Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (4): 58-66.DOI: 10.13304/j.nykjdb.2022.0915
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Yue PAN1(), Baoqing WANG2, Jijiao WANG2,3,4, Yong MA2,3,4, Yalan LI4(
)
Received:
2022-10-26
Accepted:
2022-12-26
Online:
2024-04-15
Published:
2024-04-23
Contact:
Yalan LI
潘越1(), 王宝庆2, 王季姣2,3,4, 马勇2,3,4, 李亚兰4(
)
通讯作者:
李亚兰
作者简介:
潘越 E-mail: 18690187637@163.com;
基金资助:
CLC Number:
Yue PAN, Baoqing WANG, Jijiao WANG, Yong MA, Yalan LI. CO2 Response Model Fitting and Evaluation of Vitis amurensis[J]. Journal of Agricultural Science and Technology, 2024, 26(4): 58-66.
潘越, 王宝庆, 王季姣, 马勇, 李亚兰. 不同山葡萄品种CO2响应模型拟合及评价[J]. 中国农业科技导报, 2024, 26(4): 58-66.
品种Variety | 参数Parameter | 直角双曲线模型 Rectangular hyperbola model | Michaelis-Menten模型 Michaelis-Menten model | 直角双曲线修正模型 Modified rectangular hyperbola model | 实测值 Measured value |
---|---|---|---|---|---|
北冰红 Beibinghong | 初始羧化效率ƞ | 0.044 9 | 0.044 9 | 0.038 5 | — |
表观羧化效率ACE | 0.024 6**(R2=0.980 0) | 0.024 6**(R2=0.980 0) | 0.024 5**(R2=0.982 1) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 60.897 5 | 60.897 5 | 24.111 7 | 24.069 8 | |
CO 2 补偿点Γ/(μmol·mol-2) | 77.902 3 | 77.902 3 | 79.177 1 | 42.909 6 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 530.792 7 | 1 530.792 7 | 1 264.820 0 | 1 024.170 5 | |
光呼吸速率Rp/(μmol·mol-1) | 3.307 8 | 3.307 8 | 2.978 1 | — | |
北国红 Beiguohong | 初始羧化效率ƞ | 0.040 5 | 0.040 5 | 0.036 2 | — |
表观羧化效率ACE | 0.019 2**(R2=0.997 1) | 0.019 2**(R2=0.997 1) | 0.019 2**(R2=0.997 7) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 41.554 3 | 41.554 3 | 19.810 1 | 28.577 3 | |
CO 2 补偿点Γ/(μmol·mol-2) | 82.477 8 | 82.477 8 | 83.754 2 | 43.907 1 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 341.573 7 | 1 341.573 7 | 1 593.300 0 | 1 532.338 7 | |
光呼吸速率Rp/(μmol·mol-1) | 3.094 7 | 3.094 7 | 2.884 5 | — | |
双红 Shuanghong | 初始羧化效率ƞ | 0.040 9 | 0.040 9 | 0.037 7 | — |
表观羧化效率ACE | 0.021 1**(R2=0.997 2) | 0.021 1**(R2=0.997 2) | 0.021 1**(R2=0.997 4) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 49.173 9 | 49.173 9 | 23.937 4 | 36.960 8 | |
CO 2 补偿点Γ/(μmol·mol-2) | 70.992 2 | 70.992 2 | 71.240 6 | 28.246 8 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 427.480 8 | 1 427.480 8 | 1 892.530 0 | 1 781.738 4 | |
光呼吸速率Rp/(μmol·mol-1) | 2.739 4 | 2.739 4 | 2.578 2 | — | |
雪兰红 Xuelanhong | 初始羧化效率ƞ | 0.047 4 | 0.047 4 | 0.040 7 | — |
表观羧化效率ACE | 0.021 1**(R2=0.996 6) | 0.021 1**(R2=0.996 6) | 0.021 1**(R2=0.997 5) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 47.320 7 | 47.320 7 | 22.630 6 | 21.880 6 | |
CO 2 补偿点Γ/(μmol·mol-2) | 63.140 4 | 63.140 4 | 62.971 0 | 7.208 9 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 290.484 5 | 1 290.484 5 | 1 396.940 0 | 997.014 6 | |
光呼吸速率Rp/(μmol·mol-1) | 2.812 4 | 2.812 4 | 2.483 7 | — |
Table 1 Fitting parameters and measured values of CO2 response model for different kind of Vitis amurensis Rupr.
