Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (4): 116-125.DOI: 10.13304/j.nykjdb.2021.0759
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Qi LIU1(), Bin CHEN1, Songlin SUN1,2, Mingtao XIAO1,2(
), Chaoran SUN1,2(
)
Received:
2021-08-31
Accepted:
2021-11-22
Online:
2022-04-15
Published:
2022-04-19
Contact:
Mingtao XIAO,Chaoran SUN
刘奇1(), 陈斌1, 孙松林1,2, 肖名涛1,2(
), 孙超然1,2(
)
通讯作者:
肖名涛,孙超然
作者简介:
刘奇E-mail:1281923122@qq.com
基金资助:
CLC Number:
Qi LIU, Bin CHEN, Songlin SUN, Mingtao XIAO, Chaoran SUN. Research on Mechanical Characteristics of Clamping Conveyor for Leafy Vegetables[J]. Journal of Agricultural Science and Technology, 2022, 24(4): 116-125.
刘奇, 陈斌, 孙松林, 肖名涛, 孙超然. 叶类蔬菜有序收获夹持输送的力学特性研究[J]. 中国农业科技导报, 2022, 24(4): 116-125.
基本参数 Parameter | 范围 Scope | 平均值 Average | 标准偏差 SD |
---|---|---|---|
株高Plant height/mm | 156.00~196.00 | 176.00 | 28.28 |
质量Mass/g | 63.80~95.60 | 79.70 | 22.49 |
叶梗高Leaf stem height/mm | 47.10~61.85 | 54.48 | 10.43 |
直径Diameter/mm | 49.25~64.42 | 55.45 | 3.65 |
含水率Moisture content/% | 87.30~90.10 | 88.70 | 1.40 |
Table 1 Dimension of Pakchoi
基本参数 Parameter | 范围 Scope | 平均值 Average | 标准偏差 SD |
---|---|---|---|
株高Plant height/mm | 156.00~196.00 | 176.00 | 28.28 |
质量Mass/g | 63.80~95.60 | 79.70 | 22.49 |
叶梗高Leaf stem height/mm | 47.10~61.85 | 54.48 | 10.43 |
直径Diameter/mm | 49.25~64.42 | 55.45 | 3.65 |
含水率Moisture content/% | 87.30~90.10 | 88.70 | 1.40 |
Fig.1 Measurement platform structureNote:1—Fixed frame;2—Screw slide Ⅰ;3—Screw slide Ⅱ;4—Inclination sensor;5—Force sensor;6—Clamping plate;7—Clamping material;8—Motor.
水平 Level | t1:夹持角度 Clamping angle/(°) | t2:夹持高度 Clamping height /cm | t3:夹持材料 Clamping material |
---|---|---|---|
-1 | 15 | 2.0 | A |
0 | 20 | 3.0 | B |
1 | 25 | 4.0 | C |
Table 2 Test factor level
水平 Level | t1:夹持角度 Clamping angle/(°) | t2:夹持高度 Clamping height /cm | t3:夹持材料 Clamping material |
---|---|---|---|
-1 | 15 | 2.0 | A |
0 | 20 | 3.0 | B |
1 | 25 | 4.0 | C |
夹持高度 Height/cm | 最小值 Minimum/mm | 最大值 Maximum/mm | 平均值 Average/mm | 标准偏差 SD |
---|---|---|---|---|
1.0 | 43.72 | 59.45 | 52.15 | 3.95 |
2.0 | 49.25 | 64.42 | 55.45 | 3.65 |
3.0 | 46.21 | 66.11 | 54.80 | 4.38 |
4.0 | 41.27 | 66.21 | 52.17 | 4.96 |
5.0 | 34.84 | 66.15 | 49.17 | 5.86 |
Table 3 Diameter of different heights of Pakchoi
夹持高度 Height/cm | 最小值 Minimum/mm | 最大值 Maximum/mm | 平均值 Average/mm | 标准偏差 SD |
---|---|---|---|---|
1.0 | 43.72 | 59.45 | 52.15 | 3.95 |
2.0 | 49.25 | 64.42 | 55.45 | 3.65 |
3.0 | 46.21 | 66.11 | 54.80 | 4.38 |
