Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (10): 133-142.DOI: 10.13304/j.nykjdb.2021.0891
• ANIMAL AND PLANT HEALTH • Previous Articles
Zhijian LIN1(), Changjiang CHEN2, Ting ZHOU3, Gang GU3(), Fangping HU1, Chunying LI3, Xueqing CAI1()
Received:
2021-10-20
Accepted:
2021-12-09
Online:
2022-10-15
Published:
2022-10-25
Contact:
Gang GU,Xueqing CAI
林志坚1(), 陈长江2, 周挺3, 顾钢3(), 胡方平1, 李春英3, 蔡学清1()
通讯作者:
顾钢,蔡学清
作者简介:
林志坚 E-mail:lzj06050@163.com
基金资助:
CLC Number:
Zhijian LIN, Changjiang CHEN, Ting ZHOU, Gang GU, Fangping HU, Chunying LI, Xueqing CAI. Control Effect of Ralstonia Phage RPZH6 Strain on Tobacco Bacterial Wilt and Its Complete Genome Analysis[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 133-142.
林志坚, 陈长江, 周挺, 顾钢, 胡方平, 李春英, 蔡学清. 青枯菌噬菌体RPZH6株系对烟草青枯病的生防效果及全基因组测序分析[J]. 中国农业科技导报, 2022, 24(10): 133-142.
处理 Treatment | 7 d | 14 d | 21 d | 28 d | 35 d | |||||
---|---|---|---|---|---|---|---|---|---|---|
病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | |
RPZH6+TBRS12 | 4.17 b | 57.10 a | 19.44 c | 58.83 a | 22.22 b | 60.98 a | 30.56 b | 55.10 a | 33.33 c | 53.85 a |
Cu(OH)2+TBRS12 | 5.55 b | 42.90 a | 36.11 b | 23.53 b | 54.17 a | 4.86 b | 62.50 a | 8.17 b | 65.28 b | 9.61 b |
TBRS12 | 9.72 a | — | 47.22 a | — | 56.94 a | — | 68.06 a | — | 72.22 a | — |
CK | 0.00 | — | 0.00 | — | 0.00 | — | 0.00 | — | 0.00 | — |
Table 1 Control effect of phage RPZH6 on tobacco bacterial wilt
处理 Treatment | 7 d | 14 d | 21 d | 28 d | 35 d | |||||
---|---|---|---|---|---|---|---|---|---|---|
病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | |
RPZH6+TBRS12 | 4.17 b | 57.10 a | 19.44 c | 58.83 a | 22.22 b | 60.98 a | 30.56 b | 55.10 a | 33.33 c | 53.85 a |
Cu(OH)2+TBRS12 | 5.55 b | 42.90 a | 36.11 b | 23.53 b | 54.17 a | 4.86 b | 62.50 a | 8.17 b | 65.28 b | 9.61 b |
TBRS12 | 9.72 a | — | 47.22 a | — | 56.94 a | — | 68.06 a | — | 72.22 a | — |
CK | 0.00 | — | 0.00 | — | 0.00 | — | 0.00 | — | 0.00 | — |
Fig. 1 Enzyme digestion of nuclear acid of phage RPZH6Note:M—λ HindⅢ DNA marker; 1—DNase Ⅰ treatment; 2—RNase A treatment; 3—EcoRⅠ treatment; 4—RPZH6 nucleic acid.
