Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (8): 227-238.DOI: 10.13304/j.nykjdb.2024.0031
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Received:
2024-01-12
Accepted:
2024-02-26
Online:
2025-08-15
Published:
2025-08-26
Contact:
An YAN
通讯作者:
颜安
作者简介:
肖淑婷 E-mail:1367388036@qq.com;
基金资助:
CLC Number:
Shuting XIAO, An YAN. Distribution Characteristics and Influencing Factors of Soil Organic Carbon in Typical Natural Forests in Tianshan Mountains[J]. Journal of Agricultural Science and Technology, 2025, 27(8): 227-238.
肖淑婷, 颜安. 天山典型天然林土壤有机碳分布特征及其影响因素[J]. 中国农业科技导报, 2025, 27(8): 227-238.
土层 Soil layer/cm | 土壤有机碳SOC | pH | 电导率 EC/ (μS·cm-1) | 容重 Bulk density/ (g·cm-3) | 含水量Moisture content/% | 全氮 TN/ (g·kg-1) | 全磷 TP/ (g·kg-1) | 全钾 TK/ (g·kg-1) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
含量 Content/ (g·kg-1 ) | 最大值 Max value/ (g·kg-1) | 最小值 Min value/ (g·kg-1) | 变异系数 CV/% | ||||||||
0—10 | 210.0±60.0 | 363.0 | 105.0 | 29 | 6.6 | 120.0 | 0.56 | 10.1 | 15.20 | 4.69 | 6.5 |
10—20 | 182.0±57.8 | 269.0 | 67.4 | 32 | 6.7 | 89.2 | 0.73 | 6.1 | 14.93 | 3.97 | 7.3 |
20—30 | 134.0±64.4 | 215.0 | 27.3 | 48 | 7.1 | 107.0 | 0.82 | 7.2 | 12.20 | 3.47 | 7.7 |
30—40 | 110.0±52.3 | 201.0 | 18.8 | 48 | 7.1 | 95.3 | 0.95 | 4.3 | 10.61 | 3.44 | 8.4 |
40—50 | 86.8±42.5 | 185.0 | 29.6 | 49 | 7.1 | 85.5 | 0.99 | 3.5 | 10.49 | 3.04 | 8.5 |
50—70 | 57.8±28.7 | 118.0 | 9.7 | 50 | 7.3 | 86.0 | 1.04 | 5.4 | 8.56 | 2.90 | 7.5 |
70—100 | 47.4±26.0 | 92.1 | 5.2 | 55 | 7.4 | 88.2 | 1.08 | 4.2 | 8.29 | 3.73 | 7.4 |
Table 1 Physicochemical property in soil layers at different depths
土层 Soil layer/cm | 土壤有机碳SOC | pH | 电导率 EC/ (μS·cm-1) | 容重 Bulk density/ (g·cm-3) | 含水量Moisture content/% | 全氮 TN/ (g·kg-1) | 全磷 TP/ (g·kg-1) | 全钾 TK/ (g·kg-1) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
含量 Content/ (g·kg-1 ) | 最大值 Max value/ (g·kg-1) | 最小值 Min value/ (g·kg-1) | 变异系数 CV/% | ||||||||
0—10 | 210.0±60.0 | 363.0 | 105.0 | 29 | 6.6 | 120.0 | 0.56 | 10.1 | 15.20 | 4.69 | 6.5 |
10—20 | 182.0±57.8 | 269.0 | 67.4 | 32 | 6.7 | 89.2 | 0.73 | 6.1 | 14.93 | 3.97 | 7.3 |
20—30 | 134.0±64.4 | 215.0 | 27.3 | 48 | 7.1 | 107.0 | 0.82 | 7.2 | 12.20 | 3.47 | 7.7 |
30—40 | 110.0±52.3 | 201.0 | 18.8 | 48 | 7.1 | 95.3 | 0.95 | 4.3 | 10.61 | 3.44 | 8.4 |
40—50 | 86.8±42.5 | 185.0 | 29.6 | 49 | 7.1 | 85.5 | 0.99 | 3.5 | 10.49 | 3.04 | 8.5 |
50—70 | 57.8±28.7 | 118.0 | 9.7 | 50 | 7.3 | 86.0 | 1.04 | 5.4 | 8.56 | 2.90 | 7.5 |
70—100 | 47.4±26.0 | 92.1 | 5.2 | 55 | 7.4 | 88.2 | 1.08 | 4.2 | 8.29 | 3.73 | 7.4 |
Fig. 2 Person correlation analysis of organic carbon content with each variable in different soil layersNote:* indicates significantly correlation at P<0.05 level.
