Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (2): 1-10.DOI: 10.13304/j.nykjdb.2021.0582
• SPECIAL FORUM ON FISH BIOLOGICAL BREEDING TECHNOLOGY • Next Articles
Received:
2021-07-14
Accepted:
2021-09-22
Online:
2022-02-15
Published:
2022-02-22
Contact:
Wei HU
通讯作者:
胡炜
作者简介:
陶彬彬 E-mail:taobinbin@inb.ac.cn;
基金资助:
CLC Number:
Binbin TAO, Wei HU. Research Progress on Sex Control Breeding of Fish[J]. Journal of Agricultural Science and Technology, 2022, 24(2): 1-10.
陶彬彬, 胡炜. 鱼类性别控制育种研究进展[J]. 中国农业科技导报, 2022, 24(2): 1-10.
1 | BELL G. The Masterpiece of Nature: the Evolution and Genetics of Sexuality [M]. Berkeley: The University of California Press, 1982:1-635. |
2 | MIYA M, GOTOH R O, SADO T. MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples [J]. Fisheries Sci., 2020, 86(6):939-970. |
3 | LI X Y, GUI J F. Diverse and variable sex determination mechanisms in vertebrates [J]. Sci. China Life Sci., 2018, 61(12):1503-1514. |
4 | 陈戟,胡炜,朱作言.鱼类生殖发育调控研究进展 [J]. 科学通报,2013, 2:103-114. |
CHEN J, HU W, ZHU Z Y. Progress in studies of fish reproductive development regulation [J]. Chin. Sci. Bull., 2013, 2:103-114. | |
5 | GUILLEN J, NATALE F, CARVALHO N, et al.. Global seafood consumption footprint [J]. Ambio J. Human Environ., 2019, 48(2):111-122. |
6 | FAO. The State of World Fisheries and Aquaculture 2020[R]. Rome, 2020. |
7 | WANG H P, SHEN Z G. Sex Control in Aquaculture [M]. Wiley-Blackwell, 2018:1-34. |
8 | BACHTROG D, MANK J E, PEICHEL C L, et al.. Sex determination: why so many ways of doing it? [J/OL]. Plos Biol., 2014, 12(7): e1001899 [2021-06-05]. . |
9 | CAPEL B. Vertebrate sex determination: evolutionary plasticity of a fundamental switch [J]. Nat. Rev. Genet., 2017, 18(11):675-689. |
10 | CHEN J, ZHU Z Y, HU W. Progress in research on fish sex determining genes [J/OL]. Water Biology and Security, 2022, 100008 [2022-02-07]. . |
11 | LIEW W C, ORBAN L. Zebrafish sex: a complicated affair [J]. Brief Funct. Genomics, 2014, 13(2):172-187. |
12 | GE C T, YE J, WEBER C, et al.. The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species [J]. Science, 2018, 360(6389):645-648. |
13 | WEBER C, ZHOU Y J, LEE J G, et al.. Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b [J]. Science, 2020, 368(6488):303-306. |
14 | HAYASHI Y, KOBIRA H, YAMAGUCHI T, et al.. High temperature causes masculinization of genetically female medaka by elevation of cortisol [J]. Mol. Reprod. Dev., 2010, 77(8):679-686. |
15 | NAVARRO-MARTIN L, VINAS J, RIBAS L, et al.. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European Sea Bass [J/OL]. Plos Genet., 2011, 7(12): e1002447 [2021-06-05]. |
16 | BISWAS C, CHAKRABORTY S, MUNILKUMAR S, et al.. Effect of high temperature during larval and juvenile stages on masculinization of common carp (Cyprinus carpio, L) [J/OL]. Aquaculture, 2021, 530: 735803 [2021-06-05]. . |
17 | MATSUDA M, NAGAHAMA Y, SHINOMIYA A, et al.. DMY is a Y-specific DM-domain gene required for male development in the medaka fish [J]. Nature, 2002, 417(6888):559-563. |
18 | MATSUDA M, SHINOMIYA A, KINOSHITA M, et al.. DMY gene induces male development in genetically female (XX) medaka fish [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(10):3865-3870. |
