Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (6): 90-105.DOI: 10.13304/j.nykjdb.2021.0235
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Wei LI1,2(), Deli ZHU1,2(
), Qing WANG1,2, Shaohua ZENG1,2
Received:
2021-03-22
Accepted:
2021-06-19
Online:
2022-06-15
Published:
2022-06-21
Contact:
Deli ZHU
李炜1,2(), 朱德利1,2(
), 王青1,2, 曾绍华1,2
通讯作者:
朱德利
作者简介:
李炜 E-mail:574970565@qq.com;
基金资助:
CLC Number:
Wei LI, Deli ZHU, Qing WANG, Shaohua ZENG. Research Review on Crop Digital Twin System for Monitoring Growth Status and Environmental Response[J]. Journal of Agricultural Science and Technology, 2022, 24(6): 90-105.
李炜, 朱德利, 王青, 曾绍华. 监测生长状态和环境响应的作物数字孪生系统研究综述[J]. 中国农业科技导报, 2022, 24(6): 90-105.
模型类型 Model type | 模型名称 Model name | 适用作物 Applicable crops | 模型过程 Model process | 特点 Characteristics |
---|---|---|---|---|
多作物通用模型 Multi-crop general model | WOFOST | 禾谷类Cereals | 作物同化作用、呼吸作用、蒸腾作用、干物质分配、环境胁迫过程 Crop assimilation, respiration, transpiration, dry matter distribution, environmental stress process | WOFOST强调作物机理性,具有普适性 WOFOST emphasizes the mechanism of crops and has general applicability |
CERES | 禾谷类Cereals | 作物生长、器官发育和产量形成、光合产物输送过程、环境胁迫过程 Crop growth, organ development and yield production, photosynthetic product transport process, environmental stress process | CERES强调实用性,不受地域、气候、土壤类型限制 CERES emphasizes practicality and is not restricted by region, climate, and soil type | |
APSIM | 禾谷类、豆类 Cereals and beans | 光截获和利用、物候发育、干物质分配、水分和养分平衡机制以及土壤温度、残茬分解等 Light interception and utilization, phenological development, dry matter distribution, water and nutrient balance mechanism, soil temperature, stubble decomposition, etc. | ASPSIM是一个综合性模型,集成多个模型的优势,应用于其他学科领域 ASPSIM is a comprehensive model that integrates the advantages of multiple models and applies to other disciplines | |
单一作物模型 Single crop model | RCSODS | 水稻 Rice | 光截获和利用、物候发育、干物质分配、养分平衡过程等 Light interception and utilization, phenological development, dry matter distribution, nutrient balance process, etc. | RCSODS反映不同环境下作物生长、产量形成、效益等 RCSODS reflects crop growth, yield formation, benefits, etc. under different environments |
WheatSM | 小麦 Wheat | 光截获和利用、物候发育、干物质分配、养分平衡、环境胁迫过程等 Light interception and utilization, phenological development, dry matter distribution, nutrient balance, environmental stress process, etc. | WheatSM在华北冬小麦区有较高的适 应性 WheatSM has high adaptability to winter wheat in North China |
Table 1 Comparison of typical crop growth simulation models
模型类型 Model type | 模型名称 Model name | 适用作物 Applicable crops | 模型过程 Model process | 特点 Characteristics |
---|---|---|---|---|
多作物通用模型 Multi-crop general model | WOFOST | 禾谷类Cereals | 作物同化作用、呼吸作用、蒸腾作用、干物质分配、环境胁迫过程 Crop assimilation, respiration, transpiration, dry matter distribution, environmental stress process | WOFOST强调作物机理性,具有普适性 WOFOST emphasizes the mechanism of crops and has general applicability |
CERES | 禾谷类Cereals | 作物生长、器官发育和产量形成、光合产物输送过程、环境胁迫过程 Crop growth, organ development and yield production, photosynthetic product transport process, environmental stress process | CERES强调实用性,不受地域、气候、土壤类型限制 CERES emphasizes practicality and is not restricted by region, climate, and soil type | |
APSIM | 禾谷类、豆类 Cereals and beans | 光截获和利用、物候发育、干物质分配、水分和养分平衡机制以及土壤温度、残茬分解等 Light interception and utilization, phenological development, dry matter distribution, water and nutrient balance mechanism, soil temperature, stubble decomposition, etc. | ASPSIM是一个综合性模型,集成多个模型的优势,应用于其他学科领域 ASPSIM is a comprehensive model that integrates the advantages of multiple models and applies to other disciplines | |