开放阅读框ORF | 开放阅读框位置 Position of ORF/bp | 蛋白大小 Protein size/aa | 链 Strand | 起始密码子 Start codon | 功能预测 Possible function |
---|---|---|---|---|---|
1 | 1~262 | 86 | + | GTG | 转录调节蛋白 Putative transcription regulator protein |
2 | 296~478 | 60 | - | ATG | 含甘氨酸拉链2TM结构域的蛋白质 Glycine zipper 2TM domain-containing protein |
4 | 1 069~1 542 | 157 | - | ATG | 病毒粒子相关蛋白 Virion associated protein |
5 | 1 620~2 729 | 369 | - | ATG | 主要衣壳蛋白 Major capsid protein |
6 | 2 831~3 283 | 150 | - | ATG | 含AP2结构域蛋白AP2 domain-containing protein |
7 | 3 328~3 525 | 65 | - | ATG | 碳储存调节器 Carbon storage regulator |
11 | 4 844~7 189 | 781 | - | GTG | 门脉蛋白 Portal protein |
14 | 8 170~9 915 | 581 | - | ATG | 末端酶大亚基蛋白 Terminase large subunit protein |
16 | 10 578~10 769 | 63 | - | ATG | 辅酶A酯裂解酶 CoA ester lyase |
17 | 10 769~10 867 | 32 | - | ATG | 类连接蛋白 Connectin-like protein |
24 | 13 090~13 326 | 78 | - | ATG | 转录调节因子 Transcriptional regulator |
32 | 15 480~15 725 | 81 | - | GTG | 末端酶小亚基蛋白 Terminase small subunit protein |
34 | 16 836~17 324 | 162 | - | ATG | HNH归巢核酸内切酶Ⅱ HNH homing endonuclease Ⅱ |
41 | 19 861~20 667 | 268 | - | ATG | DnaC类蛋白 DnaC-like protein |
42 | 20 667~21 437 | 102 | - | TTG | 复制蛋白 Replication protein |
46 | 24 667~25 026 | 119 | - | ATG | DUF1364家族蛋白 DUF1364 family protein |
50 | 26 150~26 731 | 193 | - | ATG | 单链DNA结合蛋白 Single-stranded DNA-binding protein |
52 | 27 410~27 778 | 122 | - | ATG | 转录调节因子 Transcriptional regulator |
53 | 27 805~28 497 | 230 | + | ATG | 转录调节因子 Transcriptional regulator |
54 | 28 570~29 016 | 148 | + | TTG | 转录调节因子 Transcriptional regulator |
55 | 29 183~30 211 | 342 | + | ATG | RecB类核酸内切酶 RecB-like endonuclease |
56 | 30 250~31 203 | 317 | + | ATG | RecT类蛋白酶 RecT-like protein |
57 | 31 209~31 436 | 75 | + | ATG | DNA结合蛋白 DNA-binding protein |
58 | 31 461~31 907 | 148 | + | ATG | DNA结合蛋白 DNA-binding protein |
59 | 31 932~32 996 | 354 | + | ATG | DNA聚合酶Ⅲ β亚基 DNA polymerase Ⅲ subunit beta |
61 | 34 378~34 650 | 90 | + | ATG | Pyocin激活蛋白 PrtN Pyocin activator protein PrtN |
63 | 35 571~36 764 | 397 | + | ATG | 酪氨酸重组酶 Tyrosine recombinase |
64 | 36 838~37 005 | 55 | + | TTG | 酪氨酸重组酶 Tyrosine recombinase |
65 | 37 017~37 553 | 178 | - | ATG | Rz类裂解蛋白 Rz-like lysis protein |
67 | 37 929~38 309 | 126 | - | ATG | 趋化蛋白 Chemotaxis protein |
69 | 38 626~39 291 | 221 | - | TTG | 含DUF3380结构域蛋白 DUF3380 domain-containing protein |
72 | 40 455~46 457 | 2 000 | - | ATG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
73 | 46 436~50 134 | 1 232 | - | GTG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
74 | 50 192~51 736 | 514 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
75 | 51 733~52 458 | 241 | - | ATG | PAPS还原酶类蛋白 PAPS reductase-like protein |
76 | 52 470~53 303 | 277 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
77 | 53 293~53 850 | 185 | - | ATG | 酰基辅酶A N-酰基转移酶 Acyl-CoA N-acyltransferase |
79 | 54 246~55 979 | 577 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
80 | 55 991~56 977 | 328 | - | ATG | 尾纤蛋白 Tail fiber protein |
81 | 57 063~58 382 | 439 | - | ATG | 推定尾纤蛋白 Putative tail fiber protein |
82 | 58 382~58 663 | 93 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