19 | HATTORI R S, MURAI Y, OURA M, et al.. A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination [J]. Proc. Natl. Acad. Sci. USA, 2012, 109(8):2955-2959. |
20 | KAMIYA T, KAI W, TASUMI S, et al.. A trans-species missense SNP in Amhr2 is associated with sex determination in the Tiger Pufferfish, Takifugu rubripes (Fugu) [J/OL]. PLoS Genet., 2012, 8(7):e1002798 [2021-06-05]. . |
21 | MYOSHO T, OTAKE H, MASUYAMA H, et al.. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis [J]. Genetics, 2012, 191(1):163-170. |
22 | YANO A, GUYOMARD R, NICOL B, et al.. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss [J]. Curr. Biol., 2012, 22(15):1423-1428. |
23 | CHEN S L, ZHANG G J, SHAO C W, et al.. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle [J]. Nat. Genet., 2014, 46(3):253-260. |
24 | TAKEHANA Y, MATSUDA M, MYOSHO T, et al.. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryziasdancena [J/OL]. Nat. Commun., 2014, 5:4157 [2021-05-15]. . |
25 | LI M H, SUN Y L, ZHAO J E, et al.. a tandem duplicate of anti-mullerian hormone with a missense snp on the Y chromosome is essential for male sex determination in Nile Tilapia, Oreochromis niloticus [J/OL]. PLoS Genet., 2015, 11(11):e1005678 [2021-06-05]. . |
26 | BAO L S, TIAN C X, LIU S K, et al.. The Y chromosome sequence of the channel catfish suggests novel sex determination mechanisms in teleost fish [J/OL]. BMC Biol., 2019, 17: 6 [2021-06-05]. . |
27 | LIN Q H, MEI J, LI Z, et al.. Distinct and cooperative roles of amh and dmrt1 in self-renewal and differentiation of male germ cells in zebrafish [J]. Genetics, 2017, 207(3):1007-1022. |
28 | WEI L, LI X Y, LI M H, et al.. dmrt1 directly regulates the transcription of the testis-biased Sox9b gene in Nile tilapia (Oreochromis niloticus) [J]. Gene, 2019, 687:109-115. |
29 | LAU E S W, ZHANG Z W, QIN M M, et al.. Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation [J/OL]. Sci Rep., 2016, 6:37357 [2021-06-05]. . |
30 | YANG Y J, WANG Y, LI Z, et al.. Sequential, divergent, and cooperative requirements of Foxl2a and Foxl2b in ovary development and maintenance of zebrafish [J]. Genetics, 2017, 205(4):1551-1572. |
31 | YOSHIMOTO S, OKADA E, UMEMOTO H, et al.. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis [J]. Proc. Natl. Acad. Sci. USA, 2008, 105(7):2469-2474. |
32 | DONG J J, LI J, HU J, et al.. Comparative genomics studies on the dmrt gene family in fish [J/OL]. Front Genet., 2020, 11: 563947[2021-06-05]. . |
33 | LI M H, YANG H H, LI M R, et al.. Antagonistic roles of dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs [J]. Endocrinology, 2013, 154(12):4814-4825. |
34 | DAI S F, QI S S, WEI X Y, et al.. Germline sexual fate is determined by the antagonistic action of dmrt1 and foxl3/foxl2 in tilapia [J/OL]. Development, 2021, 148(8): dev199380 [2021-06-05]. . |
35 | WU K, SONG W Y, ZHANG Z W, et al.. Disruption of dmrt1 rescues the all-male phenotype of the cyp19a1a mutant in zebrafish-a novel insight into the roles of aromatase/estrogens in gonadal differentiation and early folliculogenesis [J/OL]. Development, 2020, 147(4):dev182758 [2021-06-05]. . |