单一作物模型 Single crop model | RCSODS | 水稻 Rice | 光截获和利用、物候发育、干物质分配、养分平衡过程等 Light interception and utilization, phenological development, dry matter distribution, nutrient balance process, etc. | RCSODS反映不同环境下作物生长、产量形成、效益等 RCSODS reflects crop growth, yield formation, benefits, etc. under different environments |
WheatSM | 小麦 Wheat | 光截获和利用、物候发育、干物质分配、养分平衡、环境胁迫过程等 Light interception and utilization, phenological development, dry matter distribution, nutrient balance, environmental stress process, etc. | WheatSM在华北冬小麦区有较高的适 应性 WheatSM has high adaptability to winter wheat in North China |
模拟类型 Type of model | 建模方法 Modeling method | 适用范围 Applicable scope | 采集图像 Image acquisition | 数据量 Data volume | 建模精度 Modeling accuracy | 建模速度 Modeling speed |
---|---|---|---|---|---|---|
基于生长规则方法 Growth rule-based method | L-System 和AMAP方法 L-System and AMAP method | 生长较为规则的作物 Regularly growing crops | 无 No | ★★★ | ★ | ★★ |
NURBS曲面方法 NURBS surface method | 小麦、水稻叶片 Wheat and rice leaves | 有 Yes | ★★★ | ★★ | ★★★★ | |
基于仪器方法 Instrument-based method | 三维扫描仪 3D scanner | 中小型作物 Middle and small crops | 无 No | ★★★ | ★★★★ | ★★ |
基于图像方法 Image-based method | Kinect深度图重建 Kinect depth map reconstruction | 不限 No limit | 有Yes | ★★★★ | ★★★ | ★★★★ |
单幅图像 Single image | 不限 No limit | 有Yes | ★★ | ★★ | ★★★★★ | |
运动图像 Moving image | 不限 No limit | 有Yes | ★★★★ | ★★★ | ★★★★ | |
立体视觉 Stereo vision | 不限 No limit | 有Yes | ★★★ | ★★★ | ★★★★★ |
Table 2 Comparison of virtual crop modeling methods
模拟类型 Type of model | 建模方法 Modeling method | 适用范围 Applicable scope | 采集图像 Image acquisition | 数据量 Data volume | 建模精度 Modeling accuracy | 建模速度 Modeling speed |
---|---|---|---|---|---|---|
基于生长规则方法 Growth rule-based method | L-System 和AMAP方法 L-System and AMAP method | 生长较为规则的作物 Regularly growing crops | 无 No | ★★★ | ★ | ★★ |
NURBS曲面方法 NURBS surface method | 小麦、水稻叶片 Wheat and rice leaves | 有 Yes | ★★★ | ★★ | ★★★★ | |
基于仪器方法 Instrument-based method | 三维扫描仪 3D scanner | 中小型作物 Middle and small crops | 无 No | ★★★ | ★★★★ | ★★ |
基于图像方法 Image-based method | Kinect深度图重建 Kinect depth map reconstruction | 不限 No limit | 有Yes | ★★★★ | ★★★ | ★★★★ |
单幅图像 Single image | 不限 No limit | 有Yes | ★★ | ★★ | ★★★★★ | |
运动图像 Moving image | 不限 No limit | 有Yes | ★★★★ | ★★★ | ★★★★ | |
立体视觉 Stereo vision | 不限 No limit | 有Yes | ★★★ | ★★★ | ★★★★★ |
传感器名称 Sensor name | 具体类型 Specific type | 功能 Function |
---|---|---|
环境传感器 Environmental sensor | 土壤含水量、养分传感器;水体含氧量、酸碱度传感器;温湿度、气体浓度传感器等 Soil water content and nutrient sensors; water oxygen content, pH sensors; temperature and humidity, gas concentration sensors, etc. | 监测作物生长环境如土壤、空气水域等关键要素,关注外部环境变化。 Monitor the key elements of the crop growth environment such as soil, air and water, and pay attention to changes in the external environment |
气象传感器 Weather sensor | 光照量、光照度传感器;紫外线、辐射量传感器;降雨量传感器等 Illumination, illuminance sensor; ultraviolet, radiation sensor; rainfall sensor, etc. | 监测作物为生长过程中常见的气象要素,有效预测气象环境 Monitoring crops is a common meteorological element in the growth process, effectively predicting the meteorological environment |
作物生长状态传感器 Crop growth status sensor | 作物茎流传感器,叶绿素传感器,激素类传感器等 Crop stem flow sensor, chlorophyll sensor, hormone sensor, etc. | 对作物生长过程中的生命数据进行检测,及时了解作物生长状态,有利于后期大数据分析 Detecting the life data during the growth of crops and understanding the growth status of crops in time is conducive to the later big data analysis |
Table 3 Sensor-specific types and functions
传感器名称 Sensor name | 具体类型 Specific type | 功能 Function |
---|---|---|
环境传感器 Environmental sensor | 土壤含水量、养分传感器;水体含氧量、酸碱度传感器;温湿度、气体浓度传感器等 Soil water content and nutrient sensors; water oxygen content, pH sensors; temperature and humidity, gas concentration sensors, etc. | 监测作物生长环境如土壤、空气水域等关键要素,关注外部环境变化。 Monitor the key elements of the crop growth environment such as soil, air and water, and pay attention to changes in the external environment |