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.623 | 7.84 | 34.69 |
10—20 | 0.794 | 6.09 | 38.88 |
20—30 | 0.712 | 7.31 | 70.47 |
30—40 | 0.681 | 6.48 | 46.31 |
40—50 | 0.532 | 7.23 | 39.87 |
50—70 | 0.490 | 5.09 | 8.46 |
70—100 | 0.410 | 4.88 | 16.95 |
Table 2 Result of ridge regression model
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.623 | 7.84 | 34.69 |
10—20 | 0.794 | 6.09 | 38.88 |
20—30 | 0.712 | 7.31 | 70.47 |
30—40 | 0.681 | 6.48 | 46.31 |
40—50 | 0.532 | 7.23 | 39.87 |
50—70 | 0.490 | 5.09 | 8.46 |
70—100 | 0.410 | 4.88 | 16.95 |
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.731 | 6.34 | 33.27 |
10—20 | 0.756 | 5.84 | 31.33 |
20—30 | 0.726 | 8.04 | 26.76 |
30—40 | 0.698 | 6.21 | 27.96 |
40—50 | 0.540 | 7.02 | 31.85 |
50—70 | 0.514 | 5.28 | 10.51 |
70—100 | 0.531 | 4.91 | 8.84 |
Table 3 Result of least squares model
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.731 | 6.34 | 33.27 |
10—20 | 0.756 | 5.84 | 31.33 |
20—30 | 0.726 | 8.04 | 26.76 |
30—40 | 0.698 | 6.21 | 27.96 |
40—50 | 0.540 | 7.02 | 31.85 |
50—70 | 0.514 | 5.28 | 10.51 |
70—100 | 0.531 | 4.91 | 8.84 |
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.641 | 30.48 | 25.31 |
10—20 | 0.759 | 32.82 | 30.26 |
20—30 | 0.506 | 32.88 | 29.35 |
30—40 | 0.580 | 37.96 | 28.58 |
40—50 | 0.641 | 26.09 | 18.27 |
50—70 | 0.231 | 40.19 | 38.20 |
70—100 | 0.480 | 18.72 | 17.75 |
Table 4 Result of random forest model
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.641 | 30.48 | 25.31 |
10—20 | 0.759 | 32.82 | 30.26 |
20—30 | 0.506 | 32.88 | 29.35 |
30—40 | 0.580 | 37.96 | 28.58 |
40—50 | 0.641 | 26.09 | 18.27 |
50—70 | 0.231 | 40.19 | 38.20 |
70—100 | 0.480 | 18.72 | 17.75 |
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.580 | 32.99 | 26.57 |
10—20 | 0.660 | 41.87 | 36.56 |
20—30 | 0.550 | 35.93 | 29.31 |
30—40 | 0.570 | 45.38 | 38.41 |
40—50 | 0.300 | 28.49 | 19.70 |
50—70 | 0.290 | 28.51 | 19.73 |
70—100 | 0.310 | 16.98 | 14.52 |
Table 5 Result of CatBoost model
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.580 | 32.99 | 26.57 |
10—20 | 0.660 | 41.87 | 36.56 |
20—30 | 0.550 | 35.93 | 29.31 |
30—40 | 0.570 | 45.38 | 38.41 |
40—50 | 0.300 | 28.49 | 19.70 |
50—70 | 0.290 | 28.51 | 19.73 |
70—100 | 0.310 | 16.98 | 14.52 |
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.590 | 32.59 | 28.86 |
10—20 | 0.610 | 35.56 | 31.16 |
20—30 | 0.580 | 30.26 | 27.09 |
30—40 | 0.590 | 18.93 | 13.72 |
40—50 | 0.420 | 31.05 | 25.55 |
50—70 | 0.440 | 17.91 | 16.97 |
70—100 | 0.553 | 13.48 | 11.08 |
Table 6 Result of BP-neural network model