84 | 60 366~61 343 | 325 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
85 | 61 350~61 772 | 140 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
88 | 62 505~63 167 | 220 | - | ATG | 病毒粒子相关蛋白 Virion associated protein |
90 | 63 713~64 150 | 145 | - | GTG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
91 | 64 147~64 512 | 121 | - | GTG | 钼蝶呤结合蛋白 Molybdopterin-binding protein |
92 | 64 534~64 657 | 40 | - | TAT | 细胞色素B Cytochrome B |
Table 2 ORF function prediction of the phage RPZH6 genome
开放阅读框ORF | 开放阅读框位置 Position of ORF/bp | 蛋白大小 Protein size/aa | 链 Strand | 起始密码子 Start codon | 功能预测 Possible function |
---|---|---|---|---|---|
1 | 1~262 | 86 | + | GTG | 转录调节蛋白 Putative transcription regulator protein |
2 | 296~478 | 60 | - | ATG | 含甘氨酸拉链2TM结构域的蛋白质 Glycine zipper 2TM domain-containing protein |
4 | 1 069~1 542 | 157 | - | ATG | 病毒粒子相关蛋白 Virion associated protein |
5 | 1 620~2 729 | 369 | - | ATG | 主要衣壳蛋白 Major capsid protein |
6 | 2 831~3 283 | 150 | - | ATG | 含AP2结构域蛋白AP2 domain-containing protein |
7 | 3 328~3 525 | 65 | - | ATG | 碳储存调节器 Carbon storage regulator |
11 | 4 844~7 189 | 781 | - | GTG | 门脉蛋白 Portal protein |
14 | 8 170~9 915 | 581 | - | ATG | 末端酶大亚基蛋白 Terminase large subunit protein |
16 | 10 578~10 769 | 63 | - | ATG | 辅酶A酯裂解酶 CoA ester lyase |
17 | 10 769~10 867 | 32 | - | ATG | 类连接蛋白 Connectin-like protein |
24 | 13 090~13 326 | 78 | - | ATG | 转录调节因子 Transcriptional regulator |
32 | 15 480~15 725 | 81 | - | GTG | 末端酶小亚基蛋白 Terminase small subunit protein |
34 | 16 836~17 324 | 162 | - | ATG | HNH归巢核酸内切酶Ⅱ HNH homing endonuclease Ⅱ |
41 | 19 861~20 667 | 268 | - | ATG | DnaC类蛋白 DnaC-like protein |
42 | 20 667~21 437 | 102 | - | TTG | 复制蛋白 Replication protein |
46 | 24 667~25 026 | 119 | - | ATG | DUF1364家族蛋白 DUF1364 family protein |
50 | 26 150~26 731 | 193 | - | ATG | 单链DNA结合蛋白 Single-stranded DNA-binding protein |
52 | 27 410~27 778 | 122 | - | ATG | 转录调节因子 Transcriptional regulator |
53 | 27 805~28 497 | 230 | + | ATG | 转录调节因子 Transcriptional regulator |
54 | 28 570~29 016 | 148 | + | TTG | 转录调节因子 Transcriptional regulator |
55 | 29 183~30 211 | 342 | + | ATG | RecB类核酸内切酶 RecB-like endonuclease |
56 | 30 250~31 203 | 317 | + | ATG | RecT类蛋白酶 RecT-like protein |
57 | 31 209~31 436 | 75 | + | ATG | DNA结合蛋白 DNA-binding protein |
58 | 31 461~31 907 | 148 | + | ATG | DNA结合蛋白 DNA-binding protein |
59 | 31 932~32 996 | 354 | + | ATG | DNA聚合酶Ⅲ β亚基 DNA polymerase Ⅲ subunit beta |
61 | 34 378~34 650 | 90 | + | ATG | Pyocin激活蛋白 PrtN Pyocin activator protein PrtN |
63 | 35 571~36 764 | 397 | + | ATG | 酪氨酸重组酶 Tyrosine recombinase |
64 | 36 838~37 005 | 55 | + | TTG | 酪氨酸重组酶 Tyrosine recombinase |
65 | 37 017~37 553 | 178 | - | ATG | Rz类裂解蛋白 Rz-like lysis protein |
67 | 37 929~38 309 | 126 | - | ATG | 趋化蛋白 Chemotaxis protein |
69 | 38 626~39 291 | 221 | - | TTG | 含DUF3380结构域蛋白 DUF3380 domain-containing protein |
72 | 40 455~46 457 | 2 000 | - | ATG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
73 | 46 436~50 134 | 1 232 | - | GTG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
74 | 50 192~51 736 | 514 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
75 | 51 733~52 458 | 241 | - | ATG | PAPS还原酶类蛋白 PAPS reductase-like protein |