气象传感器 Weather sensor | 光照量、光照度传感器;紫外线、辐射量传感器;降雨量传感器等 Illumination, illuminance sensor; ultraviolet, radiation sensor; rainfall sensor, etc. | 监测作物为生长过程中常见的气象要素,有效预测气象环境 Monitoring crops is a common meteorological element in the growth process, effectively predicting the meteorological environment |
作物生长状态传感器 Crop growth status sensor | 作物茎流传感器,叶绿素传感器,激素类传感器等 Crop stem flow sensor, chlorophyll sensor, hormone sensor, etc. | 对作物生长过程中的生命数据进行检测,及时了解作物生长状态,有利于后期大数据分析 Detecting the life data during the growth of crops and understanding the growth status of crops in time is conducive to the later big data analysis |
模型名称 Model name | 原理 Principle | 功能 Function |
---|---|---|
阶段生长发育 模型 Stage growth model | 以作物生长发育为基础,通过模拟作物生理发育时间来精确划分发育阶段。由温度、水分、光周期和遗传参数等为限制条件,区分不同的生长发育阶段 Based on the growth and development of crops, the development stages are accurately divided by simulating the physiological development time of crops. Different growth and development stages are distinguished by temperature, moisture, photoperiod and genetic parameters as limiting conditions | 根据设置作物参数条件和作物生长状况,划分作物的生长发育阶段 Divide the growth and development stages of crops according to the set crop parameter conditions and crop growth conditions |
器官生成与建成模型 Organ generation and modeling | 器官产出与建成时间与阶段生长发育过程息息相关,而器官生成的数量和大小与生物量分配和利用有密切关系 Organ output is closely related to the completion time and stage growth and development process, and the number and size of organ production are closely related to the distribution and utilization of biomass | 模拟不同器官的生成与建成的发生时间和生理过程 Simulate the formation and construction of different organs, simulate their occurrence time and physiological processes |
光合作用与物质积累模型 Photosynthesis used in material accumulation model | 采用高斯积分法分层计算冠层在不同叶层反射与吸收所积累的光合有效辐射,综合考虑太阳高度角与反射率的影响以及时序变化引起群体间消光系数变化,同时考虑温度、水分、CO2含量、生理年龄和氮素等因素,再通过加权计算不同时间点冠层同化速率 The Gaussian integration method is used to calculate the photosynthetic active radiation accumulated by the reflection and absorption of the canopy in different leaf layers, taking into account the influence of solar altitude and reflectivity and the change in extinction coefficient between populations caused by changes in time series, while taking into account temperature, moisture, and CO2 factors such as content, physiological age and nitrogen are weighted to calculate the rate of canopy assimilation at different time points | 计算作物在呼吸和物质转化过程中的消耗量,得出物质积累量,以模拟光合作用 Calculate the consumption of crops in the process of respiration and material transformation, and obtain the amount of material accumulation to simulate photosynthesis |
生物量分配模型 Biomass allocation model | 生物量是经过光合作用后计算产生的有机物量,其分配量决定了作物器官的产量和品质的形成 Biomass is the amount of organic matter calculated after photosynthesis, and its distribution determines the yield and quality of crop organs | 以生物量为输入变量,结合作物生长动态参数模拟器官生成与预测 Using biomass as input variable, combined with crop growth dynamic parameters to simulate organ generation and prediction |
水分、氮素平衡模型 Water and nitrogen balance model | 水分平衡根据土壤水分收支平衡原理,将土壤水分状况、作物对水分吸收特性建模,氮素因子间接影响作物光合和生长 Water balance is based on the principle of soil water budget balance, modeling soil water status and crop water absorption characteristics,nitrogen factors indirectly affect crop photosynthesis and growth | 根据天气数据和实际输入,计算根对水分的吸收值以及模拟土壤中有机质的氮素矿化和固定、氮素损失和作物吸收过程 According to weather data and actual input, calculate root water absorption value and simulate nitrogen mineralization and fixation of organic matter in soil, nitrogen loss and crop absorption process |