4.0 | 41.27 | 66.21 | 52.17 | 4.96 |
5.0 | 34.84 | 66.15 | 49.17 | 5.86 |
材料 Material | 临界倾角 Critical inclination/(°) | 静摩擦系数 Static friction coefficient | 弹性 Elasticity/(N·mm-2) |
---|---|---|---|
光滑面 Smooth surface | 19.92 | 0.36 | — |
材料A Material A | 34.78 | 0.69 | 3 519 |
材料B Material B | 38.24 | 0.79 | 218 |
材料C Material C | 36.09 | 0.73 | 11 |
Table 4 Parameter under different clamping material
材料 Material | 临界倾角 Critical inclination/(°) | 静摩擦系数 Static friction coefficient | 弹性 Elasticity/(N·mm-2) |
---|---|---|---|
光滑面 Smooth surface | 19.92 | 0.36 | — |
材料A Material A | 34.78 | 0.69 | 3 519 |
材料B Material B | 38.24 | 0.79 | 218 |
材料C Material C | 36.09 | 0.73 | 11 |
试验序号 Test No. | 因素Factor | 破损临界力 Damage critical force/N | 破损压缩量 Damage compression/mm | ||
---|---|---|---|---|---|
夹持角度 Clamping angle/(°) | 夹持高度 Clamping height/cm | 夹持材料 Clamping material | |||
1 | 15 | 2 | B | 12.2 | 16 |
2 | 25 | 2 | B | 16.8 | 18 |
3 | 15 | 4 | B | 24.1 | 26 |
4 | 25 | 4 | B | 22.7 | 25 |
5 | 15 | 3 | A | 15.9 | 16 |
6 | 25 | 3 | A | 18.1 | 17 |
7 | 15 | 3 | C | 19.5 | 25 |
8 | 25 | 3 | C | 22.6 | 26 |
9 | 20 | 2 | A | 13.4 | 14 |
10 | 20 | 4 | A | 19.6 | 22 |
11 | 20 | 2 | C | 20.3 | 20 |
12 | 20 | 4 | C | 26.4 | 32 |
13 | 20 | 3 | B | 16.5 | 24 |
14 | 20 | 3 | B | 17.1 | 23 |
15 | 20 | 3 | B | 16.2 | 22 |
16 | 20 | 3 | B | 16.9 | 23 |
17 | 20 | 3 | B | 15.3 | 24 |
Table 5 Test design and results
试验序号 Test No. | 因素Factor | 破损临界力 Damage critical force/N | 破损压缩量 Damage compression/mm | ||
---|---|---|---|---|---|
夹持角度 Clamping angle/(°) | 夹持高度 Clamping height/cm | 夹持材料 Clamping material | |||
1 | 15 | 2 | B | 12.2 | 16 |
2 | 25 | 2 | B | 16.8 | 18 |
3 | 15 | 4 | B | 24.1 | 26 |
4 | 25 | 4 | B | 22.7 | 25 |
5 | 15 | 3 | A | 15.9 | 16 |
6 | 25 | 3 | A | 18.1 | 17 |
7 | 15 | 3 | C | 19.5 | 25 |
8 | 25 | 3 | C | 22.6 | 26 |
9 | 20 | 2 | A | 13.4 | 14 |
10 | 20 | 4 | A | 19.6 | 22 |
11 | 20 | 2 | C | 20.3 | 20 |
12 | 20 | 4 | C | 26.4 | 32 |
13 | 20 | 3 | B | 16.5 | 24 |
14 | 20 | 3 | B | 17.1 | 23 |
15 | 20 | 3 | B | 16.2 | 22 |
16 | 20 | 3 | B | 16.9 | 23 |
17 | 20 | 3 | B | 15.3 | 24 |
方差来源 Variance source | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 222.93 | 9 | 24.77 | 16.91 | 0.000 6 |
t1 | 9.03 | 1 | 9.03 | 6.17 | 0.042 0 |
t2 | 113.25 | 1 | 113.25 | 77.32 | <0.000 1 |
t3 | 59.40 | 1 | 59.40 | 40.56 | 0.000 4 |
t1t2 | 9.00 | 1 | 9.00 | 6.14 | 0.042 3 |
t1t3 | 0.20 | 1 | 0.20 | 0.14 | 0.721 0 |
t2t3 | 2.500e-003 | 1 | 2.500e-003 | 1.707e-003 | 0.968 2 |