76 | 52 470~53 303 | 277 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
77 | 53 293~53 850 | 185 | - | ATG | 酰基辅酶A N-酰基转移酶 Acyl-CoA N-acyltransferase |
79 | 54 246~55 979 | 577 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
80 | 55 991~56 977 | 328 | - | ATG | 尾纤蛋白 Tail fiber protein |
81 | 57 063~58 382 | 439 | - | ATG | 推定尾纤蛋白 Putative tail fiber protein |
82 | 58 382~58 663 | 93 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
84 | 60 366~61 343 | 325 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
85 | 61 350~61 772 | 140 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
88 | 62 505~63 167 | 220 | - | ATG | 病毒粒子相关蛋白 Virion associated protein |
90 | 63 713~64 150 | 145 | - | GTG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
91 | 64 147~64 512 | 121 | - | GTG | 钼蝶呤结合蛋白 Molybdopterin-binding protein |
92 | 64 534~64 657 | 40 | - | TAT | 细胞色素B Cytochrome B |
1 | 乔俊卿,陈志谊,刘邮洲,等.茄科作物青枯病研究进展[J].植物病理学报, 2013, 43(1): 1-10. |
QIAO J Q, CHEN Z Y, LIU Y Z, et al.. Research progress on bacterial wilt of nightshade family [J]. Acta Phytopathol. Sin., 2013, 43(1): 1-10. | |
2 | 黎妍妍,刘海龙,郑露,等.我国植物青枯菌遗传多样性研究进展[J].安徽农业科学, 2015, 43(14): 107-110, 112. |
LI Y Y, LIU H L, ZHENG L, et al.. Research progress on genetic diversity of Ralstonia Solanacearum in China [J]. J. Anhui Agric. Sci., 2015, 43(14): 107-110, 112. | |
3 | 徐进,冯洁.植物青枯菌遗传多样性及致病基因组学研究进展[J].中国农业科学, 2013, 46(14): 2902-2909. |
XU J, FENG J. Advances in research of genetic diversity and pathogenome of Ralstonia solanacearum species complex [J]. Sci. Agric. Sin., 2013, 46(14): 2902-2909. | |
4 | VOS M, BIRKETT P J, BIRCH E, et al.. Local adaptation of bacteriophages to their bacterial hosts in soil [J]. Science, 2009, 325(14): 833. |
5 | 苏靖芳,于浩,刘俊杰,等.青枯雷尔氏菌噬菌体研究进展[J].土壤与作物, 2017, 6(1): 61-66. |
SU J F, YU H, LIU J J, et al.. Research progress of bacteriophages infecting Ralstonia solanacearum [J]. Soil Crop, 2017, 6(1): 61-66. | |
6 | 胡重怡,蔡刘体.噬菌体治疗作物细菌性病害的研究进展[J].贵州农业科学, 2011, 39(3): 101-103. |
HU C Y, CAI L T. Research progress on phage therapy of bacterial plant disease [J]. Guizhou Agric. Sci., 2011, 39(3): 101-103. | |
7 | ADDY H S, AHMAD A A, QI H. Molecular and biological characterization of ralstonia phage RsoM1USA, a new species of P2virus, isolated in the United States [J/OL]. Front. Microbiol., 2019, 10:267 [2021-11-22]. . |
8 | WANG R, CONG Y, MI Z, et al.. Characterization and complete genome sequence analysis of phage GP4, a novel lytic Bcep22-like podovirus [J]. Archives Virol., 2019, 164(9): 2339-2343. |
9 | VAN TRUONG T B, KHANH N H P, NAMIKAWA R, et al.. Genomic characterization of Ralstonia solanacearum phage varphiRS138 of the family Siphoviridae [J]. Archives Virol., 2016, 161(2): 483-486. |
10 | AHMAD A A, STULBERG M J, MERSHON J P, et al.. Molecular and biological characterization of varphiRs 551, a filamentous bacteriophage isolated from a race 3 biovar 2 strain of Ralstonia solanacearum [J/OL]. PLoS One, 2017, 12(9): e0185034 [2021-11-22]. . |
11 | 林志坚,夏志辉,顾钢,等.繁殖青枯菌噬菌体无毒菌株的筛选及应用[J].中国生物防治学报, 2018, 34(6): 906-913. |
LIN Z J, XIA Z H, GU G, et al.. Screening avirulent Ralstonia solanacearum strain to culture bacteriophage and its application [J]. Chin. J. Biol. Control, 2018, 34(6): 906-913. | |