品种Variety | 参数Parameter | 直角双曲线模型 Rectangular hyperbola model | Michaelis-Menten模型 Michaelis-Menten model | 直角双曲线修正模型 Modified rectangular hyperbola model | 实测值 Measured value |
---|---|---|---|---|---|
北冰红 Beibinghong | 初始羧化效率ƞ | 0.044 9 | 0.044 9 | 0.038 5 | — |
表观羧化效率ACE | 0.024 6**(R2=0.980 0) | 0.024 6**(R2=0.980 0) | 0.024 5**(R2=0.982 1) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 60.897 5 | 60.897 5 | 24.111 7 | 24.069 8 | |
CO 2 补偿点Γ/(μmol·mol-2) | 77.902 3 | 77.902 3 | 79.177 1 | 42.909 6 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 530.792 7 | 1 530.792 7 | 1 264.820 0 | 1 024.170 5 | |
光呼吸速率Rp/(μmol·mol-1) | 3.307 8 | 3.307 8 | 2.978 1 | — | |
北国红 Beiguohong | 初始羧化效率ƞ | 0.040 5 | 0.040 5 | 0.036 2 | — |
表观羧化效率ACE | 0.019 2**(R2=0.997 1) | 0.019 2**(R2=0.997 1) | 0.019 2**(R2=0.997 7) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 41.554 3 | 41.554 3 | 19.810 1 | 28.577 3 | |
CO 2 补偿点Γ/(μmol·mol-2) | 82.477 8 | 82.477 8 | 83.754 2 | 43.907 1 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 341.573 7 | 1 341.573 7 | 1 593.300 0 | 1 532.338 7 | |
光呼吸速率Rp/(μmol·mol-1) | 3.094 7 | 3.094 7 | 2.884 5 | — | |
双红 Shuanghong | 初始羧化效率ƞ | 0.040 9 | 0.040 9 | 0.037 7 | — |
表观羧化效率ACE | 0.021 1**(R2=0.997 2) | 0.021 1**(R2=0.997 2) | 0.021 1**(R2=0.997 4) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 49.173 9 | 49.173 9 | 23.937 4 | 36.960 8 | |
CO 2 补偿点Γ/(μmol·mol-2) | 70.992 2 | 70.992 2 | 71.240 6 | 28.246 8 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 427.480 8 | 1 427.480 8 | 1 892.530 0 | 1 781.738 4 | |
光呼吸速率Rp/(μmol·mol-1) | 2.739 4 | 2.739 4 | 2.578 2 | — | |
雪兰红 Xuelanhong | 初始羧化效率ƞ | 0.047 4 | 0.047 4 | 0.040 7 | — |
表观羧化效率ACE | 0.021 1**(R2=0.996 6) | 0.021 1**(R2=0.996 6) | 0.021 1**(R2=0.997 5) | — | |
最大净光合速率 Pnmax/(μmol·m-2·s-1) | 47.320 7 | 47.320 7 | 22.630 6 | 21.880 6 | |
CO 2 补偿点Γ/(μmol·mol-2) | 63.140 4 | 63.140 4 | 62.971 0 | 7.208 9 | |
CO 2 饱和点CSP/(μmol·mol-2) | 1 290.484 5 | 1 290.484 5 | 1 396.940 0 | 997.014 6 | |
光呼吸速率Rp/(μmol·mol-1) | 2.812 4 | 2.812 4 | 2.483 7 | — |
Fig. 1 CO2 response curves fitted with different modelsA: Rectangular hyperbola model; B: Michaelis-Menten model; C: Modified rectangular hyperbola model
指标 Index | 变幅 Range | 均值 Mean | 变异系数 Coefficient of variation/% | 中位数 Median | 标准差 Standard deviation |
---|---|---|---|---|---|
初始羧化效率ƞ | 0.036 2~0.040 7 | 0.038 3 | 16.506 2 | 0.040 6 | 0.006 3 |
表观羧化效率ACE | 19.810 1~24.111 7 | 22.622 4 | 20.400 2 | 21.913 5 | 4.615 0 |
最大净光合速率Pnmax/(μmol·m-2·s-1) | 62.971 0~83.754 2 | 74.285 7 | 18.124 3 | 74.132 9 | 13.463 8 |
CO 2 补偿点Γ/(μmol·mol-2) | 1 264.280 0~1 892.530 0 | 1 536.897 5 | 17.597 2 | 1 445.000 0 | 270.451 3 |
CO 2 饱和点CSP/(μmol·mol-2) | 2.483 7~2.978 1 | 2.725 3 | 11.424 1 | 2.584 1 | 0.311 3 |
Table 2 Descriptive statistics of 4 Vitis amurensis Rupr. varieties Pn -Ci response
