Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (4): 75-84.DOI: 10.13304/j.nykjdb.2021.0768
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Xiang HUANG1,2(), Guangming CHU1, Xinkai ZHENG1, Jintao CHENG1, Jianhao CHEN1, Yingchun XU3, Qijiang JIN3, Meihua YANG1,2(
)
Received:
2021-09-01
Accepted:
2021-10-20
Online:
2022-04-15
Published:
2022-04-19
Contact:
Meihua YANG
黄祥1,2(), 楚光明1, 郑新开1, 程锦涛1, 陈健豪1, 徐迎春3, 金奇江3, 杨梅花1,2(
)
通讯作者:
杨梅花
作者简介:
黄祥 E-mail:shzu_hx@163.com;
基金资助:
CLC Number:
Xiang HUANG, Guangming CHU, Xinkai ZHENG, Jintao CHENG, Jianhao CHEN, Yingchun XU, Qijiang JIN, Meihua YANG. Analysis of Codon Usage Bias and Phylogenetic of Chloroplast Genome in Nymphaea[J]. Journal of Agricultural Science and Technology, 2022, 24(4): 75-84.
黄祥, 楚光明, 郑新开, 程锦涛, 陈健豪, 徐迎春, 金奇江, 杨梅花. 睡莲属叶绿体基因组密码子偏好性及系统发育分析[J]. 中国农业科技导报, 2022, 24(4): 75-84.
编号 Number | 物种 Species | 登录号 Genbank ID | 密码子适应指数 CAI | 有效密码子数 ENC | GC1/% | GC2/% | GC3/% | GCall/% |
---|---|---|---|---|---|---|---|---|
1 | 澳洲巨花睡莲 N. gigantea | MT107637.1 | 0.170 | 51.468 | 46.11 | 38.66 | 32.61 | 39.13 |
2 | 白睡莲 N. alba | NC_006050.1 | 0.169 | 51.483 | 46.23 | 38.69 | 32.54 | 39.15 |
3 | 齿叶睡莲 N. lotus | NC_041238.1 | 0.168 | 51.365 | 46.34 | 38.66 | 32.4 | 39.13 |
4 | 厄德洛睡莲 N. heudelotii | MW802266.1 | 0.170 | 51.401 | 46.22 | 38.61 | 32.57 | 39.13 |
5 | 非洲睡莲 N. capensis | NC_040167.1 | 0.169 | 51.446 | 46.25 | 38.75 | 32.6 | 39.20 |
6 | 黄睡莲 N. mexicana | NC_024542.1 | 0.169 | 51.403 | 46.19 | 38.69 | 32.43 | 39.10 |
Table 1 Codon usage bias analysis of total 22 Nymphaea
编号 Number | 物种 Species | 登录号 Genbank ID | 密码子适应指数 CAI | 有效密码子数 ENC | GC1/% | GC2/% | GC3/% | GCall/% |
---|---|---|---|---|---|---|---|---|
1 | 澳洲巨花睡莲 N. gigantea | MT107637.1 | 0.170 | 51.468 | 46.11 | 38.66 | 32.61 | 39.13 |
2 | 白睡莲 N. alba | NC_006050.1 | 0.169 | 51.483 | 46.23 | 38.69 | 32.54 | 39.15 |
3 | 齿叶睡莲 N. lotus | NC_041238.1 | 0.168 | 51.365 | 46.34 | 38.66 | 32.4 | 39.13 |
4 | 厄德洛睡莲 N. heudelotii | MW802266.1 | 0.170 | 51.401 | 46.22 | 38.61 | 32.57 | 39.13 |
5 | 非洲睡莲 N. capensis | NC_040167.1 | 0.169 | 51.446 | 46.25 | 38.75 | 32.6 | 39.20 |
6 | 黄睡莲 N. mexicana | NC_024542.1 | 0.169 | 51.403 | 46.19 | 38.69 | 32.43 | 39.10 |
编号 Number | 物种 Species | 登录号 Genbank ID | 密码子适应指数 CAI | 有效密码子数 ENC | GC1/% | GC2/% | GC3/% | GCall/% |
---|---|---|---|---|---|---|---|---|
均值Mean | 0.169 | 51.401 | 46.26 | 38.67 | 32.54 | 35.16 | ||
8 | 蓝星睡莲 N. colorata | MT107631.1 | 0.170 | 51.466 | 46.13 | 38.61 | 32.65 | 39.13 |
9 | 鲁吉娜睡莲 N. rudgeana | MW802268.1 | 0.169 | 51.320 | 46.25 | 38.53 | 32.41 | 39.06 |
10 | 睡莲(子午莲) N. tetragona | MT107634.1 | 0.169 | 51.577 | 46.82 | 39.24 | 32.88 | 39.65 |
11 | 特尼日洼睡莲 N. tenerinervia | MW802269.1 | 0.170 | 51.317 | 46.21 | 38.54 | 32.39 | 39.05 |