36 | GAN R H, WANG Y, LI Z, et al.. Functional divergence of multiple duplicated Foxl2 homeologs and alleles in a recurrent polyploid fish [J]. Mol. Biol. Evol., 2021, 38(5):1995-2013. |
37 | NAKAMOTO M, SHIBATA Y, OHNO K, et al.. Ovarian aromatase loss-of-function mutant medaka undergo ovary degeneration and partial female-to-male sex reversal after puberty [J]. Mol. Cell Endocrinol., 2018, 460(C):104-122. |
38 | WANG D S, KOBAYASHI T, ZHOU L Y, et al.. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with Ad4 binding protein/steroidogenic factor 1 [J]. Mol. Endocrinol., 2007, 21(3):712-725. |
39 | NISHIMURA T, YAMADA K, FUJIMORI C, et al.. Germ cells in the teleost fish medaka have an inherent feminizing effect [J/OL]. PLoS Genet., 2018, 14(3): e1007259 [2021-06-05]. . |
40 | DRANOW D B, HU K, BIRD A M, et al.. Bmp15 Is an oocyte-produced signal required for maintenance of the adult female sexual phenotype in zebrafish [J/OL]. PLoS Genet., 2016, 12(9): e1006323 [2021-06-05]. . |
41 | NISHIMURA T, SATO T, YAMAMOTO Y, et al.. foxl3 is a germ cell-intrinsic factor involved in sperm-egg fate decision in medaka [J]. Science, 2015, 349(6245):328-331. |
42 | KIKUCHI M, NISHIMURA T, SAITO D, et al.. Novel components of germline sex determination acting downstream of foxl3 in medaka [J]. Dev. Biol., 2019, 445(1):80-89. |
43 | KUWAMURA T, SUNOBE T, SAKAI Y, et al.. Hermaphroditism in fishes: an annotated list of species, phylogeny, and mating system [J]. Ichthyol. Res., 2020, 67(3):341-360. |
44 | HU Q, GUO W, GAO Y, et al.. Molecular cloning and analysis of gonadal expression of Foxl2 in the rice-field eel Monopterus albus [J/OL]. Sci. Rep., 2014, 4:6884 [2021-06-05]. . |
45 | ZHU Y F, WANG C L, CHEN X W, et al.. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change [J]. Mol. Biol. Rep., 2016, 43(7):629-637. |
46 | SHENG Y, ZHAO W, SONG Y, et al.. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal [J/OL]. Sci. Rep., 2015, 5:10176 [2021-06-05]. . |
47 | CAI J F, YANG W, CHEN D, et al.. Transcriptomic analysis of the differentiating ovary of the protogynous ricefield eel Monopterus albus [J/OL]. BMC Genomics, 2017, 18(1):573 [2021-06-05]. . |
48 | ZHANG Y, ZHANG S, LIU Z X, et al.. Epigenetic modifications during sex change repress gonadotropin stimulation of Cyp19a1a in a teleost ricefield eel (Monopterusalbus) [J]. Endocrinology, 2013, 154(8):2881-2890. |
49 | CHEN J X, XIAO L, PENG C, et al.. Socially controlled male-to-female sex reversal in the protogynous orange-spotted grouper, Epinephelus coioides [J]. J. Fish Biol., 2019, 94(3):414-421. |
50 | CHEN J, CHEN H, PENG C, et al.. A highly efficient method of inducing sex change using social control in the protogynous orange-spotted grouper (Epinephelus coioides) [J/OL]. Aquaculture, 2020, 517:734787 [2021-06-05]. . |
51 | YU Q, PENG C, YE Z F, et al.. An estradiol-17 beta/miRNA-26a/cyp19a1a regulatory feedback loop in the protogynous hermaphroditic fish, Epinephelus coioides [J/OL]. Mol. Cell Endocrinol., 2020, 504:110689 [2021-06-05]. . |