土层 Soil layer/cm | 决定系数 R² | 均方根误差 RMSE | 平均绝对误差 MAE |
---|---|---|---|
0—10 | 0.590 | 32.59 | 28.86 |
10—20 | 0.610 | 35.56 | 31.16 |
20—30 | 0.580 | 30.26 | 27.09 |
30—40 | 0.590 | 18.93 | 13.72 |
40—50 | 0.420 | 31.05 | 25.55 |
50—70 | 0.440 | 17.91 | 16.97 |
70—100 | 0.553 | 13.48 | 11.08 |
理化性质 Physicochemical property | 土层Soil layer/cm | ||||||
---|---|---|---|---|---|---|---|
0—10 | 10—20 | 20—30 | 30—40 | 40—50 | 50—70 | 70—100 | |
pH | -0.506*** | -0.452** | -0.541*** | -0.433** | -0.603*** | -0.318 | -0.226 |
电导率 EC/(μS·cm-1) | 0.044 | 0.127 | 0.232 | 0.050 | -0.026 | -0.210 | -0.238 |
全氮 TN/ (g·kg-1) | -0.016 | 0.357* | 0.286 | 0.011 | 0.334 | 0.336 | 0.145 |
全磷 TP/(g·kg-1) | 0.376* | 0.318 | 0.342* | 0.089 | 0.572*** | 0.379* | 0.343* |
全钾 TK/(g·kg--1) | -0.641*** | -0.294 | -0.055 | 0.108 | -0.132 | 0.011 | -0.071 |
容重 Bulk density/(g·cm-3) | -0.243 | -0.027 | -0.434** | -0.494** | -0.691*** | -0.653*** | -0.397** |
含水量 Moisture content/% | -0.072 | -0.094 | 0.002 | 0.174 | 0.013 | 0.505** | 0.300 |
Table 7 Correlation analysis between SOC and soil physicochemical properties at different soil layers
理化性质 Physicochemical property | 土层Soil layer/cm | ||||||
---|---|---|---|---|---|---|---|
0—10 | 10—20 | 20—30 | 30—40 | 40—50 | 50—70 | 70—100 | |
pH | -0.506*** | -0.452** | -0.541*** | -0.433** | -0.603*** | -0.318 | -0.226 |
电导率 EC/(μS·cm-1) | 0.044 | 0.127 | 0.232 | 0.050 | -0.026 | -0.210 | -0.238 |
全氮 TN/ (g·kg-1) | -0.016 | 0.357* | 0.286 | 0.011 | 0.334 | 0.336 | 0.145 |
全磷 TP/(g·kg-1) | 0.376* | 0.318 | 0.342* | 0.089 | 0.572*** | 0.379* | 0.343* |
全钾 TK/(g·kg--1) | -0.641*** | -0.294 | -0.055 | 0.108 | -0.132 | 0.011 | -0.071 |
容重 Bulk density/(g·cm-3) | -0.243 | -0.027 | -0.434** | -0.494** | -0.691*** | -0.653*** | -0.397** |
含水量 Moisture content/% | -0.072 | -0.094 | 0.002 | 0.174 | 0.013 | 0.505** | 0.300 |
土层 Soil layer/cm | 指标 Index | pH | 电导率 EC/(μs·cm-1) | 全氮TN/ (g·kg-1) | 全磷TP/ (g·kg-1) | 全钾TK/ (g·kg-1) | 容重Bulk density/(g·cm-3) | 含水量 Moisture content/% |
---|---|---|---|---|---|---|---|---|
0—10 | 关联度Correlation degree | 0.850 2 | 0.777 5 | 0.724 6 | 0.866 1 | 0.803 4 | 0.815 3 | 0.645 7 |
排序 Rank | ||||||||
10—20 | 关联度Correlation degree | 0.881 1 | 0.851 5 | 0.804 6 | 0.855 4 | 0.870 2 | 0.867 3 | 0.739 7 |
排序Rank | ||||||||
20—30 | 关联度Correlation degree | 0.878 3 | 0.831 6 | 0.849 4 | 0.891 2 | 0.894 1 | 0848 5 | 0.755 7 |
排序Rank | ||||||||
30—40 | 关联度Correlation degree | 0.813 3 | 0.757 6 | 0.777 5 | 0.842 1 | 0.831 2 | 0.7914 | 0.753 7 |
排序Rank | ||||||||
40—50 | 关联度Correlation degree | 0.821 2 | 0.735 6 | 0.734 7 | 0.831 1 | 0.774 3 | 0.747 5 | 0.763 4 |