气象仿真模型 Weather simulation model | 为满足孪生作物在生长过程中对气象数据的体现,采用随机天气仿真技术对每日气象数据的气象仿真随机模型进行研究 In order to satisfy the embodiment of the meteorological data of the twin crops during the growth process, the random weather simulation technology is adopted to study the meteorological simulation random model of the daily meteorological data | 模拟作物在随机天气下生长状况及极端环境对作物生长发育的影响 Simulate crop growth conditions under random weather, simulate the impact of extreme environments on crop growth and development |
Table 4 Crop growth simulation sub?model functionality
模型名称 Model name | 原理 Principle | 功能 Function |
---|---|---|
阶段生长发育 模型 Stage growth model | 以作物生长发育为基础,通过模拟作物生理发育时间来精确划分发育阶段。由温度、水分、光周期和遗传参数等为限制条件,区分不同的生长发育阶段 Based on the growth and development of crops, the development stages are accurately divided by simulating the physiological development time of crops. Different growth and development stages are distinguished by temperature, moisture, photoperiod and genetic parameters as limiting conditions | 根据设置作物参数条件和作物生长状况,划分作物的生长发育阶段 Divide the growth and development stages of crops according to the set crop parameter conditions and crop growth conditions |
器官生成与建成模型 Organ generation and modeling | 器官产出与建成时间与阶段生长发育过程息息相关,而器官生成的数量和大小与生物量分配和利用有密切关系 Organ output is closely related to the completion time and stage growth and development process, and the number and size of organ production are closely related to the distribution and utilization of biomass | 模拟不同器官的生成与建成的发生时间和生理过程 Simulate the formation and construction of different organs, simulate their occurrence time and physiological processes |
光合作用与物质积累模型 Photosynthesis used in material accumulation model | 采用高斯积分法分层计算冠层在不同叶层反射与吸收所积累的光合有效辐射,综合考虑太阳高度角与反射率的影响以及时序变化引起群体间消光系数变化,同时考虑温度、水分、CO2含量、生理年龄和氮素等因素,再通过加权计算不同时间点冠层同化速率 The Gaussian integration method is used to calculate the photosynthetic active radiation accumulated by the reflection and absorption of the canopy in different leaf layers, taking into account the influence of solar altitude and reflectivity and the change in extinction coefficient between populations caused by changes in time series, while taking into account temperature, moisture, and CO2 factors such as content, physiological age and nitrogen are weighted to calculate the rate of canopy assimilation at different time points | 计算作物在呼吸和物质转化过程中的消耗量,得出物质积累量,以模拟光合作用 Calculate the consumption of crops in the process of respiration and material transformation, and obtain the amount of material accumulation to simulate photosynthesis |
生物量分配模型 Biomass allocation model | 生物量是经过光合作用后计算产生的有机物量,其分配量决定了作物器官的产量和品质的形成 Biomass is the amount of organic matter calculated after photosynthesis, and its distribution determines the yield and quality of crop organs | 以生物量为输入变量,结合作物生长动态参数模拟器官生成与预测 Using biomass as input variable, combined with crop growth dynamic parameters to simulate organ generation and prediction |
水分、氮素平衡模型 Water and nitrogen balance model | 水分平衡根据土壤水分收支平衡原理,将土壤水分状况、作物对水分吸收特性建模,氮素因子间接影响作物光合和生长 Water balance is based on the principle of soil water budget balance, modeling soil water status and crop water absorption characteristics,nitrogen factors indirectly affect crop photosynthesis and growth | 根据天气数据和实际输入,计算根对水分的吸收值以及模拟土壤中有机质的氮素矿化和固定、氮素损失和作物吸收过程 According to weather data and actual input, calculate root water absorption value and simulate nitrogen mineralization and fixation of organic matter in soil, nitrogen loss and crop absorption process |
气象仿真模型 Weather simulation model | 为满足孪生作物在生长过程中对气象数据的体现,采用随机天气仿真技术对每日气象数据的气象仿真随机模型进行研究 In order to satisfy the embodiment of the meteorological data of the twin crops during the growth process, the random weather simulation technology is adopted to study the meteorological simulation random model of the daily meteorological data | 模拟作物在随机天气下生长状况及极端环境对作物生长发育的影响 Simulate crop growth conditions under random weather, simulate the impact of extreme environments on crop growth and development |