12 | 细瓣睡莲 N. gracilis | MW802265.1 | 0.170 | 51.391 | 46.21 | 38.57 | 32.53 | 39.10 |
13 | 香睡莲 N. oborata | MT107636.1 | 0.170 | 51.500 | 47.03 | 39.33 | 33.00 | 39.79 |
14 | 小花睡莲 N. micrantha | MT107635.1 | 0.170 | 51.466 | 46.11 | 38.65 | 32.61 | 39.12 |
15 | 小腺睡莲 N. glandulifera | MW802264.1 | 0.170 | 51.303 | 46.19 | 38.52 | 32.37 | 39.03 |
16 | 亚马孙睡莲 N. amazonum | MW802262.1 | 0.170 | 51.317 | 46.21 | 38.53 | 32.41 | 39.05 |
17 | 延药睡莲 N. stellata | MT991061.1 | 0.170 | 51.410 | 46.19 | 38.60 | 32.57 | 39.12 |
18 | 夜雪睡莲 N. potamophila | MT107633.1 | 0.170 | 51.365 | 46.07 | 38.60 | 32.46 | 39.04 |
19 | 印度红睡莲 N. rubra | MT107632.1 | 0.169 | 51.399 | 46.17 | 38.51 | 32.44 | 39.04 |
20 | 永恒睡莲 N. immutabilis | MW802267.1 | 0.170 | 51.349 | 46.2 | 38.59 | 32.52 | 39.10 |
21 | 詹姆森睡莲 N. jamesoniana | NC_031826.2 | 0.169 | 51.362 | 46.25 | 38.67 | 32.44 | 39.12 |
22 | 侏儒卢旺达睡莲 N. thermarum | MW143076.1 | 0.170 | 51.419 | 46.19 | 38.61 | 32.60 | 39.13 |
Table 1 Codon usage bias analysis of total 22 Nymphaea
编号 Number | 物种 Species | 登录号 Genbank ID | 密码子适应指数 CAI | 有效密码子数 ENC | GC1/% | GC2/% | GC3/% | GCall/% |
---|---|---|---|---|---|---|---|---|
均值Mean | 0.169 | 51.401 | 46.26 | 38.67 | 32.54 | 35.16 | ||
8 | 蓝星睡莲 N. colorata | MT107631.1 | 0.170 | 51.466 | 46.13 | 38.61 | 32.65 | 39.13 |
9 | 鲁吉娜睡莲 N. rudgeana | MW802268.1 | 0.169 | 51.320 | 46.25 | 38.53 | 32.41 | 39.06 |
10 | 睡莲(子午莲) N. tetragona | MT107634.1 | 0.169 | 51.577 | 46.82 | 39.24 | 32.88 | 39.65 |
11 | 特尼日洼睡莲 N. tenerinervia | MW802269.1 | 0.170 | 51.317 | 46.21 | 38.54 | 32.39 | 39.05 |
12 | 细瓣睡莲 N. gracilis | MW802265.1 | 0.170 | 51.391 | 46.21 | 38.57 | 32.53 | 39.10 |
13 | 香睡莲 N. oborata | MT107636.1 | 0.170 | 51.500 | 47.03 | 39.33 | 33.00 | 39.79 |
14 | 小花睡莲 N. micrantha | MT107635.1 | 0.170 | 51.466 | 46.11 | 38.65 | 32.61 | 39.12 |
15 | 小腺睡莲 N. glandulifera | MW802264.1 | 0.170 | 51.303 | 46.19 | 38.52 | 32.37 | 39.03 |
16 | 亚马孙睡莲 N. amazonum | MW802262.1 | 0.170 | 51.317 | 46.21 | 38.53 | 32.41 | 39.05 |
17 | 延药睡莲 N. stellata | MT991061.1 | 0.170 | 51.410 | 46.19 | 38.60 | 32.57 | 39.12 |
18 | 夜雪睡莲 N. potamophila | MT107633.1 | 0.170 | 51.365 | 46.07 | 38.60 | 32.46 | 39.04 |
19 | 印度红睡莲 N. rubra | MT107632.1 | 0.169 | 51.399 | 46.17 | 38.51 | 32.44 | 39.04 |
20 | 永恒睡莲 N. immutabilis | MW802267.1 | 0.170 | 51.349 | 46.2 | 38.59 | 32.52 | 39.10 |
21 | 詹姆森睡莲 N. jamesoniana | NC_031826.2 | 0.169 | 51.362 | 46.25 | 38.67 | 32.44 | 39.12 |
22 | 侏儒卢旺达睡莲 N. thermarum | MW143076.1 | 0.170 | 51.419 | 46.19 | 38.61 | 32.60 | 39.13 |
参数Parameter | ENC | GC1 | GC2 | GC12 | GC3 | GC3s |
---|---|---|---|---|---|---|
GC1 | 0.04 | |||||
GC2 | 0.77** | 0.38 | ||||
GC12 | 0.52 | 0.74** | 0.82** | |||