t12 | 2.87 | 1 | 2.87 | 1.96 | 0.204 6 |
t22 | 12.53 | 1 | 12.53 | 8.55 | 0.022 2 |
t32 | 13.64 | 1 | 13.64 | 9.31 | 0.018 5 |
残差 Residual | 10.25 | 7 | 1.46 | — | — |
失拟项 Lack of fit | 8.25 | 3 | 2.75 | 5.50 | 0.066 5 |
误差 Error | 2.00 | 4 | 0.50 | — | — |
总和 Sum | 233.18 | 16 | — | — | — |
Table 6 Variance analysis of the damage critical force regression model
方差来源 Variance source | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 222.93 | 9 | 24.77 | 16.91 | 0.000 6 |
t1 | 9.03 | 1 | 9.03 | 6.17 | 0.042 0 |
t2 | 113.25 | 1 | 113.25 | 77.32 | <0.000 1 |
t3 | 59.40 | 1 | 59.40 | 40.56 | 0.000 4 |
t1t2 | 9.00 | 1 | 9.00 | 6.14 | 0.042 3 |
t1t3 | 0.20 | 1 | 0.20 | 0.14 | 0.721 0 |
t2t3 | 2.500e-003 | 1 | 2.500e-003 | 1.707e-003 | 0.968 2 |
t12 | 2.87 | 1 | 2.87 | 1.96 | 0.204 6 |
t22 | 12.53 | 1 | 12.53 | 8.55 | 0.022 2 |
t32 | 13.64 | 1 | 13.64 | 9.31 | 0.018 5 |
残差 Residual | 10.25 | 7 | 1.46 | — | — |
失拟项 Lack of fit | 8.25 | 3 | 2.75 | 5.50 | 0.066 5 |
误差 Error | 2.00 | 4 | 0.50 | — | — |
总和 Sum | 233.18 | 16 | — | — | — |
方差来源 Variance source | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 336.39 | 9 | 37.38 | 57.50 | < 0.000 1 |
t1 | 1.13 | 1 | 1.13 | 1.73 | 0.229 8 |
t2 | 171.13 | 1 | 171.13 | 263.27 | < 0.000 1 |
t3 | 144.50 | 1 | 144.50 | 222.31 | < 0.000 1 |
t1t2 | 2.25 | 1 | 2.25 | 3.46 | 0.105 1 |
t1t3 | 0.000 | 1 | 0.000 | 0.000 | 1.000 0 |
t2t3 | 4.00 | 1 | 4.00 | 6.15 | 0.042 2 |
t12 | 9.16 | 1 | 9.16 | 14.09 | 0.007 1 |
t22 | 0.95 | 1 | 0.95 | 1.46 | 0.265 9 |
t32 | 2.21 | 1 | 2.21 | 3.40 | 0.107 5 |
残差Residual | 4.55 | 7 | 0.65 | — | — |
失拟项 Lack of fit | 1.75 | 3 | 0.58 | 0.83 | 0.541 3 |
误差 Error | 2.80 | 4 | 0.70 | — | — |
总和 Sum | 340.94 | 16 | — | — | — |
Table 7 Analysis of variance of damage compression regression model
方差来源 Variance source | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 336.39 | 9 | 37.38 | 57.50 | < 0.000 1 |
t1 | 1.13 | 1 | 1.13 | 1.73 | 0.229 8 |
t2 | 171.13 | 1 | 171.13 | 263.27 | < 0.000 1 |
t3 | 144.50 | 1 | 144.50 | 222.31 | < 0.000 1 |
t1t2 | 2.25 | 1 | 2.25 | 3.46 | 0.105 1 |
t1t3 | 0.000 | 1 | 0.000 | 0.000 | 1.000 0 |
t2t3 | 4.00 | 1 | 4.00 | 6.15 | 0.042 2 |
t12 | 9.16 | 1 | 9.16 | 14.09 | 0.007 1 |
t22 | 0.95 | 1 | 0.95 | 1.46 | 0.265 9 |
t32 | 2.21 | 1 | 2.21 | 3.40 | 0.107 5 |
残差Residual | 4.55 | 7 | 0.65 | — | — |
失拟项 Lack of fit | 1.75 | 3 | 0.58 | 0.83 | 0.541 3 |
误差 Error | 2.80 | 4 | 0.70 | — | — |
总和 Sum | 340.94 | 16 | — | — | — |