1 | 李仁旺,肖人彬.数字孪生驱动的大数据制造服务模式[J].科技导报,2020,38(14):116-125. |
LI R W, XIAO R B. Big data manufacturing service model driven by digital twin [J]. Sci. Technol. Rev., 2020, 38(14):116-125. | |
2 | 郭亮,张煜.数字孪生在制造中的应用进展综述[J].机械科学与技术,2020,39(4):590-598. |
GUO L, ZHANG Y. Overview of the application progress of digital twins in manufacturing [J]. Mech. Sci. Technol. Aerospace Eng.,2020,39(4):590-598. | |
3 | GARCIA-SANCHEZ A J, GARCIA-SANCHEZ F, GARCIA-HARO J. Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops [J].Comput. Electron. Agricu., 2011, 75(2):288-303. |
4 | 屈利华,赵春江,杨信廷,等. Zigbee无线传感器网络在温室多源数据采集系统中的应用综述[J].中国农机化,2012(4):179-183. |
QU L H, ZHAO C J, YANG X T, et al.. Application of Zigbee wireless sensor network in multiple-source data acquisition system of greenhouse [J]. J. Chin. Agric. Mech., 2012(4):179-183. | |
5 | 张文宇,曹宏鑫,葛道阔,等.基于模型的智慧农业平台的构建[J].江苏农业科学, 2015, 43(12):478-481. |
ZHANG W Y, CAO H X, GE D K, et al.. Construction of a model-based smart agriculture platform [J]. Jiangsu Agric. Sci., 2015, 43(12):478-481. | |
6 | 张红卫, 葛红梅. 农作物生长动态监测技术综述[C]//中国气象学会.第27届中国气象学会年会现代农业气象防灾减灾与粮食安全分会场论文集.北京:中国气象学会,2010: 528-536. |
ZHANG H W, GE H M. Summary of dynamic monitoring technology of crop growth [C]// Chinese Meteorological Society. Proceedings of the 27th annual meeting of the chinese meteorological society. Beijing: Chinese Meteorological Society,2010: 528-536. | |
7 | 曹宏鑫, 赵锁劳, 葛道阔, 等. 作物模型发展探[J].中国农业科学, 2011, 44(17):3520 -3528. |
CAO H X, ZHAO S L, GE D K, et al.. Discussion on development of crop models [J]. Sci. Agric. Sin., 2011, 44(17):3520 -3528. | |
8 | 杨靖民, 杨靖一, 姜旭, 等. 作物模型研究进展[J]. 吉林农业大学学报, 2012, 34(5): 553-561. |
YANG J M, YANG J Y, JIANG X, et al.. Progress of crop model research [J]. J. Jilin Agric. Univ., 2012, 34(5): 553-561. | |
9 | DE WIT C T, BROUWER R, PENNING D V F W T. The simulation of photosynthetic systems [C]// Prediction and measurement of photosynthetic productivity. Proceedings of the IBP/PP technical meeting. Wageningen: Pudoc, 1970: 47-70. |
10 | PENNING D V F W T, HVAN LAAR H. Simulation of growth processes and the model BACROS [M]// PENNING D V F W T, VAN LAAR H H. Simulation of plant growth and crop production. Wageningen: Pudoc, 1982: 114-135. |
11 | VAN K H, PENNING D V F W T, DREES E M. A summary model for crop growth [M]//PENNING D V F W T, VAN LAAR H H. Simulation of plant growth and crop production. Wageningen: Pudoc, 1982: 87-97. |
12 | HIJMANS R J, LENS I, DIEPEN C. WOFOST 6.0: user's guide for the WOFOST 6.0 crop growth simulation model [J]. DLO Winand Staring Centre, 1994: 928-944. |
13 | PENNING DE VRIE F W T, JANSE D M, BERGE H F M TEN, et al.. Vries FWTPD,DM Jansen,HFMT Berge,Simulation of Ecophysiological Processes of Growth in Several Annual Crops [M]. Monographs 29. Pudoc. Netherlands Wageningen, 1989:1-271. |
14 | SPITTERS C J T, SCHAPENDONK A. Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation [J]. Genet. Aspects Plant Miner. Nutr., 2012, 42: 151. |
15 | RITCHIE J T. Description and performance of CERES wheat: a user-oriented wheat yield model [Z]. ARS Wheat Yield Project, 1985: 159-175. |
16 | MCCOWN R L, HAMMER G L, HARGREAVES J N G, et al.. APSIM: a novel software system for model development, model testing and simulation in agricultural systems research [J]. Agric. Syst, 1996, 50(3): 255-271. |
17 | 高亮之, 金之庆, 黄耀, 等. 水稻计算机模拟模型及其应用之一 水稻钟模型——水稻发育动态的计算机模型[J]. 中国农业气象, 1989, 10(3): 3-10. |
GAO L Z, JIN Z Q, HUANG Y, et al.. Rice clock model—a computer simulation model of rice development [J]. Chin. J. Agrometeorol., 1989, 10(3): 3-10. | |
18 | BAKER D N, LAMBERT J R, MCKINION J M. GOSSYM: a simulator of cotton crop growth and yield [J]. South Carolina Agric. Exp. Station Tech. Bull (USA), 1983(1089): 134. |