GC3 | 0.90** | -0.01 | 0.64* | 0.42 | ||
GC3s | 0.89** | -0.04 | 0.63* | 0.40 | 0.97** | |
GCall | 0.83** | 0.46 | 0.86** | 0.82** | 0.78** | 0.74** |
Table 2 Correlation analysis of GC contents and related parameters in codons of Nymphaea
参数Parameter | ENC | GC1 | GC2 | GC12 | GC3 | GC3s |
---|---|---|---|---|---|---|
GC1 | 0.04 | |||||
GC2 | 0.77** | 0.38 | ||||
GC12 | 0.52 | 0.74** | 0.82** | |||
GC3 | 0.90** | -0.01 | 0.64* | 0.42 | ||
GC3s | 0.89** | -0.04 | 0.63* | 0.40 | 0.97** | |
GCall | 0.83** | 0.46 | 0.86** | 0.82** | 0.78** | 0.74** |
Fig.5 Cluster of total 22 Nymphaea species based on RSCU value of chloroplast codonsNote: 1~22 correspond to the number of total 22 Nymphaea species in Table 1.
Fig. 6 Phylogenetic tree of total 22 chloroplasts from NymphaeaA: Based on chloroplast matK gene sequences; B: Based on chloroplast rbcL gene sequences; C: Based on chloroplast trnL?trnF gene sequences; D: Based on chloroplast CDS sequences
1 | GUAN D L, MA L B, MUHAMMAD S K, et al.. Analysis of codon usage patterns in Hirudinaria manillensis reveals a preference for GC-ending codons caused by dominant selection constraints [J/OL]. BMC Genomics, 2018, 19(1):542 [2021-08-19]. . |
2 | LIU H, HUANG Y, DU X, et al.. Patterns of synonymous codon usage bias in the model grass Brachypodium distachyon [J/OL]. Genet. Mol. Res.: GMR, 2012, 11(AOP):4695 [2021-08-19]. . |
3 | 刘慧,王梦醒,岳文杰,等.糜子叶绿体基因组密码子使用偏性的分析[J].植物科学学报,2017,35(3):362-371. |
LIU H, WANG M X, YUE W J, et al.. Analysis of codon usage in the chloroplast genome of Broomcorn millet (Panicum miliaceum) [J]. Plant Sci. J., 2017, 35(3):362-371. | |
4 | PEDEN J F. Analysis of codon usage [D]. Nottingham: University of Nottingham, 1999. |
5 | ROMERO H, ZAVALA A, MUSTO H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces [J]. Nucleic Acids Res., 2000, 10:2084-2090. |
6 | XU C, CAI X, CHEN Q, et al.. Factors affecting synonymous codon usage bias in chloroplast genome of Oncidium gower ramsey [J]. Evol. Bioinform., 2011, 7:271-278. |
7 | KARLIN S, MRAZEK J. What drives codon choices in human genes? [J]. J. Mol. Biol., 1996, 262(4):459-472. |
8 | NIE X J, DENG P C, FENG K W, et al.. Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family [J]. Plant Mol. Biol. Rep., 2013, 32(4):828-840. |
9 | KAWABE A, MIYASHITA N T. Patterns of codon usage bias in three dicot and four monocot plant species [J]. Genes Genet. Syst., 2003, 78(5):343-352. |
10 | WANG L, ROOSSINCK M J. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants [J]. Plant Mol. Biol., 2006, 61(4-5):699-710. |
11 | 季凯凯,宋希强,陈春国,等.木兰科叶绿体基因组的密码子使用特征分析[J].中国农业科技导报,2020,22(11):52-62. |
JI K K, SONG X Q, CHEN C G, et al.. Codon usage profiling of chloroplast genome in Magnoliaceae [J]. J. Agric. Sci. Technol., 2020, 22(11):52-62. | |