1 | 前瞻产业研究院.2020年中国蔬菜种植行业市场现状和竞争格局分析[EB/OL].(2020-09-21)[2021-07-23]. . |
2 | 廖禺,陈立才,潘松,等.叶类蔬菜机械化收获技术装备现状与发展[J].江西农业学报,2019,31(11):77-81. |
LIAO Y, CHEN L C, PAN S, et al.. Status and development of chemical harvesting technology and equipment for leaf vegetables [J]. Acta Agric. Jiangxi, 2019, 31(11): 77-81. | |
3 | 林羽,刘斌琼.浅谈我国设施农业发展状况[J].福建农业科技,2014(10):68-70. |
LIN Y, LIU B Q. Brief introduction to development situation of facilities agriculture [J]. Fujian Agric. Sci. Technol., 2014(10): 68-70. | |
4 | 蒋欢.国内外农业机械化发展研究[J].农业科技与装备,2013(3):83-84. |
JIANG H. Research on the development of agricultural mechanization at home and abroad [J]. Agric. Sci. Technol. Equip., 2013(3): 83-84. | |
5 | 辜松,杨艳丽,张跃峰,等.荷兰蔬菜种苗生产装备系统发展现状及对中国的启示[J].农业工程学报,2013,29(14):185-194. |
GU S, YANG Y L, ZHANG Y F, et al.. Development status of automated equipment systems for greenhouse vegetable seedlings production in Netherlands and its inspiration for China [J]. Trans. Chin. Soc. Agric Eng., 2013, 29(14): 185-194. | |
6 | 常江雪,白学峰,鲁植雄.中国农业机械化绿色可持续发展理论框架研究[J].中国农机化学报,2021,42(3):213-220, 226. |
CHANG J X, BAI X F, LU Z X. Research on the theoretical framework of green sustainable development of agricultural mechanization in China [J]. J. Chin. Agric. Mechan., 2021, 42(3): 213-220, 226. | |
7 | 殷海访,王振华.叶菜类蔬菜机械化收获技术及研究[J].南方农机,2021,52(9):14-15. |
YIN H F, WANG Z H. Technology and research on mechanized harvesting of leafy vegetables [J]. Chin. Sout. Agric. Machinery, 2021, 52(9): 14-15. | |
8 | 缪磊,王建军.叶类蔬菜收获机械研发关键技术及发展趋势[J].江苏农机化,2020(6):24-26. |
MIAO L, WANG J J. Key technology and development trend of leaf vegetable harvesting machinery research and development [J]. Jiangsu Agric. Mechan., 2020(6): 24-26. | |
9 | 金月,肖宏儒,曹光乔,等.我国茎叶类蔬菜生产关键环节的机械化作业模式[J].中国蔬菜,2019(7):7-11. |
JIN Y, XIAO H R, CAO G Q, et al.. The mechanized operation mode of the key links in the production of stem and leaf vegetables in China [J]. Chin. Veget., 2019(7): 7-11. | |
10 | 王伟,吕晓兰,王士林,等.茎叶类蔬菜机械化收获技术研究现状与发展[J].中国农业大学学报,2021,26(4):117-127. |
WANG W, LU X L, WANG S L, et al.. Current status and development of stem and leaf vegetables mechanized harvesting technology [J]. J. China Agric.Univ., 2021, 26(4): 117-127. | |
11 | 于昭洋,胡志超,杨柯,等.大蒜联合收获切根试验台设计与试验[J].农业工程学报,2016,32(22):77-85. |
YU Z Y, HU Z C, YANG K, et al.. Design and experiment of root cutting device in garlic combine harvesting [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(22): 77-85. | |
12 | 黄继承,沈成,纪爱敏,等.工业大麻收割机切割-输送关键部件作业参数优化[J].吉林大学学报(工学版),2021,51(2):772-780. |