排序Rank | ||||||||
50—70 | 关联度Correlation degree | 0.849 3 | 0.828 5 | 0.839 4 | 0.883 1 | 0.855 2 | 0.819 6 | 0.809 7 |
排序Rank | ||||||||
70—100 | 关联度Correlation degree | 0.820 3 | 0.775 6 | 0.790 5 | 0.824 2 | 0.828 1 | 0.811 4 | 0.771 7 |
排序Rank |
Table 8 Correlation coefficients between soil physicochemical properties and SOC at different soil layers
土层 Soil layer/cm | 指标 Index | pH | 电导率 EC/(μs·cm-1) | 全氮TN/ (g·kg-1) | 全磷TP/ (g·kg-1) | 全钾TK/ (g·kg-1) | 容重Bulk density/(g·cm-3) | 含水量 Moisture content/% |
---|---|---|---|---|---|---|---|---|
0—10 | 关联度Correlation degree | 0.850 2 | 0.777 5 | 0.724 6 | 0.866 1 | 0.803 4 | 0.815 3 | 0.645 7 |
排序 Rank | ||||||||
10—20 | 关联度Correlation degree | 0.881 1 | 0.851 5 | 0.804 6 | 0.855 4 | 0.870 2 | 0.867 3 | 0.739 7 |
排序Rank | ||||||||
20—30 | 关联度Correlation degree | 0.878 3 | 0.831 6 | 0.849 4 | 0.891 2 | 0.894 1 | 0848 5 | 0.755 7 |
排序Rank | ||||||||
30—40 | 关联度Correlation degree | 0.813 3 | 0.757 6 | 0.777 5 | 0.842 1 | 0.831 2 | 0.7914 | 0.753 7 |
排序Rank | ||||||||
40—50 | 关联度Correlation degree | 0.821 2 | 0.735 6 | 0.734 7 | 0.831 1 | 0.774 3 | 0.747 5 | 0.763 4 |
排序Rank | ||||||||
50—70 | 关联度Correlation degree | 0.849 3 | 0.828 5 | 0.839 4 | 0.883 1 | 0.855 2 | 0.819 6 | 0.809 7 |
排序Rank | ||||||||
70—100 | 关联度Correlation degree | 0.820 3 | 0.775 6 | 0.790 5 | 0.824 2 | 0.828 1 | 0.811 4 | 0.771 7 |
排序Rank |
[1] | 国务院关于印发2030年前碳达峰行动方案的通知:国发〔2021〕23号[EB/OL].(2021-10-24)[2023-12-12]. . |
[2] | 张凯迪, 苏建兰. 中国防护林碳储量动态及潜力分析[J]. 山东林业科技, 2023, 53(4): 19-24, 6. |
ZHANG K D, SU J L. Carbon storage dynamics and potential analysis of shelterbelt in China [J]. J.Shandong For.Sci.Technol., 2023, 53(4): 19-24, 6. | |
[3] | LIY Y, ZHANGZ G, ZHAOZ Y, et al.. Zoning prediction and mapping of three-dimensional forest soil organic carbon: a case study of subtropical forests in southern China [J/OL]. Forests, 2023, 14(6):1197 [2023-12-12]. . |
[4] | 木衣那恰·吐斯甫汉, 武红旗, 侯艳娜, 等. 新疆北疆不同土壤类型有机碳含量变化特征及其影响因素分析[J]. 新疆农业科学, 2022, 59(6): 1513-1521. |
Tusifuhan Muyinaqia, WU H Q, HOU Y N, et al.. Changes in organic carbon content of different soil types in northern Xinjiang and analysis of their characteristics and influencing factors [J]. Xinjiang Agric. Sci., 2022, 59(6): 1513-1521. | |
[5] | 张中瑞, 赵志明, 邓智文, 等. 梅州市林地土壤有机碳储量及空间分布特征[J]. 林业与环境科学, 2022, 38(2): 153-158. |
ZHANG Z R, ZHAO Z M, DENG Z W,et al.. Soil organic carbon stocks and spatial distribution characteristics of forest land in Meizhou city [J]. For. Environ. Sci., 2022, 38(2):153-158. | |
[6] | 官惠玲, 樊江文, 李愈哲, 等. 海南岛天然草地有机碳分布格局及碳储量估算[J].生态环境学报, 2019, 28(6): 1092-1099. |