19 | RITCHIE J T. Model for predicting evaporation from a row crop with incomplete cover [J]. Water Resour. Res., 1972, 8(5): 1204-1213. |
20 | WILKERSON G G, JONES J W, BOOTE K J, et al.. Modeling soybean growth for crop management [J]. Trans. ASAE, 1983, 26(1): 63-73. |
21 | BOOTE K J, JONES J W, HOOGENBOOM G, et al.. PNUTGRO v. 1.02. peanut crop growth simulation model. user's guide [J]. Florida Agric. Exp. Station J., 1989 (8420): 32611. |
22 | HOOGENBOOM G, WHITE J W, JONES J W, et al.. BEANGRO: a process‐oriented dry bean model with a versatile user interface [J]. Agron. J., 1994, 86(1): 182-190. |
23 | BOOTE K J, HOOGENBOOM G. The CROPGRO model for grain legumes [J]. Understanding Options Agric. Production, 2013, 7: 99. |
24 | HOOGENBOOM G, JONES J W, BOOTE K J. Modeling growth, development, and yield of grain legumes using SOYGRO, PNUTGRO, and BEANGRO: a review [J]. Trans. ASAE, 1992, 35(6): 2043-2056. |
25 | 赵福成,谭禾平, 包斐, 等.作物生长模拟模型及其在玉米上的应用综述[J].农业科技通讯, 2016(11):12-14. |
ZHAO F C, TAN H P, BAO F, et al.. Summary of crop growth simulation model and its application on corn [J]. Bull. Agric. Sci. Technol., 2016(11):12-14. | |
26 | JONES J W, HOOGENBOOM G, Porter C H, et al.. The DSSAT cropping system model [J]. Eur. J. Agron, 2003, 18(3-4): 235-265. |
27 | 金之庆,高亮之,黄耀,等.RCSODS在推广水稻新品种上的应用[J].中国水稻科学,1994(4):217-222. |
JIN Z Q, GAO L Z, HUANG Y, et al.. Application of RCSODS in extending new rice varieties [J]. Chin. J. Rice Sci., 1994(4):217-222. | |
28 | 苏李君,刘云鹤,王全九.基于有效积温的中国水稻生长模型的构建[J].农业工程学报,2020,36(1):162-174. |
SU L J, LIU Y H, WANG Q J. Rice growth model in China based on growing degree days [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(1):162-174. | |
29 | 孙宁,冯利平.小麦生长发育模拟模型在华北冬麦区适用性验证[J].中国生态农业学报,2006(1):71-72. |
SUN N, FENG L P. Validation of WheatSM model in winter wheat production region of north China [J]. Chin. J. Eco-Agric., 2006(1):71-72. | |
30 | 潘学标,韩湘玲,石元春.COTGROW:棉花生长发育模拟模型[J].棉花学报,1996(4):180-188. |
PAN X B, HAN X L, SHI Y C. COTGROW: cotton growth and development simulation model [J]. Cott. Sci., 1996(4):180-188. | |
31 | 冯利平,韩学信.棉花栽培计算机模拟决策系统(COTSYS)[J].棉花学报,1999(5):251-254. |
FENG L P, HAN X X. COTSYS cotton cultivational simulation and decision making system [J]. Cott. Sci., 1999(5):251-254. | |
32 | SELEZNYOVA A N, HANAN J. Mechanistic modelling of coupled phloem and computational methods [J]. Ann. Bot,2018,121(5):991-1003. |
33 | VAZQUEZ-ARELLANO M, REISER D, PARAFOROS D S, et al..3-D reconstruction of maize plants using a time-of-flight camera [J]. Comput. Electron. Agric.,2018,145:235-247. |
34 | 吴峰峰,朱波,周恺,等.虚拟作物模型的研究现状及展望[J].北方园艺, 2020(1):162-169. |
WU F F, ZHU B, ZHOU K, et al.. Research status and prospect of virtual crop model [J]. Northern Hortic., 2020(1):162-169. | |
35 | COEN E, PRUSINKIEWICZ P. Quantitative modeling of Arabidopsis development [J]. Plant Physiol., 2005,139(2):960-968. |
36 | FRASSON R P D M, KRAJEWSKI W F. Three-dimensional digital model of a maize plant [J]. Agric. For. Meteorol.,2010,150(3):478-488. |
37 | JALLAS E, SEQUEIRA R, MARTIN P, et al.. Mechanistic virtual modeling: coupling a plant simulation model with a three-dimensional plant architecture component [J]. Environ. Model. Assess.,2009,14(1):29-45. |
38 | 李书钦,刘海龙,诸叶平,等. 基于实测数据和NURBS曲面的小麦叶片三维可视化[J] .福建农业学报,2016,31(7):777-782. |
LI S Q, LIU H L, ZHU Y P, et al.. 3D visualization of wheat leaves using measured data and NURBS surface [J]. Fujian J. Agric. Sci., 2016,31(7):777-782. | |
39 | 王美丽,何东健.基于 L 系统的小麦根系可视化模拟研究[J].农机化研究,2008(3):36 -39. |
WANG M L, HE D J. Visualized simulation of wheat roots based on L-system [J]. J. Agric. Mech. Res., 2008(3):36-39. | |