52 | PENG C, WANG Q, SHI H R, et al.. Natural sex change in mature protogynous orange-spotted grouper (Epinephelus coioides): gonadal restructuring, sex hormone shifts and gene profiles [J]. J. Fish Biol., 2020, 97(3):785-793. |
53 | ZHAO X Y, LUO M J, LI Z G, et al.. Chromosome-scale assembly of the Monopterus genome [J/OL]. Gigascience, 2018, 7(5):giy046 [2021-06-05]. . |
54 | TIAN H F, HU Q M, LI Z. A high-quality de novo genome assembly of one swamp eel (Monopterus albus) strain with PacBio and Hi-C sequencing data [J/OL]. G3-Genes Genom Genet., 2021, 11(1):jkaa032 [2021-06-05]. . |
55 | FENG K, LUO H R, LI Y M, et al.. High efficient gene targeting in rice field eel Monopterus albus by transcription activator-like effector nucleases [J]. Sci. Bull., 2017, 62(3):162-164. |
56 | LUO H R, FENG K, CHEN J, et al.. Telophase of the first cleavage is the key stage for optimally inducing mitotic gynogenesis in rice field eel (Monopterus albus) [J/OL]. Aquaculture, 2020, 523:735241 [2021-06-05]. . |
57 | YAMAMOTO T O. Artificially induced sex-reversal in genotypic males of the Medaka (Oryzias-Latipes) [J]. J. Exp. Zool., 1953, 123(3): 571-594. |
58 | YAMAMOTO T. Artificial induction of functional sex-reversal in genotypic females of the Medaka (Oryzias-Latipes) [J]. J. Exp. Zool., 1958, 137(2): 227-263. |
59 | JIANG M Y, WU X X, CHEN K X, et al.. Production of YY supermale and XY physiological female common carp for potential eradication of this invasive species [J]. J. World Aquacult. Soc., 2018, 49(2):315-327. |
60 | LIU S, XU P, LIU X G, et al.. Production of neo-male mandarin fish Siniperca chuatsi by masculinization with orally administered 17 alpha-methyltestosterone [J/OL]. Aquaculture, 2021, 530:735904 [2021-06-05]. . |
61 | 梅洁,桂建芳.鱼类性别异形和性别决定的遗传基础及其生物技术操控 [J]. 中国科学:生命科学,2014,44(12):1198-1212. |
MEI J, GUI J F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish [J]. Sci. China Life Sci., 2014, 44(12):1198-1212. | |
62 | RAHMAN M A, LEE S G, YUSOFF F M, et al.. Hybridization and Its Application in Aquaculture [M]. Wiley, 2018:163-178. |
63 | CHEN J, FAN Z, TAN D, et al.. A review of genetic advances related to sex control and manipulation in Tilapia [J]. J. World Aquacult. Soc., 2018, 49(2):277-291. |
64 | MBIRU M, LIMBU S M, CHENYAMBUGA S W, et al.. Comparative performance of mixed-sex and hormonal-sex-reversed Nile tilapia Oreochromis niloticus and hybrids (Oreochromis niloticus × Oreochromis urolepis hornorum) cultured in concrete tanks [J]. Aquacult. Int., 2016, 24(2):557-566. |
65 | MTAKI K, LIMBU S M, MMOCHI A J, et al.. Hybrids production as a potential method to control prolific breeding in tilapia and adaptation to aquaculture climate-induced drought [J/OL]. Aquacul. Fisheries, 2021[2021-12-26]. . |
66 | 刘志刚,卢迈新,曹建萌,等.罗非鱼“粤闽1号”及其繁育群体的遗传多样性和遗传关系分析 [J]. 渔业科学进展,2018,39(6):31-41. |
LIU Z G, LU M X, CAO J M, et al.. Genetic diversity and genetic relationship analysis of tilapia “Yuemin No. 1” and its breeding populations [J]. Progress Fishery Sci., 2018, 39(6):3l-4l. | |
67 | 吴清江,陈荣德,叶玉珍,等.鲤鱼人工雌核发育及其作为建立近交系新途径的研究[J]. 遗传学报,1981,8(1):50-55. |
WU Q J, CHEN D R, YE Y Z, et al.. Investigation on the carp gynogenesis with reference to establishing a pure line [J]. Acta Genet. Sin., 1981, 8(1):50-55. | |
