | D | E | F | G | H | I | J | K | L | M |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 0.673** | ||||||||||||
C | 0.876** | 0.890** | |||||||||||
D | -0.144 | 0.218 | -0.024 | ||||||||||
E | -0.236 | 0.187 | -0.036 | 0.123 | |||||||||
F | -0.624** | -0.546* | -0.664** | 0.419 | 0.374 | ||||||||
G | -0.182 | -0.214 | -202 | 0.346 | 0.251 | 0.830** | |||||||
H | 0.750* | 0.645** | 0.762** | -0.060 | -0.078 | -0.196 | 0.305 | ||||||
I | 0.601* | 0.571* | 0.584* | -0.215 | -0.158 | -0.849** | 0.784** | 0.204 | |||||
J | -0.812** | -0.780** | -0.838** | -0.042 | -0.071 | 0.326 | -0.133 | -0.950** | -0.437 | ||||
K | -0.514 | -0.259 | -0.367 | -0.132 | -0.147 | -0.028 | -0.242 | -0.676** | -0.163 | 0.637** | |||
L | -0.874** | -0.610** | -0.810** | 0.063 | 0.109 | 0.342 | -0.173 | -0.870** | -0.293 | 0.847** | 0.612* | ||
M | 0.181* | 0.112* | 0.117* | 0.254 | 0.147 | 0.029 | -0.003 | 0.254* | 0.004 | -0.015 | -0.145 | 0.026 | |
N | 0.121 | 0.117 | 0.177 | -0.033 | -0.044 | 0.084 | 0.295 | 0.263 | -0.049 | -0.267 | 0.041 | -0.213 | 0.382 |
1 | BRID N R H, BARTOLI F, DEXTER A R. Water retention models for fractal soil structures [J]. Eur. J. Soil Sci., 1996, 47(1):1-6. |
2 | TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle size distributions: analysis and limitations [J]. Soil Sci. Soc. Am. J., 1992, 56(2):362-369. |
3 | 杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899. |
4 | 王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005,42(4):545-550. |
WANG G L, ZHOU S L, ZHAO Q G, et al.. Volume fractal dimension of soil particles and its applications to land use [J]. Acta Pedol. Sin., 2005, 42(4): 545-550. | |
5 | 肖东东,史正涛,刘新有,等.西双版纳橡胶林土壤颗粒体积分形维数特征[J].热带作物学报,2017,38(5):817-823. |
XIAO D D, SHI Z T, LIU X Y, et al.. Fractal dimension of soil particle volume in rubber forest of Xishuangbanna [J]. Chin. J. Trop. Crops, 2017, 38(5):817-823. | |
6 | 茹豪,张建军,李玉婷,等.黄土高原土壤粒径分形特征及其对土壤侵蚀的影响 [J].农业机械学报,2015,46(4):176-182. |
RU H, ZHANG J J, Ll Y T, et al.. Fractal features of soil distributions and its effect on soil erosion of loess plateau [J]. Trans. Chin. Soc. Agric. Mach., 2015, 46(4):176-182. | |
7 | 徐永福,董平.非饱和土的水分特征曲线的分形模型[J].岩土力学,2002,23(4):399-405. |
XU Y F, DONG P. Fractal models for the soil-water characteristics of unsaturated soils [J]. Rock Soil Mech., 2002, 23(4):399-405. | |
8 | 战海霞,张光灿,刘霞,等.沂蒙山林区不同植物群落的土壤颗粒分形与水分入渗特征[J].中国水土保持科学,2009,7(1):49-56. |
ZHAN H X, ZHANG G C, LIU X, et al.. Fractal features of soil particle size distribution and infiltration characteristics under different vegetation communities in the forestland of Yimeng mountains area [J]. Soil Water Conserv. China, 2009, 7(1):49-56. | |
9 | BROOKS K N, FFOLLIOTT P F, GRERSEN H M, et al.. Hydrology and the Management of Watersheds [M]. Ames: Lowa Sate University Press, 1997:69-78. |
10 | 魏瑶瑶,王俊,张永旺,等.黄土高原不同植被类型土壤入渗特征研究[J].延安大学学报(自然科学版),2021,40(2):16-20. |
WEI Y Y, WANG J, ZHANG Y W, et al.. Study on soil infiltration characteristics of different vegetation types on loess plateau [J]. J. Yanan. Univ. (Nat. Sci.), 2021, 40(2):16-20. | |
11 | 高广磊,丁国栋,赵媛媛,等.四种粒径分级制度对土壤体积分形维数测定的影响[J].应用基础与工程科学学报,2014,22(6):1060-1068. |
GAO G L, DING G D, ZHAO Y Y, et al.. Effects of soil particle size classification system on calculating volume-based fractal dimension [J]. J. Basic. Sci. Eng., 2014, 22(6):1060-1068. | |
12 | 林狄显.闽南山地3种典型植被类型土壤分形与养分特征[J].水土保持通报,2017,37(3):48-52. |
LIN D X. Characteristics of soil fractal and nutrient under three typical vegetation types in mountainous region of southern Fujian province [J]. Bull. Soil Water Conserv., 2017, 37(3):48-52. | |
