Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (4): 77-85.DOI: 10.13304/j.nykjdb.2021.0927
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Mingjie SHAO(), Yanqi CHEN, Wenke LIU(
)
Received:
2021-11-01
Accepted:
2022-01-18
Online:
2023-04-01
Published:
2023-06-26
Contact:
Wenke LIU
通讯作者:
刘文科
作者简介:
邵明杰 E-mail: mjshaomj@126.com;
基金资助:
CLC Number:
Mingjie SHAO, Yanqi CHEN, Wenke LIU. Effects of Red-blue LED Bight Supply Modes on Growth and Quality of Purple Leaf Lettuce Under Continuous Light[J]. Journal of Agricultural Science and Technology, 2023, 25(4): 77-85.
邵明杰, 陈艳琦, 刘文科. 连续光照条件下LED红蓝光供光模式对紫叶生菜生长和品质的影响[J]. 中国农业科技导报, 2023, 25(4): 77-85.
处理Treatment | 处理时间 Treat time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.5 | 2.4 | 3.0 | 4.8 | 6.0 | 11.0 | 12.0 | 13.5 | 14.4 | 18 | 22 | 24 | |
RB | 暗期 Dark (6 h) | 红蓝比4∶1 Red and blue ratio 4∶1 (16 h) | 暗期 Dark (2 h) | |||||||||
RB’ | 红蓝比4∶1 Red and blue ratio 4∶1 (24 h) | |||||||||||
S1 | 蓝光 Blue (3 h) | 红蓝比4∶1 Red and blue ratio 4∶1 (9 h) | 红光 Red (12 h) | |||||||||
S2 | 蓝光 Blue (1.5 h) | 红蓝比4∶1 Red and blue ratio 4∶1 (4.5 h) | 红光 Red (6 h) | 蓝光 Blue (1.5 h) | 红蓝比4∶1 Red and blue ratio 4∶1 (4.5 h) | 红光 Red (6 h) | ||||||
A1 | 蓝光 Blue (4.8 h) | 红光 Red (19.2 h) | ||||||||||
A2 | 蓝光 Blue (2.4 h) | 红光 Blue (9.6 h) | 蓝光 Blue (2.4 h) | 红光 Red (9.6 h) |
Table 1 Experimental design of light
处理Treatment | 处理时间 Treat time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.5 | 2.4 | 3.0 | 4.8 | 6.0 | 11.0 | 12.0 | 13.5 | 14.4 | 18 | 22 | 24 | |
RB | 暗期 Dark (6 h) | 红蓝比4∶1 Red and blue ratio 4∶1 (16 h) | 暗期 Dark (2 h) | |||||||||
RB’ | 红蓝比4∶1 Red and blue ratio 4∶1 (24 h) | |||||||||||
S1 | 蓝光 Blue (3 h) | 红蓝比4∶1 Red and blue ratio 4∶1 (9 h) | 红光 Red (12 h) | |||||||||
S2 | 蓝光 Blue (1.5 h) | 红蓝比4∶1 Red and blue ratio 4∶1 (4.5 h) | 红光 Red (6 h) | 蓝光 Blue (1.5 h) | 红蓝比4∶1 Red and blue ratio 4∶1 (4.5 h) | 红光 Red (6 h) | ||||||
A1 | 蓝光 Blue (4.8 h) | 红光 Red (19.2 h) | ||||||||||
A2 | 蓝光 Blue (2.4 h) | 红光 Blue (9.6 h) | 蓝光 Blue (2.4 h) | 红光 Red (9.6 h) |
处理 Treatment | 地上部鲜重 SFW/g | 地上部干重 SDW/g | 地下部鲜重 RFW/g | 地下部干重 RDW/g | 叶面积 LA /cm2 | 比叶重 SLW/(g·dm-2) | 地上部含水量 SWC/% |
---|---|---|---|---|---|---|---|
RB | 25.77±2.65 b | 2.33±0.24 c | 4.76±0.79 b | 0.36±0.05 c | 720.71±83.26 b | 3.58±0.07 b | 90.95±0.27 a |
RB’ | 31.16±1.62 ab | 2.89±0.10 b | 6.84±0.61 a | 0.44±0.04 bc | 758.11±29.00 b | 4.11±0.18 a | 90.72±0.29 a |
S1 | 35.45±4.64 a | 3.13±0.29 b | 7.14±1.19 a | 0.50±0.06 ab | 956.25±116.83 a | 3.70±0.06 b | 91.11±0.52 a |
S2 | 31.70±4.08 ab | 3.00±0.25 b | 6.25±1.15 ab | 0.47±0.06 abc | 836.50±144.87 ab | 3.82±0.23 b | 90.47±0.76 ab |
A1 | 34.43±3.45 a | 3.82±0.31 a | 7.06±0.87 a | 0.54±0.06 ab | 971.37±88.88 a | 3.54±0.15 b | 88.87±0.38 c |
A2 | 37.38±3.66 a | 3.85±0.37 a | 6.83±1.33 a | 0.57±0.10 a | 1 002.04±91.49 a | 3.73±0.11 b | 89.69±0.41 b |
Table 2 Growth of lettuce under different treatments
处理 Treatment | 地上部鲜重 SFW/g | 地上部干重 SDW/g | 地下部鲜重 RFW/g | 地下部干重 RDW/g | 叶面积 LA /cm2 | 比叶重 SLW/(g·dm-2) | 地上部含水量 SWC/% |
---|---|---|---|---|---|---|---|
RB | 25.77±2.65 b | 2.33±0.24 c | 4.76±0.79 b | 0.36±0.05 c | 720.71±83.26 b | 3.58±0.07 b | 90.95±0.27 a |
RB’ | 31.16±1.62 ab | 2.89±0.10 b | 6.84±0.61 a | 0.44±0.04 bc | 758.11±29.00 b | 4.11±0.18 a | 90.72±0.29 a |
S1 | 35.45±4.64 a | 3.13±0.29 b | 7.14±1.19 a | 0.50±0.06 ab | 956.25±116.83 a | 3.70±0.06 b | 91.11±0.52 a |
S2 | 31.70±4.08 ab | 3.00±0.25 b | 6.25±1.15 ab | 0.47±0.06 abc | 836.50±144.87 ab | 3.82±0.23 b | 90.47±0.76 ab |
A1 | 34.43±3.45 a | 3.82±0.31 a | 7.06±0.87 a | 0.54±0.06 ab | 971.37±88.88 a | 3.54±0.15 b | 88.87±0.38 c |
A2 | 37.38±3.66 a | 3.85±0.37 a | 6.83±1.33 a | 0.57±0.10 a | 1 002.04±91.49 a | 3.73±0.11 b | 89.69±0.41 b |