68 | JIANG M Y, JIA S T, CHEN J, et al.. Timing of gonadal development and dimorphic expression of se-related genes in gonads during early sex differentiation in the Yellow River carp [J/OL]. Aquaculture, 2020, 518:734825 [2021-06-05]. . |
69 | 刘同明,吴清江,叶玉珍.人工诱导泥鳅雌核发育及人工转性的研究[J]. 水生生物学报,2004, 28(4): 445-447. |
LIU T M, WU Q J, YE Y Z. Studies on the artificial induced gynogenesis and the artificial sex reversal in loach, Misgurnus anguillicaudatus [J]. Acta Hydrobiol. Sin., 2004, 28(4):445-447. | |
70 | LIU Y X, WANG G X, LIU Y, et al.. Genetic verification of doubled haploid Japanese flounder, Paralichthys olivaceus by genotyping telomeric microsatellite loci [J]. Aquaculture, 2012, 324:60-63. |
71 | GUI J F, ZHOU L. Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio [J]. Sci. China Life Sci., 2010, 53(4):409-415. |
72 | OSPINA-ALVAREZ N, PIFERRER F. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change [J/OL]. PLoS One, 2008, 3(7):e2837 [2021-06-05]. . |
73 | SHAO C W, LI Q Y, CHEN S L, et al.. Epigenetic modification and inheritance in sexual reversal of fish [J]. Genome Res., 2014, 24(4):604-615. |
74 | YAMAGUCHI T, YOSHINAGA N, YAZAWA T, et al.. Cortisol is involved in temperature-dependent sex determination in the Japanese flounder [J]. Endocrinology, 2010, 151(8):3900-3908. |
75 | ADOLFI M C, FISCHER P, HERPIN A, et al.. Increase of cortisol levels after temperature stress activates dmrt1a causing female-to-male sex reversal and reduced germ cell number in medaka [J]. Mol. Reprod. Dev., 2019, 86(10):1405-1417. |
76 | XIONG Y, WANG S, GUI J F, et al.. Artificially induced sex-reversal leads to transition from genetic to temperature-dependent sex determination in fish species [J]. Sci. China Life Sci., 2020, 63(1):157-159. |
77 | HATTORI R S, CASTANEDA-CORTES D C, PADILLA L F A, et al.. Activation of stress response axis as a key process in environment-induced sex plasticity in fish [J]. Cell Mol. Life Sci., 2020, 77(21):4223-4236. |
78 | XU D D, LOU B, XU H X, et al.. Isolation and characterization of male-specific DNA markers in the rock bream Oplegnathus fasciatus [J]. Mar. Biotechnol., 2013, 15(2): 221-229. |
79 | SUN Y L, JIANG D N, ZENG S, et al.. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia (Oreochromis niloticus) [J]. Aquaculture, 2014, 433: 19-27. |
80 | CHEN X, MEI J, WU J J, et al.. A Comprehensive transcriptome provides candidate genes for sex determination/differentiation and SSR/SNP markers in yellow catfish [J]. Mar. Biotechnol., 2015, 17(2): 190-198. |
81 | OU M, YANG C, LUO Q, et al.. An NGS-based approach for the identification of sex-specific markers in snakehead (Channa argus) [J]. Oncotarget, 2017, 8(58):98733-98744. |
82 | YANG C, HUANG R, OU M, et al.. A rapid method of sex-specific marker discovery based on NGS and determination of the XX/XY sex-determination system in Channa maculata [J/OL]. Aquaculture, 2020, 528:735499 [2021-06-05]. . |
83 | HAN C, ZHU Q Y, LU H M, et al.. Screening and characterization of sex-specific markers developed by a simple NGS method in mandarin fish (Siniperca chuatsi) [J]. Aquaculture, 2020, 527:1-7. |