GUAN H L, FAN J W, LI Y Z, et al.. Estimation of carbon distribution and storage of natural grassland in Hainan island [J]. Ecol. Environ. Sci., 2019, 28(6): 1092-1099. | |
[7] | 任继周, 林慧龙. 草地土壤有机碳储量模拟技术研究[J]. 草业学报, 2013, 22(6): 280-294. |
REN J Z, LIN H L. Study on the simulation methods of grassland soil organic carbon:a review [J]. Acta Pratac. Sin.,2013, 22(6): 280-294. | |
[8] | ANGELOPOULOU T, TZIOLAS N, BALAFOUTIS A, et al.. Remote sensing techniques for soil organic carbon estimation: a review [J/OL]. Remote Sens., 2019, 11(6):676 [2023-12-12]. . |
[9] | 夏晓莹, 李思瑶, 王杰, 等. 地形因子对天山北坡天山云杉林土壤有机碳的影响[J]. 新疆农业科学, 2023, 60(4): 965-973. |
XIA X Y, LI S Y, WANG J, et al..Effects of topographic factors on soil organic carbon in Picea schrenkiana forest on the northern slope of Tianshan mountain [J]. Xinjiang Agric. Sci.,2023, 60(4): 965-973. | |
[10] | 黄从德, 张健, 杨万勤, 等. 四川森林土壤有机碳储量的空间分布特征[J]. 生态学报, 2009, 29(3): 1217-1225. |
HUANG C D, ZHANG J, YANG W Q, et al.. Spatial distribution characteristics of forest soil organic carbon stock in Sichuan province [J]. Acta Ecol. Sin., 2009, 29(3): 1217-1225. | |
[11] | 李振, 夏彬涵, 韩敏, 等. 重铬酸钾容量法测定地质样品中的有机碳[J]. 中国无机分析化学, 2024, 14(3): 330-336. |
LI Z, XIA B H, HAN M, et al.. Determination of organic carbon in geological samples by potassium dichromate volumetric method [J]. Chin. J. Inorganic Analyt. Chem., 2024, 14(3):330-336. | |
[12] | AHMAD M, MASOUND N, SAEED Y. Comparison of sampling and spectrophotometric determination of ammonia using nesslerization with standard ion chromatography in air monitoring of workplaces [J]. Int. J. Environ. Anal. Chem.,2023, 103(8): 1724-1732. |
[13] | 郭晨辉, 李和祥, 方芳, 等. 钼锑抗分光光度法对黄河表层沉积物中磷的形态分布及其吸附-解吸特征研究[J]. 光谱学与光谱分析, 2018, 38(1): 218-223. |
GUO C H, LI H X, FANG F, et al.. Study on distribution of phosphorus fractions and adsorption-desorption characteristics in surface sediments of the Yellow River by molybdenum antimony spectrophotometry [J]. Spectroscopy Spectral Analy.,2018, 38(1): 218-223. | |
[14] | 卢丽娟, 李金玉, 陈岚, 等. 连续流动分析仪-火焰光度计联用快速测定土壤、植物中的钠含量[J]. 中国土壤与肥料,2022(10): 247-252. |
LU L J, LI J Y, CHEN L, et al.. Rapid determination of sodium content in soil and plant by continuous flow analyzer-flame photometer [J]. Soil Fert. Sci. China, 2022(10): 247-252. | |
[15] | 郭敏亮, 高煜珠, 王忠. 用酸度计测定植物碳酸酐酶活性[J].植物生理学通讯, 1988(6): 59-61. |
GUO M L, GAO Y Z, WANG Z. Determination of plant carbonic anhydrase activity with pH-meter [J]. Plant Physiol. J.,1988(6): 59-61. | |
[16] | 余瑞宝, 顾强龙, 王巧梅. 电导率仪测量用校准溶液制备方法: [S]. 北京: 中国标准出版社, 1999. |
[17] | 成林, 杨光仙, 陈海波, 等. 烘干称重法测定土壤水分取样误差分析[J]. 气象与环境科学, 2009, 32(2): 33-36. |