13 | 姚丽,王仰仁,战国隆,等.基于室内实验的土壤入渗深度动态模拟研究[J].天津农学院学报,2019,26(4):83-88. |
YAO L, WANG Y R, ZHAN G L, et al.. Dynamic simulation of soil infiltration depth in farmland based on laboratory experiments [J]. J. Tianjin Agric. Univ., 2019, 26(4):83-88. | |
14 | 芳菲,秦富仓,李龙,等.阴山北麓不同林分类型土壤持水性能研究[J].中国农业科技导报,2020,22(2):140-148 |
FANG F, QIN F C, LI L, et al.. Study on soil water storage performance of different forest types at the north piedmont of Yinshan mountains [J]. J. Agric. Sci. Technol., 2020, 22(2):140-148. | |
15 | 全国土壤普查办公室.中国土壤 [M].北京:中国农业出版社,1998:1-1253. |
16 | 葛楠楠,石芸,杨宪龙,等.黄土高原不同土壤质地农田土壤碳、氮、磷及团聚体分布特征[J].应用生态学报,2017,28(5):1626-1632. |
GE N N, SHI Y, YANG X L, et al.. Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess plateau, Northwest China [J]. Chin. J. Appl. Ecol., 2017, 28(5):1626-1632. | |
17 | 姜坤,秦海龙,卢瑛,等.广东省不同母质发育土壤颗粒分布的分形维数特征[J].水土保持学报,2016,30(6):319-324. |
JIANG K, QIN H L, LU Y, et al.. Fractal dimension of particle-size distribution for soils derived from different parent materials in Guangdong province [J]. J. Soil Water Conserv., 2016, 30(6):319-324. | |
18 | 党亚爱,李世清,王国栋,等.黄土高原典型土壤剖面土壤颗粒组成分形特征[J].农业工程学报,2009,25(9):74-78. |
DANG Y A, LI S Q, WANG G D, et al.. Fractal characteristics of soil particle composition for typical types of soil profile on Loess plateau [J]. Trans. Chin. Soc. Agric. Eng., 2009, 25(9):74-78. | |
19 | 赵明月,赵文武,刘源鑫.不同尺度下土壤粒径分布特征及其影响因子——以黄土丘陵沟壑区为例[J].生态学报,2015,35(14):4625-4632. |
ZHAO M Y, ZHAO W W, LIU Y X. Comparative analysis of soil particle size distribution and its influence factors in different scales:a case study in the Loess hilly-gully area [J]. Acta Ecol. Sin., 2015, 35(14):4625-4632. | |
20 | 曾宪勤,刘和平,路炳军,等.北京山区土壤粒径分布分形维数特征[J].山地学报,2008,26(1):65-70. |
ZENG X Q, LIU H P, LU B J, et al.. Fractal dimension of soil particle-size distribution characteristic in the Beijing mountains [J]. J. Mount. Sci., 2008, 26(1):65-70. | |
21 | 徐萍,刘霞,张光灿,等.鲁中山区小流域不同土地利用类型的土壤分形及水分入渗特征[J].中国水土保持科学,2013,11(5):89-95. |
XU P, LIU X, ZHANG G C, et al.. Fractal features and infiltration characteristics of soil of different land uses in a small watershed of rocky mountainous area in the middle of Shandong province [J]. Sci. Soil Water Conserv., 2013, 11(5):89-95. |
[1] | Wanwan ZHANG, Meisheng YI. Application and Development Prospect of Fish Stem Cell in Breeding [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 26-32. |
[2] | MEN Lina1,2, WANG Lijun1, ZHANG Yuhong3, CAO Yue1, HAN Youzhi1,2*, ZHANG Zhiwei1,2*. Construction of Early-warning Index System of Eogystia hippophaecolus in Hippophae rhamnoides Linn. Plantation [J]. Journal of Agricultural Science and Technology, 2019, 21(7): 102-111. |
[3] | XU Mingxian, WANG Lihai*, SHI Xiaolong, LIU Tienan, ZHANG Guanghui, MENG Qingkai. Design and Experimental Verification of A Woodland Cleaning Device for Eucalyptus Plantations [J]. Journal of Agricultural Science and Technology, 2019, 21(4): 70-78. |
[4] | GUO Wei-qun1, LUO Li-si2, LI Neng-wei1, ZHANG Xiao-lin1. Breeding High-yield Spinosad-producing Strain by Nitrogen Ion Implantation [J]. , 2012, 14(4): 148-152. |
[5] | LI Yun-shuang1, JIN Fang1, YANG Xi-xia1, ZHANG Feng-shou2, ZHANG Tao2, SU Ying2,. Effect of Electron Beam Irradiation on Germination Rate of Abelmoschus manihots Pollen [J]. , 2011, 13(3): 97-101. |
[6] | WANG Huai-yu. Correlations Between OPN Gene and Reproductive Performance of Animals [J]. , 2009, 11(3): 24-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||