Fig. 1 SS, starch, and nitrate contents of lettuce under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 2 Anthocyanin, flavonoids, and TP contents of lettuce under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 3 PAL activity of lettuce under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 4 AsA content of lettuce under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 5 Antioxidant enzymes activities of lettuce under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 6 H2O2 and O2- contents of lettuce under differen treatmentstNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 7 MDA content of lettuce under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
1 | KOZAI T. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory [J]. Proc. Jpn. Acad., 2013, 89(10):447-461. |
2 | HU M C, CHEN Y H, HUANG L C. A sustainable vegetable supply chain using plant factories in Taiwanese markets: a Nash-Cournot model [J]. Int. J. Proud. Econ., 2014, 152:49-56. |
3 | VELEZ-RAMIREZ A I, IEPEREN W V, VREUGDENHIL D, et al.. Plants under continuous light [J]. Trends Plant Sci., 2011, 16(6):310-318. |
4 | ZHA L Y, ZHANG Y B, LIU W K. Dynamic responses of ascorbate pool and metabolism in lettuce to long-term continuous light provided by red and blue LEDs [J]. Environ. Exp. Bot., 2019, 163:15-23. |
5 | MATSUDA R, OZAWA N, FUJIWARA K. Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences [J]. Sci. Hortic., 2014, 170:150-158. |
6 | HAQUE M S, DE S A, SOARES C, et al.. Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance [J/OL]. Front. Plant Sci., 2017, 8:1602 [2021-10-05]. . |
7 | TKALEC M, DOBOŠ M, BABIĆ M, et al.. The acclimation of carnivorous round-leaved sundew (Drosera rotundifolia L.) to solar radiation [J/OL]. Acta Physiol. Plantarum., 2015, 37(4):78 [2021-10-05]. . |
8 | HANYU H, SHOJI K. Acceleration of growth in spinach by short-term exposure to red and blue light at the beginning and at the end of the daily dark period [J]. Acta Hortic., 2002(580):145-150. |
9 | JISHI T, KIMURA K, MATSUDA R, et al.. Effects of temporally shifted irradiation of blue and red LED light on cos lettuce growth and morphology [J]. Sci. Hortic., 2016, 198:227-232. |
10 | LANOUE J, ZHENG J, LITTLE C, et al.. Alternating red and blue light-emitting diodes allows for injury-free tomato production with continuous lighting [J/OL]. Front. Plant Sci., 2019, 10:1114 [2021-10-05]. . |
11 | CHEN X L, YANG Q C, SONG W P, et al.. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation [J]. Sci. Hortic., 2017, 223:44-52. |
12 | KUNO Y, SHIMIZU H, NAKASHIMA H, et al.. Effects of irradiation patterns and light quality of red and blue light-emitting diodes on growth of leaf lettuce (Lactuca sativa L.“Greenwave”) [J]. Environ. Control Biol., 2017, 55(3):129-135. |
13 | OHTAKE N, ISHIKURA M, SUZUKI H, et al.. Continuous irradiation with alternating red and blue light enhances plant growth while keeping nutritional quality in lettuce [J]. Hortic. Sci., 2018, 53(12):1804-1809. |
14 | DUBOIS M, GILLES K A, HAMILTON J K, et al.. Colorimetric method for determination of sugars and related substances [J]. Anal. Chem., 1956, 28(3):350-356. |
15 | 曹健康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007:1-176. |
16 | CATALDO D A, MAROON M, SCHRADER L E, et al.. Rapid colorimetric determination of nitrate in plant-tissue by nitration of salicylic-acid [J]. Commun. Soil Sci. Plant Anal., 1975, 6(1):71-80. |
17 | WROLSTAD R E, ACREE T E, DECKER E A, et al.. Characterization and measurement of anthocyanins by UV-visible spectroscopy [J/OL]. John Wiley Sons,Inc., 2001, F1.2.1-F1.2.13 [2021-10-05]. . |
18 | KHANAM U, OBA S, YANASE E, et al.. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables [J]. J. Funct. Food, 2012, 4(4):979-987. |
19 | SPÍNOLA V, MENDES B, CAMARA S, et al.. An improved and fast UHPLC-PDA methodology for determination of L-ascorbic and dehydroascorbic acids in fruits and vegetables. evaluation of degradation rate during storage [J]. Anal. Biol. Chem., 2012, 403(4):1049-1058. |