HUANG J C, SHEN C, JI A M, et al.. Optimization of operation parameters of cutting-conveying key components of industrial hemp harvester [J]. J. Jilin Univ. (Eng. Technol.), 2021, 51(2) :772-780. | |
13 | 章永年,施印炎,汪小旵,等.茎叶类蔬菜有序收获机柔性夹持输送机构设计[J].中国农机化学报,2016,37(9):48-51. |
ZHANG Y N, SHI Y Y, WANG X Y, et al.. Design on flexible clamping and conveying mechanism for orderly harvester of stems-leafy vegetables [J]. J. Chin. Agric. Mechan., 2016, 37(9): 48 -51. | |
14 | 张涛,李英,宋树民,等.基于柔性夹持的青菜头收获机设计与试验[J].农业机械学报,2020,51(S2):162-169, 190. |
ZHANG T, LI Y, SONG S M, et al.. Design and experiment of tumorous stem mustard harvester based on flexible clamping [J]. Trans. Chin. Soc. Agric. Machinery, 2020, 51(S2): 162-169, 190. | |
15 | NANG V N, YAMANE S. Sutton development of prototype harvesting for head lettuce [J]. Eng. Agric. Environ. Food, 2015,8(1):18-25. |
16 | ALI M, LEE Y S, KABIR M S N, et al.. Kinematic analysis for decide of the transportation part of atractor-mounted Chinese cabbage collector [J]. J. Biosys. Eng.,2019,4( 4):226-235. |
17 | 赵庆南,王锦江,王志,等.夹持输送技术在蔬菜收获机械中的应用[J].农业工程,2020,10(9):8-11. |
ZHAO Q N, WANG J J, WANG Z, et al.. Application of clamping conveying technology in vegetable harvesting machine [J]. Agric. Eng., 2020, 10(9): 8-11. | |
18 | 刘东.鸡毛菜有序收获机关键部件的优化设计与试验研究[D].北京:中国农业科学院, 2019. |
LIU D. Optimal design and experimental research on key components of the orderly harvester of Fessola chinensis [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
19 | 皮杰,柳军,徐磊,等.三指柔性气动夹爪结构设计与试验[J].农业机械学报,2020,51(S1):93-101. |
PI J, LIU J, XU L, et al.. Structure design and experiment of three finger flexible pneumatic gripper [J]. Trans. Chin. Soc. Agric. Machinery, 2020, 51(S1): 93-101. | |
20 | 李天华,孟志伟,郑成路,等.甘蓝收获机研究现状与发展[J].中国农机化学报,2019,40(2):40-46. |
LI T H, MENG Z W, ZHENG C L, et al.. Research status and development of cabbage harvesters [J]. J. Chin. Agric. Mechan., 2019, 40(2): 40-46. |
[1] | PENG Chunhui1, REN Yilin1*, LI Baojun1, ZHOU Guangsheng2, LIU Yonghong3. Process Optimization of Biochar-based Fertilizer Compressing Molding Experiments [J]. Journal of Agricultural Science and Technology, 2019, 21(5): 74-84. |
[2] | LIU Dong, XIAO Hongru*, JIN Yue, YANG Guang. Finite Element Analysis of Stalk Cutting of Chinese Little Greens Based on ANSYS and Verification Test [J]. Journal of Agricultural Science and Technology, 2018, 20(11): 85-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||