40 | LEE K H, EHSANI R. Comparison of two 2D laser scanners for sensing object distances, shapes, and surface patterns [J]. Comput. electron. Agric., 2008, 60(2): 250-262. |
41 | 袁晓敏,温维亮,郭新宇,等.番茄群体冠层形态结构三维模拟—基于实测数据[J].农机化研究,2012,34(2):172-176. |
YUAN X M, WEN W L, GUO X Y,et al.. 3-Dimentional morphology simulation of tomato canopy—based on measured data [J]. J. Agric. Mech. Res.,2012,34(2):172-176. | |
42 | 王勇健,温维亮,郭新宇,等.基于点云数据的植物叶片三维重建[J].中国农业科技导报,2014,16(5):83-89. |
WANG Y J, WEN W L, GUO X Y, et al.. Three-dimensional reconstruction of plant leaf blade based on point cloud data [J]. J. Agric. Sci. Technol., 2014,16(5):83-89. | |
43 | 王孟博.基于点云的作物植株三维重建技术研究[J].鄂州大学学报,2018,25(1):104-106, 109. |
WANG M B. Research on 3D reconstruction technology of crop plant based on point cloud [J]. J. Ezhou Univ., 2018,25(1):104-106, 109. | |
44 | 邵小宁. 基于Kinect的植物三维点云获取与重建方法研究[D].陕西杨凌:西北农林科技大学,2016. |
SHAO X N. Research on 3D point cloud acquisition and reconstruction method of plant based on kinect [D]. Shaanxi Yangling:Northwest A&F University, 2016. | |
45 | ZENG J, ZHANG Y, ZHAN S. 3D tree models reconstruction from a single image [C]//The IEEE Computer Society. The sixth international conference on intelligent systems design and applications. Piscataway: IEEE, 2006: 445-450. |
46 | 杨亮,郭新宇,陆声链,等.基于多幅图像的黄瓜叶片形态三维重建[J].农业工程学报,2009,25(2):141-144. |
YANG L, GUO X Y, LU S L, et al.. 3D morphological reconstruction of cucumber leaf based on multiple images [J]. Trans. Chin. Soc. Agric. Eng., 2009, 25(2): 141-144. | |
47 | 王传宇,赵明,阎建河,等.基于双目立体视觉技术的玉米叶片三维重建[J].农业工程学报,2010,26(4):198-202. |
WANG C Y, ZHAO M, YAN J H, et al.. Three-dimensional reconstruction of maize leaves based on binocular stereovision system [J]. Trans. Chin. Soc. Agric. Eng., 2010, 26(4): 198-202. | |
48 | 袁挺,李伟,谭豫之,等.温室环境下黄瓜采摘机器人信息获取[J].农业机械学报,2009,40(10):151-155. |
YUAN T, LI W, TAN Y Z, et al.. Information acquisition for cucumber harvesting robot in greenhouse [J]. Trans. Chin. Soc. Agric. Mach., 2009, 40(10): 151-155. | |
49 | 朱冰琳,刘扶桑,朱晋宇,等.基于机器视觉的大田植株生长动态三维定量化研究[J].农业机械学报,2018,49(5):256-262. |
ZHU B L, LIU F S, ZHU J Y, et al.. Three-dimensional quantifications of plant growth dynamics in field-grown plants based on machine vision method [J]. Trans. Chin. Soc. Agric. Mach., 2018, 49(5): 256-262. | |
50 | 李书钦,诸叶平,刘海龙,等.小麦生长模拟与三维可视化系统构建技术研究[J].中国农业科技导报,2018,20(2):65-71. |
LI S Q, ZHU Y P, LIU H L, et al.. Wheat growth simulation and 3D visualization system construction technology [J]. J. Agric. Sci. Technol.,2018,20(2):65-71. | |
51 | 孙爱珍,杨红云,何火娇, 等.棉花苞叶三维形态可视化建模研究[J].农机化研究,2010,32(7):56-58, 64. |
SUN A Z, YANG H Y, HE H J, et al.. Study on modeling 3D shape and visualization of cotton bract [J]. J. Agric. Mech. Res., 2010, 32(7): 56-58, 64. | |
52 | 汪强,郑光,马新明,等.基于Unity 3D引擎的玉米栽培可视化系统[J].广西科学,2017,24(3):292-297. |
WANG Q, ZHENG G, MA X M, et al.. Corn cultivation visualization system based on unity 3D engine [J]. Guangxi Sci., 2017, 24(3): 292-297. | |
53 | 岳学军,蔡雨霖,王林惠,等.农情信息智能感知及解析的研究进展[J].华南农业大学学报,2020,41(6):14-28. |
YUE X J, CAI Y L, WANG L H, et al.. Research progress of intelligent perception and analytics of agricultural information [J]. J. South China Agric.Univ., 2020, 41(6): 14-28. | |
54 | 康孟珍,王秀娟,华净,等.平行农业:迈向智慧农业的智能技术[J].智能科学与技术学报,2019,1(2):107-117. |
KANG M Z, WANG X J, HUA J, et al.. Parallel agriculture: intelligent technology toward smart agriculture [J]. Chin. J. Intelligent Sci. Technol., 2019, 1(2): 107-117. | |
55 | 吴炳方,张淼,曾红伟,等.大数据时代的农情监测与预警[J].遥感学报,2016,20(5):1027-1037. |
WU B F, ZHANG M, ZENG H W, et al.. Agricultural monitoring and early warning in the era of big data [J]. National Remote Sens. Bull., 2016, 20(5): 1027-1037. | |