CHENG L, YANG G X, CHEN H B, et al.. Analysis of sampling error for soil water measured by drying and weighing method [J]. Meteorol. Environ. Sci., 2009, 32(2): 33-36. | |
[18] | 张强, 谢君毅, 牛芸, 等. 不同施肥处理对杉木林土壤水源涵养功能的影响[J]. 中南林业科技大学学报, 2021, 41(2):112-122. |
ZHANG Q, XIE J Y, NIU Y, et al.. Effects of different fertilization treatments on soil's water conservation function of Chinese fir plantation [J]. J. Cent. South Univ. For. Technol.,2021, 41(2): 112-122. | |
[19] | WANG M J, ZHANG W F, JI Y J, et al.. Aboveground biomass retrieval in tropical and boreal forests using L-band airborne polarimetric observations [J/OL]. Forests, 2023, 14(5): 887 [2023-12-12]. . |
[20] | 周蓉, 赵天忠, 吴发云. 基于Landsat 8遥感影像的地上生物量模型反演研究[J]. 西北林学院学报, 2022, 37(2): 186-192. |
ZHOU R, ZHAO T Z, WU F Y. Aboveground biomass model based on landsat 8 remote sensing images [J]. J. Northwest For. Univ., 2022, 37(2): 186-192. | |
[21] | 许振宇, 李盈昌, 李明阳, 等. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演[J]. 中南林业科技大学学报,2020, 40(11): 147-155. |
XU Z Y, LI Y C, LI M Y, et al.. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image [J]. J. Cent. South Univ. For. Technol., 2020, 40(11): 147-155. | |
[22] | 王启元, 赵艳玲, 房铄东, 等. 基于多光谱遥感的裸土土壤含水量反演研究[J].矿业科学学报, 2020, 5(6): 608-615. |
WANG Q Y, ZHAO Y L, FANG S D, et al.. Inversion of soil moisture in bare soil based on multi-spectral remote sensing [J].J. Min. Sci. Technol., 2020, 5(6): 608-615. | |
[23] | SALANI M G, LISSONI M, BIANCHINI G, et al.. Soil organic carbon estimation in Ferrara (Northern Italy) combining in situ geochemical analyses and hyperspectral remote sensing [J/OL]. Environments, 2023, 10(10): 173 [2023-12-12]. . |
[24] | CHENG X K, ZHOU T, LIU S H, et al.. Effects of climate on variation of soil organic carbon and alkali-hydrolyzed nitrogen in subtropical forests: a case study of Zhejiang province, China [J/OL]. Forests, 2023, 14 (5):914 [2023-12-12]. . |
[25] | CAO L J, HE X B, CHEN S, et al.. Assessing forest quality through forest growth potential, an index based on improved CatBoost machine learning [J/OL]. Sustainability, 2023, 15 (11): 8888 [2023-12-12]. . |
[26] | ZHU WD, QIAN CY, HE N Y, et al.. Research on chlorophyll-a concentration retrieval based on BP neural network model—case study of Dianshan lake, China [J]. Sustainability, 2022, 14 (14): 8894-8894. |
[27] | 刘靖朝, 熊黑钢, 何旦旦, 等. 基于不同人为干扰的土壤全量氮磷钾空间变异性研究[J]. 干旱地区农业研究, 2019, 37(1): 116-122, 159. |
LIU J C, XIONG H G, HE D D, et al.. Spatial variability of total nitrogen,phosphorus,and potassium in soil under different human disturbances [J].Agric. Res. Arid Areas, 2019, 37(1):116-122, 159. | |