12 | 林志坚, 吴秀琴, 梁颁捷,等.青枯病菌噬菌体P3株系的生物学特性及其应用研究[J]. 中国生物防治学报, 2020, 36(4): 611-618. |
LIN Z J, WU X Q, LIANG B J, et al.. The biological characteristics of ralstonia phage P3 strain and its application [J]. Chin. J. Biol. Control, 2020, 36(4): 611-618. | |
13 | 方中达.植病研究方法[M]. 第3版.北京:中国农业出版社, 1998: 182-183, 224. |
14 | 高苗,杨金广,刘旭,等.一株裂解性青枯雷尔氏菌噬菌体的分离及生物学特性分析[J].中国农业科学, 2015, 48(7): 1330-1338. |
GAO M, YANG J G, LIU X, et al.. Isolation and biological properties of a lytic phage infecting Ralstonia solanacearum [J]. Sci. Agric. Sin., 2015, 48(7): 1330-1338. | |
15 | 王新,吴新儒,王卫锋,等.烟草抗青枯病突变体的室内接种鉴定[J].分子植物育种,2018, 16(19): 6468-6475. |
WANG X, WU X R, WANG W F, et al.. Indoor inoculation identification of tobacco mutants resistant to bacterial wilt [J]. Mol. Plant Breeding, 2018, 16(19): 6468-6475. | |
16 | SAMBROOK J, RUSSELL D W. Molecular Cloning a Laboratory Manual [M]. 3rd Ed n. Beijing: Science Press. 2002. |
17 | 苏靖芳,刘俊杰,于浩,等.一株烟草青枯雷尔氏菌烈性噬菌体RS-PII-1的分离及全基因组分析[J]. 病毒学报, 2017, 33(3): 441-449. |
SU J F, YU H, LIU J J, et al.. Research progress of bacteriophages infecting Ralstonia solanacearum [J]. Chin. J. Virol., 2017, 33(3): 441-449. | |
18 | JIN J, LI Z J, WANG S W, et al.. Isolation and characterization of ZZ 1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates [J/OL]. BMC Microbiol., 2012, 12(1): 156 [2021-11-22]. . |
19 | BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-2120. |
20 | HAHN C, BACHMANN L, CHEVREUX B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach [J/OL]. Nucleic Acids Res., 2013, 41(13): e129 [2021-11-22]. . |
21 | HALL T A. BioEdit: a user-friendly biological sequence alignment program for Windows 95/98/NT [J]. Nucleic Acids Symposium Series, 1999, 41(41): 95-98. |
22 | BESEMER J, LOMSADZE A, BORODOVSKY M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. implications for finding sequence motifs in regulatory regions [J]. Nucleic Acids Res., 2001, 29(12): 2607-2618. |
23 | STOTHARD P, WISHART D S. Circular genome visualization and exploration using CGView [J]. Bioinformatics, 2005, 21(4): 537-539. |
24 | LOWE T M, CHAN P P. tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes [J]. Nucleic Acids Res., 2016, 44(W1): W54-W57. |
25 | REESE M G. Computational prediction of gene structure and regulation in the genome of Drosophila melanogaster [D]. Baden, Germany: University of Hohenheim, 2000. |
26 | HOFACKER I L, FONTANA W, STADLER P F, et al.. Fast folding and comparison of RNA secondary structures [J]. Monatshefte Für Chemie 1994, 125(2): 167-188. |
27 | SULLIVAN M J, PETTY N K, BEATSON S A. Easyfig: a genome comparison visualizer [J]. Bioinformatics, 2011, 27(7): 1009-1010. |
28 | ZHANG D, GAO F, JAKOVLIĆ I, et al.. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J]. Mol. Ecol. Resour., 2020, 20(1): 348-355. |
29 | NGUYEN L T, SCHMIDT H A, VON HAESELER A, et al.. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies [J]. Mol. Biol. Evol., 2015, 32(1): 268-274. |
30 | MISAWA K, KATOH K, KUMA K I, et al.. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform [J]. Nucleic Acids Res., 2002, 30(14): 3059-3066. |