指标 Index | 变幅 Range | 均值 Mean | 变异系数 Coefficient of variation/% | 中位数 Median | 标准差 Standard deviation |
---|---|---|---|---|---|
初始羧化效率ƞ | 0.036 2~0.040 7 | 0.038 3 | 16.506 2 | 0.040 6 | 0.006 3 |
表观羧化效率ACE | 19.810 1~24.111 7 | 22.622 4 | 20.400 2 | 21.913 5 | 4.615 0 |
最大净光合速率Pnmax/(μmol·m-2·s-1) | 62.971 0~83.754 2 | 74.285 7 | 18.124 3 | 74.132 9 | 13.463 8 |
CO 2 补偿点Γ/(μmol·mol-2) | 1 264.280 0~1 892.530 0 | 1 536.897 5 | 17.597 2 | 1 445.000 0 | 270.451 3 |
CO 2 饱和点CSP/(μmol·mol-2) | 2.483 7~2.978 1 | 2.725 3 | 11.424 1 | 2.584 1 | 0.311 3 |
主成分Principal component | 提取平方载荷值Extract the value of the square load | 旋转平方载荷值Value of the rotation squared load | ||||
---|---|---|---|---|---|---|
特征根Characteristic root | 贡献率Contribution rate/% | 累计贡献率Cumulative contribution rate/% | 特征根Characteristic root | 贡献率Contribution rate/% | 累计贡献率Cumulative contribution rate/% | |
PC1 | 2.800 | 56.005 | 56.005 | 2.788 | 55.759 | 55.759 |
PC2 | 1.430 | 28.608 | 84.613 | 1.443 | 28.854 | 84.613 |
Table 3 Characteristic roots, variance contribution and cumulative contribution of principal components
主成分Principal component | 提取平方载荷值Extract the value of the square load | 旋转平方载荷值Value of the rotation squared load | ||||
---|---|---|---|---|---|---|
特征根Characteristic root | 贡献率Contribution rate/% | 累计贡献率Cumulative contribution rate/% | 特征根Characteristic root | 贡献率Contribution rate/% | 累计贡献率Cumulative contribution rate/% | |
PC1 | 2.800 | 56.005 | 56.005 | 2.788 | 55.759 | 55.759 |
PC2 | 1.430 | 28.608 | 84.613 | 1.443 | 28.854 | 84.613 |
Pn-Ci响应参数 Pn-Ci response parameter | 载荷值Loading value | |
---|---|---|
PC1 | PC2 | |
初始羧化效率ƞ | 0.934 8 | -0.317 3 |
表观羧化效率ACE | 0.583 9 | -0.186 3 |
最大净光合速率Pnmax | 0.969 4 | 0.213 0 |
CO 2 补偿点Γ | -0.137 9 | 0.957 8 |
CO 2 饱和点CSP | -0.783 9 | -0.586 9 |
Table 4 Principal component load matrix after rotation
Pn-Ci响应参数 Pn-Ci response parameter | 载荷值Loading value | |
---|---|---|
PC1 | PC2 | |
初始羧化效率ƞ | 0.934 8 | -0.317 3 |
表观羧化效率ACE | 0.583 9 | -0.186 3 |
最大净光合速率Pnmax | 0.969 4 | 0.213 0 |
CO 2 补偿点Γ | -0.137 9 | 0.957 8 |
CO 2 饱和点CSP | -0.783 9 | -0.586 9 |
品种 Variety | f1得分 f1 score | 排序 Ranking | f2得分 f2 score | 排序 Ranking | fz得分 fz score | 排序 Ranking |
---|---|---|---|---|---|---|
北冰红Beibinghong | 0.350 7 | 3 | -1.150 2 | 4 | -0.161 1 | 3 |
北国红Beiguohong | -0.546 3 | 4 | -0.090 7 | 2 | -0.390 9 | 4 |
双红Shuanghong | 0.659 5 | 2 | 0.426 4 | 1 | 0.580 0 | 2 |
雪兰红Xuelanhong | 1.422 0 | 1 | -0.148 8 | 3 | 0.886 3 | 1 |
Table 5 Principal component scores and composite scores
品种 Variety | f1得分 f1 score | 排序 Ranking | f2得分 f2 score | 排序 Ranking | fz得分 fz score | 排序 Ranking |
---|---|---|---|---|---|---|
北冰红Beibinghong | 0.350 7 | 3 | -1.150 2 | 4 | -0.161 1 | 3 |
北国红Beiguohong | -0.546 3 | 4 | -0.090 7 | 2 | -0.390 9 | 4 |
双红Shuanghong | 0.659 5 | 2 | 0.426 4 | 1 | 0.580 0 | 2 |
雪兰红Xuelanhong | 1.422 0 | 1 | -0.148 8 | 3 | 0.886 3 | 1 |