12 | 陈哲,胡福初,王祥和,等.菠萝密码子使用偏好性分析[J].果树学报,2017(8):24-33. |
CHEN Z, HU F C, WANG X H, et al.. Analysis of codon usage bias of Ananas comosus with genome sequencing data [J]. J. Fruit Sci., 2017(8):24-33. | |
13 | 黄国振.睡莲[M].北京:中国林业出版社,2008:1-15. |
HUANG G Z. The Waterlilies [M]. Beijing: China Forestry Press, 2008:1-15. | |
14 | SUN C, CHEN F, TENG N, et al.. Comparative analysis of the complete chloroplast genome of seven Nymphaea species [J]. Aquat. Bot., 2021, 170(1):1-7. |
15 | ZHANG L, CHEN F, ZHANG X, et al.. The water lily genome and the early evolution of flowering plants [J]. Nature, 2020, 577(7788):1-6. |
16 | BORSCH T, HILU K W, WIERSEMA J H, et al.. Phylogeny of Nymphaea (Nymphaeaceae): evidence from substitutions and microstructural changes in the chloroplast trnT⁃trnF region [J]. Int. J. Plant Sci., 2007, 168(5):639-671. |
17 | LOHNE C, BORSCH T, WIERSEMA J H. Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers [J]. Bot. J. Linn. Soc., 2010, 154(2):141-163. |
18 | TANG D, FAN W, KASHIF M H, et al.. Analysis of chloroplast differences in leaves of rice isonuclear alloplasmic lines [J]. Protoplasma, 2018, 255(1):1-9. |
19 | 王艇,苏应娟,朱建明.叶绿体rbcL基因序列在植物系统学研究中的应用[J].植物科学学报,1999,17(S1):8-14. |
WANG C, SU Y J, ZHU J M. Application of chloroplast rbcL gene sequence in plant systematics [J]. J. Plant Sci., 1999,17 (S1):8-14. | |
20 | AOKI S, ITO M. Molecular phylogeny of Nicotiana (Solanaceae) based on the nucleotide sequence of the matK Gene [J]. Plant Biol., 2010, 2(3):316-324. |
21 | JENA S N, KUMAR S, NAIR N K. Molecular phylogeny in Indian Citrus L. (Rutaceae) inferred through PCR-RFLP and trnL-trnF sequence data of chloroplast DNA [J]. Sci. Hortic., 2009, 119(4):403-416. |
22 | GOREMYKIN V V, HIRSCH K I, STEFAN W, et al.. The chloroplast genome of nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm [J/OL]. Mol. Biol. Evol., 2004(7):7 [2021-08-19]. . |
23 | KIM Y, MIN J, KWON W, et al.. The complete chloroplast genome sequence of the Nymphaea capensis Thumb. (Nymphaeaceae) [J]. Mitochondrial DNA B, 2019, 4(1):401-402. |
24 | 尚明照,刘方,华金平,等.陆地棉叶绿体基因组密码子使用偏性的分析[J].中国农业科学,2011,44(2):245-253. |
SHANG M Z, LIU F, HUA J P, et al.. Analysis on codon usage of chloroplast genome of Gossypium hirsutum [J]. Agric. Sci. China, 2011, 44 (2):245-253. | |
25 | 叶友菊,倪州献,白天道,等.马尾松叶绿体基因组密码子偏好性分析[J].基因组学与应用生物学,2018,37(10):4464-4471. |
YE Y J, NI Z X, BAI T D, et al.. Analysis of codon preference in the chloroplast genome of Masson Pine [J]. Genom. Appl. Bio., 2018, 37(10):4464-4471. | |
26 | 杨国锋,苏昆龙,赵恰然,等.蒺蔡首蓿叶绿体密码子偏好性分析[J].草业学报,2015,24(12):171-179. |