31 | BREITBART M, ROHWER F. Here a virus, there a virus, everywhere the same virus? [J]. Trends Microbiol., 2005, 13(6): 278-284. |
32 | TANAKA H, NEGISHI H, MAEDA H. Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage [J]. Jap. J. Phytopathol. 1990, 56(2): 243-246. |
33 | WEI C, LIU J, MAINA A N, et al.. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt [J]. Virologica Sin., 2017, 32(6): 476-484. |
34 | 冯烨,刘军,孙洋,等.噬菌体最新分类与命名[J].中国兽医学报, 2013, 33(12): 1954-1958. |
FENG Y, LIU J, SUN Y, et al.. An Introduction to current classification and nomenclature of bacterial viruses [J]. Chin. J. Veterin. Sci., 2013, 33(12): 1954-1958. | |
35 | SILVA XAVIER A DA, SILVA F P DA, VIDIGAL P M P, et al.. Genomic and biological characterization of a new member of the genus Phikmvvirus infecting phytopathogenic Ralstonia bacteria [J]. Archs Virol., 2018, 163(12): 3275-3290. |
36 | BHUNCHOTH A, BLANC-MATHIEU R, MIHARA T, et al.. Two asian jumbo phages, ϕRSL2 and ϕRSF1, infect Ralstonia solanacearum and show common features of ϕKZ-related phages [J]. Virology, 2016, 494: 56-66. |
[1] | Hui JIN, Wei WANG, Chendong YAN, Wei WANG, Xiying LI. Isolation, Identification and Adaptability of Trichoderma spp. for Biocontrol of Rice Sheath Blight [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 139-148. |
[2] |
ZHAO Xingli1, TAO Gang2,3*, LOU Xuan4, GU Jingang5*.
Colonization Dynamics of Trichoderma hamatum in Pepper Rhizosphere and Its Biological Control Against Pepper Phytophthora Blight
[J]. Journal of Agricultural Science and Technology, 2020, 22(5): 106-114.
|
[3] | ZHOU Hongzi1, ZHOU Fangyuan1, ZHAO Xiaoyan1, WU Cuixia2, ZHANG Guangzhi1, YUAN Weiwei3, WU Xiaoqing1, XIE Xueying1, FAN Susu1, ZHANG Xinjian1*. Screening of Biocontrol Agents Against Wheat Fusarium Head Blight and Its Field Control Experiment [J]. Journal of Agricultural Science and Technology, 2020, 22(1): 67-77. |
[4] | LU Lu1,2, ZHANG Mengli2, DI Yilin2, ZHU Kai1*, SHI Baojun2*. Insecticidal Effects of Thymol Against Caenorhabditis elegans at Different Stages [J]. Journal of Agricultural Science and Technology, 2019, 21(9): 97-103. |
[5] | WU Xiaoqing1, ZHAO Xiaoyan1, XU Yuanzhang2, WANG Jianing1, ZHOU Fangyuan1, ZHOU Hongzi1, ZHANG Guangzhi1, XIE Xueying1, YAN Kun3, ZHANG Xinjian1*. Research Progress on Precision Application Technology of Biological Control [J]. Journal of Agricultural Science and Technology, 2019, 21(3): 13-21. |
[6] | CHENG Liang1,2, GUO Qing\|yun1,2*. Potential Research of Fusarium avenaceum Isolate GD\|2 as a Bioherbicide Agent for Wild Oats(Avena fatua L.) [J]. , 2014, 16(3): 70-80. |
[7] | QIU De-wen. Development Strategy for Bio-pesticide and Biological Control [J]. , 2011, 13(5): 88-92. |
[8] | YAN Pei-Sheng, CAO Li-Xin, WANG Kai, WANG Zhuo. Research Progress on Biological Control of Mycotoxin Contamination [J]. , 2008, 10(6): 89-94. |
[9] | SONG Xiao-yan, SUN Cai-yun, CHEN Xiu-lan, ZHANG Yu-zhong. Research Advances on Mechanism of Trichoderma in Biological Control [J]. , 2006, 8(6): 20-25. |
[10] | JIANG Pei-zeng, LI Hong-yuan, CHEN Tie-bao . Advance in Paecilmyces Lilacinus Research for |Plant Parasitic Nematodes Control [J]. , 2006, 8(6): 38-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||