1 | 肖石红,张卫强,黄芳芳,等. CO2加富对施盐处理下银叶树幼苗叶片光合特性的影响[J].中国水土保持科学,2020,18(5):127-135. |
XIAO S H, ZHANG W Q, HUANG F F, et al.. Effect of CO2 enrichment on photosynthetic characteristics in the leaves of Heritiera littoralis seedlings under salinity treatment [J]. Sci. Soil Water Conserv., 2020, 18(5):127-135. | |
2 | 刘晓聪,董家华,欧英娟.大气中CO2与O3浓度升高对植物光合作用影响研究[J].环境科学与管理,2016, 41(3):152-155. |
LIU X C, DONG J H, OU Y J. Research progress on effects of elevated atmospheric O3 and CO2 on plant photosynthesis [J]. Environ. Sci. Manage., 2016, 41(3):152-155. | |
3 | 郭世博,张方亮,张镇涛,等.全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J].中国农业科学,2022,55(9):1763-1780. |
GUO S B, ZHANG F L, ZHANG Z T, et al.. The Possible effects of global warming on cropping systems in China ⅪⅤ. distribution of high-stable-yield zones and agro meteorological disasters of soybean in Northeast China [J]. Sci. Agric. Sin., 2022, 55(9):1763-1780. | |
4 | IPCC. Climate change 2013: The physical science basis. Working group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change, 2013. |
5 | JIANG Y L, XU Z Z, ZHOU G S, et al.. Elevated CO2 can modify the response to a water status gradient in a steppe grass: from cell organelles to photo-synthetic capacity to plant growth [J/OL]. BMC Plant Biol., 2016, 16(1):157 [2022-09-20]. . |
6 | 叶子飘,康华靖,段世华,等.不同CO2浓度下大豆叶片的光合生理生态特性[J].应用生态学报,2018,29(2):583-591. |
YE Z P, KANG H J, DUAN S H, et al.. Photosynthetic physio-ecological characteristics in soybean leaves at different CO2 concentrations [J]. Chin. J. Appl. Ecol., 2018, 29(2):583-591. | |
7 | 康华靖,陶月良,权伟,等.植物光合CO2响应模型对光下(暗)呼吸速率拟合的探讨[J].植物生态学报,2014,38(12):1356-1363. |
KANG H J, TAO Y L, QUAN W, et al.. Fitting mitochondrial respiration rates under light by photosynthetic CO2 response models [J]. Chin. J. Plant Ecol., 2014, 38(12):1356-1363. | |
8 | 叶子飘.光响应模型在超级杂交稻组合-Ⅱ优明86中的应用[J].生态学杂志,2007,26(8):1323-1326. |
YE Z P. Application of light-response model in estimating the photosynthesis of super-hybrid rice combination Ⅱ Youming 86 [J]. Chin. J. Ecol., 2007, 26(8):1323-1326. | |
9 | HARLEY P C, THOMAS R B, REYNOLDS J F, et al.. Modelling photosynthesis of cotton grown in elevated CO2 [J]. Plant Cell Environ., 2010,15(3):271-282. |
10 | 叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34(6):727-740. |
YE Z P. A review on modeling of responses of photosynthesis to light and CO2 [J]. Chin. J. Plant Ecol., 2010, 34(6):727-740. | |
11 | 赖帅彬,潘新雅,简春霞,等.转苜蓿MsOr基因烟草光合-光响应和光合-CO2响应曲线特征研究[J].草地学报,2020,28(1):20-30. |
LAI S B, PAN X Y, JIAN C X, et al.. Characteristics of photosynthetic light response and photosynthetic CO2 response curves in transgenic Alfalfa MsOr gene tobacco [J]. Acta Agrestia Sin., 2020, 28(1):20-30. | |
12 | 王秀伟,毛子军.7个光响应曲线模型对不同植物种的实用性[J].植物研究,2009,29(1):43-48. |
WANG X W, MAO Z J. Practicability of 7 light responsive curve models to different plant species [J]. Bull. Bot. Rese., 2009, 29(1):43-48. | |