[28] | 乔娟峰. 新疆阜康荒地土壤有机质空间变异性及其光谱估算研究[D]. 乌鲁木齐: 新疆大学, 2018.2018. |
QIAO J F. Spatial variability and spectral inversion of soil organic matter in Fukang wasteland, Xinjiang [D]. Urumqi: Xinjiang University, 2018. | |
[29] | WEI S G, DAI Y J, LIU B Y, et al.. A China data set of soil properties for land surface modeling [J]. J. Adv. Model. Earth Syst., 2013, 5(2): 212-224. |
[30] | HENGL T, MENDES DE JESUS J, HEUVELINK G B, et al.. SoilGrids 250m:global gridded soil information based on machine learning [J/OL].PLoS One,2017,12(2):e0169748 [2023-12-12]. . |
[31] | LIU F, WU H Y, ZHAO Y G, et al.. Mapping high resolution national soil information grids of China [J].Sci. Bull., 2022, 67(3): 328-340. |
[32] | WANG T L, WANG G Y, INNES L J, et al.. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific [J]. Front. Agric. Sci. Eng., 2017, 4(4): 448-458. |
[33] | 沈琛琛, 肖文发, 朱建华, 等. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子[J].林业科学, 2024,60(3): 65-77. |
SHENG C C, XIAO W F, ZHU J H, et al.. Characterization of soil organic carbon and key influencing factors of natural forests in central China based on machine learning algorithms [J]. Sci. Silvae Sin., 2024, 60(3): 65-77. | |
[34] | LIU Z P, SHAO M G, WANG Y Q. Estimating soil organic carbon across a large-scale region: a state-space modeling approach [J]. Soil Sci., 2012, 177(10): 607-618. |
[35] | EVRENDILEK F, CELIK I, KILIC S. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest,grassland,and cropland ecosystems in Turkey [J]. J. Arid Environ., 2004, 59(4): 743-752. |
[36] | ZHANG Q Y, YAO Y F, JIA X X, et al.. Estimation of soil organic carbon under different vegetation types on a hillslope of China's northern Loess Plateau using state-space approach [J]. Canadian J. Soil Sci., 2017, 97(4): 667-677. |
[37] | 张玲, 张东来, 毛子军. 中国温带阔叶红松林不同演替系列土壤有机碳矿化特征[J]. 生态学报, 2017, 37(19): 6370-6378. |
ZHANG L, ZHANG D L, MAO Z J.Characteristic mineralization of soil organic carbon in different successional series of broadleaved Korean pine forests in the temperate zone in China [J]. Acta Ecol. Sin., 2017, 37(19): 6370-6378. | |
[38] | ZHANG X, LI X, JI X D, et al.. Elevation and total nitrogen are the critical factors that control the spatial distribution of soil organic carbon content in the shrubland on the Bashang Plateau,China [J/OL]. Catena, 2021, 204: 105415 [2023-12-12]. . |
[39] | LU X K, MAO Q G, WANG Z H, et al.. Long-term nitrogen addition decreases soil carbon mineralization in an N-rich primary tropical forest [J]. Forests, 2021, 12(6): 734-734. |