YANG G F, SY K L, ZHAO Y R, et al.. Analysis of codon usage in the chloroplast genome of Medicago truncatula [J]. Acta Pratac. Sin., 2015, 24(12): 171-179. | |
27 | 吴完明,吴松锋,任大明,等.密码子偏性的分析方法及相关研究进展[J].遗传,2007,29(4):420-426. |
WU W M, WU S F, REN D M, et al.. Analysis methods and related research progress of codon bias [J]. Hereditas, 2007, 29(4):420-426. | |
28 | KOICHIRO T, JOEL D, MASATOSHI N, et al.. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 [J/OL]. Mol. Biol. Evol., 2007, (8): 1596 [2021-08-19]. . |
29 | 王晓双,杨芳,罗茜,等.石斛属叶绿体基因组密码子使用偏性及系统发育分析[J/OL].分子植物育种,2021:1-22 [2021-08-19]. . |
WANG X A, YANG F, LUO X, et al.. Codon usage bias and phylogenetic analysis of chloroplast genome of Dendrobium [J/OL]. Mol. Plant Breed., 2021:1-22 [2021-08-19]. . | |
30 | 赵森,邓力华,陈芬.秋茄叶绿体基因组密码子使用偏好性分析[J].森林与环境学报,2020,40(5):534-541. |
ZHAO S, DENG L H, CHEN F. Analysis of codon use preference in the chloroplast genome of Kandelia [J]. J. Forest Environ., 2020, 40(5):534-541. | |
31 | MARAIS G, MOUCHIROU D, DURET L. Neutral effect of recombination on base composition in Drosophila [J]. Genet. Res., 2003, 81(2):79-87. |
32 | SHARP P M, LI W H. An evolutionary perspective on synonymous codon usage in unicellular organisms [J]. J. Mol. Evol., 1986, 24(1):28-38. |
33 | 尹为治,方正,黄良鸿,等.海南2种龙脑香科植物叶绿体基因组密码子偏好性分析[J].林业调查规划,2020,45(6):25-32. |
YIN W Z, FANG Z, HUANG L H, et al.. Codon preference analysis of chloroplast genome of two species of Dipterocarpaceae in Hainan [J]. Forestry Surv. Plan., 2020, 45(6):25-32. | |
34 | ZHOU H, WANG H, HUANG L F, et al.. Heterogeneity in codon usages of sobemovirus genes [J]. Arch. Virol., 2005, 150(8):1591-1605. |
35 | 李蓉,谢析颖,王雪晶,等.兰科植物FNR基因的密码子偏好性分析[J].热带作物学报,2018,39(6):1137-1145. |
LI R, XIE X Y, WANG X J, et al.. Codon preference analysis of FNR gene in orchids [J]. J. Trop. Crops, 2018, 39 (6):1137-1145. | |
36 | 晁岳恩,常阳,王美芳,等.7种作物叶绿体基因的密码子偏好性及聚类分析[J].华北农学报,2012(4):60-64. |
CHAO Y E, CHANG Y, WANG M F, et al.. Codon preference and cluster analysis of chloroplast genes in 7 crops [J]. Acta Agric. Boreali-Sin., 2012 (4):60-64. |
[1] | Lihong HAN, Xinnan JIA, Renhuan CHEN, Chao LIU. Analysis of Codon Usage Bias of the Genome of Medicinal Fungus Wolfiporia cocos [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 83-90. |
[2] | SU Yue§, LIU Juanjuan§, WAN Bin, ZHANG Pengju, CHEN Zhenggen, SU Junji, WANG Caixiang. Chloroplast Genome Structure Characteristic and Phylogenetic Analysis of Mulgedium tataricum [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 33-42. |
[3] | JI Kaikai1, SONG Xiqiang1, CHEN Chunguo2, LI Ge2, XIE Shangqian1*. Codon Usage Profiling of Chloroplast Genome in Magnoliaceae [J]. Journal of Agricultural Science and Technology, 2020, 22(11): 52-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||