56 | 顾静秋. 农业数据智能感知与分析关键技术研究 [D].北京:北京交通大学, 2018. |
GU J Q. Research on smart perception and intelligent analysis of agricultural data [D]. Beijing: Beijing Jiaotong University, 2018. | |
57 | 刘慧,汤亮,张文宇,等.基于模型的可视化水稻生长系统的构建与实现[J].农业工程学报,2009,25(9):148-154, 362. |
LIU H, TANG L, ZHANG W Y, et al.. Construction and implementation of model-based visual rice growth system [J]. Trans. Chin. Soc. Agric. Eng., 2009, 25(9): 148-154, 362. | |
58 | 何火娇,杨红云,唐建军,等.水稻植株虚拟生长可视化系统设计及其实现[J].系统仿真学报,2009,21(14):4393-4396. |
HE H J, YANG H Y, TANG J J, et al.. Design and realization of virtual growth visualization system for rice plant [J]. J. System Simulation, 2009, 21(14): 4393-4396. | |
59 | CHOY C B, XU D, GWAK J Y, et al.. 3d-r2n2: a unified approach for single and multi-view 3d object reconstruction [C]// European Conference on Computer Vision. Proceadings of the 14th European Conference. Berlin: Springer, 2016:628-644. |
60 | FAN H, SU H, GUIBAS L. A point set generation network for 3D object reconstruction from a single image [C]// IEEE Computer Society. 2017 IEEE conference on computer vision and pattern recognition (CVPR). Los Alamitos : IEEE Computer Society, 2017: 2463-2471. |
61 | WANG N Y, ZHANG Y, LI Z, et al.. Pixel2mesh: Generating 3d mesh models from single rgb images [C]// European Conference on Computer Vision. Proceadings of the 15th european conference. Berlin: Springer, 2018: 52-67. |
62 | YAO Y, LUO Z, LI S, et al.. Mvsnet: Depth inference for unstructured multi-view stereo [C]// European Conference on Computer Vision (ECCV). The 15th european conference. Berlin: Springer, 2018: 767-783. |
63 | MADEC S, JIN X, LU H, et al.. Ear density estimation from high resolution RGB imagery using deep learning technique [J]. Agricu. for. meteorol., 2019, 264: 225-234. |
64 | YOU J, LI X, LOW M, et al.. Deep gaussian process for crop yield prediction based on remote sensing data [C]// The AAAI Conference on Artificial Intelligence. Proceedings of the thirty-first AAAI conference on artificial intelligence. Menlo Park: AAAI Press, 2017: 4559-4565. |
65 | SONG X, ZHANG G, LIU F, et al.. Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model [J]. J. Arid Land, 2016, 8(5): 734-748. |
[1] | Jianhua ZHENG, Ruixue ZHAO, Hua ZHAO, Sijing LI, Guogang WANG. International Experience and Enlightenment on Development of Smart Agricultural Information Services [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 9-18. |
[2] | HANG Xiaoning, LUO Jia, ZHANG Pengcheng, LI Zhenyi, ZHANG Jian, HU Liujie, YU Duan, HE Weiyuan, ZHOU Youliang, LIAO Dunxiu. Countermeasures on Developing Climate-smart Agriculture in Southwest China [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 8-15. |
[3] | MA Hao1, ZHANG Kai1, JIN Xin1*, JI Jiangtao1, ZHU Xu1. Identification of Blueberry Fruit Maturity Using Hyperspectral Images Technology [J]. Journal of Agricultural Science and Technology, 2020, 22(2): 80-90. |
[4] | LIU Tao1, ZHONG Xiaochun2*, SUN Chengming1. Review on Crop Temperature and Its Monitoring Technologies [J]. Journal of Agricultural Science and Technology, 2017, 19(12): 59-66. |
[5] | GUAN Dahai1, ZHANG Jun2, WANG Qingmei1, ZHANG Yanping1, . Climate-Smart Agriculture and its Enlightenment to Agricultural Development of China [J]. Journal of Agricultural Science and Technology, 2017, 19(10): 7-13. |
[6] | CHEN Xiao-dong1, YUAN Xiang-yang1, GUO Ping-yi1*, NING Na1, GUO Mei-jun1, LAN Ya. Progress and Prospect in Agricultural Internet of Things [J]. , 2015, 17(2): 8-16. |
[7] | SUN Zhong\|fu1, DU Ke\|ming1, ZHENG Fei\|xiang1, YIN Shou\|yi2. Perspectives of Research and Application of Big Data on Smart Agriculture [J]. , 2013, 15(6): 63-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||