13 | 杨欢,张庆田,刘洪章,等.东北山葡萄区域化及酿酒特性研究概况[J].北方果树,2016(3):1-4. |
YANG H, ZHANG Q T, LIU H Z, et al.. The research situation of Northeast Vitis amurensis regionalization and vinification characteristics [J]. Northern Fruits, 2016(3):1-4. | |
14 | 左倩倩,郑婷,纪薇,等.中国地方葡萄品种分布及收集利用现状[J].中外葡萄与葡萄酒,2019(5):76-80. |
ZUO Q Q, ZHANG T, JI W, et al.. The present situation of distribution and collection and utilization of grape varieties in China [J]. Sino-Overseas Grapevine Wine, 2019(5):76-80. | |
15 | 牛生洋,刘崇怀,刘强,等.葡萄种质果实有机酸组分及其含量特性[J].食品科学,2022,43(12):228-234. |
NIU S Y, LIU C H, LIU Q, et al.. Composition and contents of organic acids in different grape germplasms [J]. Food Sci., 2022, 43(12):228-234.. | |
16 | 徐美隆,乔改霞,仝倩,等.山葡萄砧木对‘黑比诺’葡萄耐旱寒的影响研究[J].中外葡萄与葡萄酒,2021(6):66-70. |
XU M L, QIAO G X, TONG Q, et al.. Effect of Vitis amurensis rootstock on drought and cold tolerance of ‘Pinot Noir’grapevine [J]. Sino-Overseas Grapevine Wine, 2021(6):66-70. | |
17 | 袁军伟,李敏敏,贾楠,等.21份葡萄砧木品种资源耐盐性鉴定[J].西北农业学报,2019,28(4):602-606. |
YUAN J W, LI M M, JIA N, et al.. Evaluation of salt stress tolerance identification in twenty-one grape rootstock [J]. Acta Agric. Bor-Occid. Sin., 2019, 28(4):602-606. | |
18 | 金宇宁.东北葡萄产区不同产地及树龄对‘北冰红’酒质影响的研究[D].北京:中国农业科学院,2021. |
JIN Y N. Study on the effects of different places and tree age on the wine quality of ‘Beibinghong’ in northeast grape production area [D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
19 | 裴辰玉,张薇,李悦,等.CO2浸渍法对北冰红山葡萄酒中成分影响的研究[J].食品工业,2019,40(3):315-319. |
PEI C Y, ZHANG W, LI Y, et al.. Study on the effect of maceration carbonique composition of Beibinghong grape wine [J]. Food Ind., 2019, 40(3):315-319. | |
20 | 刘阳阳,潘越,王世伟,等.不同山葡萄品种光响应模型拟合及综合评价[J].中国农业科技导报,2022,24(2):104-114. |
LIU Y Y, PAN Y, WANG S W, et al.. Light response model fitting and comprehensive evaluation for Vitis amurensis [J]. J. Agric. Sci. Technol., 2022, 24(2):104-114. | |
21 | 公丽艳,孟宪军,刘乃侨,等.基于主成分与聚类分析的苹果加工品质评价[J].农业工程学报,2014,30(13):276-285. |
GONG L Y, MENG X J, LIU N Q, et al.. Evaluation of apple quality based on principal component and hierarchical cluster analysis [J]. Trans. Chin. Soc. Agric. Eng., 2014, 30(13):276-285. | |
22 | 潘越,史彦江,陈淑英,等.喷施叶面肥对平欧杂种榛‘新榛1号’嫩枝扦插的影响[J].江西农业大学学报,2016,38(5):920-926. |
PAN Y, SHI Y J, CHEN S Y, et al.. Effect of foliar fertilizers on the hybrid hazel ‘New hazel one’ twig cutting [J]. Acta Agirc. Univ. Jiangxiensis, 2016, 38(5):920-926. | |
23 | 潘越,史开奇,刘珩,等.伊犁不同山葡萄品种的光响应模型筛选及光能利用效率评价[J].经济林研究,2022,40(1):178-188. |
PAN Y, SHI K Q, LIU H, et al.. Light response model fitting and light use efficiency evaluation for different Vitis amurensis varieties in Yili region [J]. Non-wood For. Res., 2022, 40(1):178-188. | |
24 | 李丽霞,刘济明,黄小龙,等.不同氮素条件米槁幼苗光合作用对CO2响应特征[J].东北农业大学学报,2017,48(2):29-36. |