20 | KOUKOL J, CONN E E. The metabolism of aromatic compounds in higher plants. IV. purification and properties of the phenylalanine deaminase of Hordeum vulgare [J]. J. Biol. Chem., 1961, 236(10):2692-2698. |
21 | HODGES D M, DELONG J M, PRANGE F. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds [J]. Planta, 1999, 207(4):604-611. |
22 | CRAKER L E, SEIBERT M. Light energy requirements for controlled environment growth of lettuce and radish [J]. Trans. ASAE, 1982, 25(1):214-216. |
23 | KITAYA Y G, NIU T, KOZAI M. Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants [J]. Hortic. Sci., 1998, 33:988-991. |
24 | ZHA L Y, LIU W K. Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LEDs [J]. Hortic. Environ. Biotechnol., 2018, 59(4):511-518. |
25 | JIAO J, TSUJITA M J, GRODZINSKI B. Influence of radiation and CO2 enrichment on whole plant net CO2 exchange in roses [J]. Can. J. Plant Sci., 1991, 71(1):245-252. |
26 | ARVE L E, TERFA M T, GISLERØD H R, et al.. High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves [J]. Plant Cell Environ., 2013, 36(2):382-392. |
27 | SCHROEDER J I, ALLEN G J, HUGOUVIEUX V, et al.. Guard cell signal transduction [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52(4):627-635. |
28 | SHIMAZAKI K I, DOI M, ASSMANN S M, et al.. Light regulation of stomatal movement [J]. Annu. Rev. Plant Biol., 2007, 58(1):219-247. |
29 | HUNER N, ÖQUIST G, SARHAN F. Energy balance and acclimation to light and cold [J]. Trend Plant Sci., 1998, 3(6):224-230. |
30 | LILLO C. Light regulation of nitrate reductase in green leaves of higher plants [J]. Physiol. Plant, 1994, 90(3):616-620. |
31 | MCCALL D, WILLUMSEN J. Effects of nitrogen availability and supplementary light on the nitrate content of soil-grown lettuce [J]. J. Hortic. Sci. Biotechnol., 1999, 74(4):458-463. |
32 | ZHOU W, LIU W, YANG Q. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes [J]. J. Plant Nutr., 2013, 36(3):481-490. |
33 | LIN K H, HUANG M Y, HUANG W D, et al.. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata) [J]. Sci. Hortic., 2013, 150:86-91. |
34 | DENG J M, BIN J H, PAN R C. Effects of light quality on the primary nitrogen assimination of rice (Oryza sativa L.) seedlings [J]. Acta Bot. Sin., 2000, 42(3):234-238. |
35 | CAKMAK I, KIRKBY E A. Role of magnesium in carbon partitioning and alleviating photooxidative damage [J]. Physiol. Plant, 2008, 133(4):692-704. |
[1] | Jiayuan LIU, Yubin ZHANG, Wenke LIU. Effects of Preharvest Red and Blue Continuous Light Intensity on Growth, Quality and AsA Metabolism of Hydroponics Lettuce [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 76-84. |
[2] | ZHANG Yubin, LIU Wenke, YANG Qichang, SHAO Mingjie, ZHA Lingyan, ZHOU Chengbo, LI Baoshi, WANG Qi. Effects of Different Ratios of LED Red and Blue Continuous Light on the Photosynthetic Characteristics, Yield and Quality of Lettuce Before Harvest [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 66-73. |
[3] | SHENG Li1,2, CHENG Fulong1, YU Shunhui1, WANG Baihui3, LU Zenghui4, PAN Jie1*. Effects of Exogenous Chromium on Physiological Indexes and Antioxidant System Changes of Corydalis yanhusuo [J]. Journal of Agricultural Science and Technology, 2020, 22(4): 78-84. |
[4] | LIU Wenke1,2, LIU Yifei1. Developmental Strategies for Technology & Equipment and Industry of Plant Factory with Artificial Lighting [J]. Journal of Agricultural Science and Technology, 2018, 20(9): 32-39. |
[5] | ZHAO Xiaoqiong1, LIANG Taishuai2, ZHAO Runzhu1. Effects of Chitooligosaccharide on Plant Growth and Antioxidant System in Seedlings of Wheat (Triticum aestivum L.) Under PEG Stress [J]. Journal of Agricultural Science and Technology, 2018, 20(4): 20-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||