84 | ZHANG A D, HUANG R, CHEN L M, et al.. Computational identification of Y-linked markers and genes in the grass carp genome by using a pool-and-sequence method [J/OL]. Sci. Rep., 2017, 7:8213 [2021-06-05]. . |
85 | LIU H Y, PANG M X, YU X M, et al.. Sex-specific markers developed by next-generation sequencing confirmed an XX/XY sex determination systemin bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix) [J]. DNA Res., 2018, 25(3):341-341. |
86 | ZHOU Y L, WU J J, WANG Z W, et al.. Identification of sex-specific markers and heterogametic XX/XY sex determination system by 2b-RAD sequencing in redtail catfish (Mystus wyckioides) [J]. Aquacult. Res., 2019, 50(8):2251-2266. |
87 | ZHENG S Q, WANG X S, ZHANG S, et al.. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Southern catfish (Silurus meridionalis) [J/OL]. Aquaculture, 2020, 517:734783 [2021-06-05]. . |
88 | LIU H Q, GUAN B, XU J, et al.. Genetic manipulation of sex ratio for the large-scale breeding of YY super-male and XY All-male yellow catfish [Pelteobagrus fulvidraco (Richardson)] [J]. Mar. Biotechnol., 2013, 15(3): 321-328. |
89 | ZHAO J, OU M, WANG Y P, et al.. Breeding of YY super-male of blotched snakehead (Channa maculata) and production of all-male hybrid (Channa argus♀ × C. maculata♂) [J/OL]. Aquaculture, 2021, 538:736450 [2021-06-05]. . |
90 | ZHU Z Y, LI G L, HE L, et al.. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758) [J]. J. Appl. Ichthyol., 1985, 1: 31-34. |
91 | HAN Y L, PENG C, WANG L, et al.. Female-to-male sex reversal in orange-spotted grouper (Epinephelus coioides) caused by overexpressing of Amh in vivo [J]. Biol. Reprod., 2018, 99(6):1205-1215. |
92 | BLIX T B, DALMO R A, WARGELIUS A, et al.. Genome editing on finfish: current status and implications for sustainability [J]. Rev. Aquacult., 2021, 10:1-20. |
93 | ZHAI G, SHU T T, CHEN K X, et al.. Successful production of an all-female common carp (Cyprinus carpio L.) population using cyp17a1-deficient neomale carp [J]. Engineering, 2022, 8(1):181-189. |
94 | JIANG D N, YANG H H, LI M H, et al.. gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile Tilapia [J]. Mol. Reprod. Dev., 2016, 83(6):497-508. |
95 | ZHANG X B, LI M R, MA H, et al.. Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile Tilapia [J]. Endocrinology, 2017, 158(8):2634-2647. |
[1] | Mi OU, Jian ZHAO, Qing LUO, Haiyang LIU, Rong HUANG, Yaping WANG, Kunci CHEN. Research Progress on the Breeding and Application of Sex Control in Snakehead [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 11-25. |
[2] | CHANG Ya\|qing, TIAN Yi, ZHANG Wei\|jie. Progress of Mariculture Biological Genetic Breeding Technology in China [J]. , 2013, 15(6): 8-15. |
[3] | LI Xi-he1,2 . Research and Development of Livestock Reproductive Biotechnology and its Industrialization and Popularization [J]. , 2013, 15(3): 64-71. |
[4] | WANG Yu-Ling, CHEN Qing-Xi. Advances of Researches on Specific Proteins in Plants' Reproduction |Development and Environment Stress [J]. , 2006, 8(2): 32-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||