[40] | 方华军, 耿静, 程淑兰, 等. 氮磷富集对森林土壤碳截存的影响研究进展[J]. 土壤学报, 2019, 56(1): 1-11. |
FANG H J, GENG J, CHENG S L,et al.. Effects of nitrogen and phosphorus enrichment on carbon sequestration in forest soils:a review [J]. Acta Pedol. Sin., 2019, 56(1): 1-11. | |
[41] | 郭亮娜, 李江荣, 张波, 等. 森林土壤有机碳的影响因子及其研究进展[J]. 湖南生态科学学报, 2023, 10(3): 85-91. |
GUO L N, LI J R, ZHANG B, et al.. Influencing factors of forest soil organic carbon and its research progess [J]. J. Hunan Ecol. Sci., 2023, 10(3): 85-91. |
[1] | Jiajia SONG, Yunxia MA, Jingjie GUO, Baomengkenashun, Zhonghou GU, Kun LIU, Zhilong LI, Shengli HAN, Xia KANG, Rewadi. Spatial Pattern and Interspecific Association of Natural Platycladus orientalis Population in Loess Hilly Region of Inner Mongolia [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 203-212. |
[2] | Xiaohu YANG, Manyu ZHANG, Haichang YANG, Fenghua ZHANG, Yilin JIANG, Xiaolan YI. Inversion of Soil Salinity in Farmland of Manas River Basin Based on Combined Model [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 134-141. |
[3] | LIU Xinghong, ZHANG Qingqing, ZHANG Guangpeng, LI Hong . Analysis of Spatial Distribution and Influencing Factors of Plant Communities in the Lower Reaches of Tarim River [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 131-144. |
[4] | GAO Suhong1,2, WU Haiyan2, WEN Xiaolei2, LU Changkuan2, ZHAO Chunming2, ZHANG Qi2, DING Yuanyuan2. Spatial Distribution and Sampling Technique of the Overwintering Eggs of Apolygus lucorum in the Vineyard [J]. Journal of Agricultural Science and Technology, 2020, 22(8): 116-122. |
[5] | FENG Xueying1, ZHANG Yibo2, HUANG Yucui1, GUO Mengran1, MENG Ye1, ZHANG Xiaoming3, XU Haiyun1*. Population Dynamics and Spatial Distribution of Bemisia tabaci in Xiongan New Area and Its Surrounding Areas [J]. Journal of Agricultural Science and Technology, 2019, 21(10): 115-124. |
[6] | ZHAO Yingming1,2,3, LEI Yuancai4, YANG Wenbin1*, HAO Yuguang2,3, HUANG Yaru2,3, DONG Xue2,3, MA Yingbin2,3, LIU Yuting2,3. Spatial Distribution of Main Root Biomass of Farmland Shelterbelt [J]. Journal of Agricultural Science and Technology, 2018, 20(9): 86-94. |
[7] | QIAN Guixia1, XIAO Min2, ZHAO Wenzhe1, ZHANG Qifeng1, PAN Yuehong3*. Spatial Distribution Change and Operation Status of Milk Collection Stations at Postcrisis Era ——A Case Study of Inner Mongolia [J]. , 2013, 15(4): 102-109. |
[8] | YANG Li-ping1, GUO Hong-hai1, LI Xin-hua1, YANG Ping1, WAN Shu-bo2. Preliminary Studies on Spatial Distribution Prediction of Peanut Protein Content in China [J]. , 2010, 12(5): 92-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||