LI L X, LIU J M, HUANG X L, et al.. Response characteristic of Cinnamomum migao seedling’s photosynthesis to CO2 in different conditions of nitrogen [J]. J. Northeast Agric. Univ., 2017, 48(2):29-36. | |
25 | 陆佩玲,于强,罗毅,等.冬小麦光合作用的光响应曲线的拟合[J].中国农业气象,2001,22(2):13-15. |
LU P L, YU Q, LUO Y, et al.. Fitting light response curves of photosynthesis of winter wheat [J]. Chin. J. Agrometeorol., 2001, 22(2):13-15. | |
26 | 马兴东,郭晔红,李梅英,等.施氮对干旱区黑果枸杞光合-CO2响应及药效成分的影响[J].西北植物学报,2020,40(7):1209-1218. |
MA X D, GUO Y H, LI M Y, et al.. Leaf CO2 response curve and fruit medicinal components of Lycium ruthenicum affected by nitrogen application in the arid area [J]. Acta Bot. Bor-Occid. Sin., 2020, 40(7):1209-1218. | |
27 | KYEI-BOAHEN S, LADA R, ASTATKIE T, et al.. Photo-synthetic response of carrots to varying irradiances [J]. photosynthetica, 2003, 41(2):301-305. |
28 | LEAKEY A D B, URIBELARREA M, AINSWORTH E A, et al.. Photosynthesis, productivity, and yield of maize are not affected by open air elevation of CO2 concentration in the absence of drought [J]. Plant Physiol., 2006, 140(2): 779-790. |
29 | 任博,李俊,同小娟,等.太行山南麓栓皮栎和刺槐光合作用-CO2响应模拟[J].应用生态学报,2018,29(1):1-10. |
REN B, LI J, TONG X J, et al.. Simulation on photosynthetic-CO2 response of Quercus variabilis and Robinia pseudoacacia in the southern foot of the Taihang mountain, China [J]. Chin. J. Appl. Ecol., 2018, 29(1):1-10. | |
30 | 郭芳芸,哈蓉,马亚平,等.CO2浓度升高对宁夏枸杞苗木光合特性及生物量分配影响[J].西北植物学报,2019,39(2):302-309. |
GUO F Y, HA R, MA Y P, et al.. Effects of elevated CO2 concentration on photosynthesis characteristics and biomass allocation of Lycium barbarum seedlings [J]. Acta Bot. Bor-Occid. Sin., 2019, 39(2):302-309. | |
31 | YU Q. Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes [J]. Ann. Bot., 2004, 93(4):435-441. |
32 | 董志新,韩清芳,贾志宽,等.不同苜蓿(Medicago sativa L.)品种光合速率对光和CO2浓度的响应特征[J].生态学报,2007,27(6):2272-2278. |
DONG Z X, HAN Q F, JIA Z K, et al.. Photosynthesis rate in response to light intensity and CO2 concentration in different alfalfa varieties [J]. Acta Ecol. Sin., 2007, 27(6):2272-2278. | |
33 | JAVAID A, Growth MAHMOOD N., nodulation and yield response of soybean to biofertilizers and organic manures [J]. Pakistan J. Bot., 2010, 42(2):863-871. |
34 | 李唯.植物生理学[M].北京:高等教育出版社,2012:71-72. |
35 | 郑凤英,彭少麟.不同尺度上植物叶气孔导度对升高CO2的响应[J].生态学杂志,2003,22(1):26-30. |
ZHENG F Y, PENG S L. Responses of plant stomatal conductance to elevated CO2 at different scales. [J]. Chin. J. Ecol., 2003, 22(1):26-30. | |
36 | BLOOM A J. Resoured limitation in plants an economic analogy [J]. Annu. Rev. Ecol. Syst., 1985(16): 541-549. |
37 | 吕扬,刘廷玺,闫雪,等.科尔沁沙丘-草甸相间地区黄柳和小叶锦鸡儿光合速率对光照强度和CO2浓度的响应[J].生态学杂志,2016,35(12):3157 -3164. |
LYU Y, LIU T X, YAN X, et al.. Response of photosynthetic rate of Salix gordejevii and Caragana microphylla to light intensity and CO2 concentration in the dune-meadow transitional area of Horqin sandy land [J]. Chin. J. Ecol., 2016, 35(12):3157-3164. | |
38 | 尹丽,胡庭兴,刘永安,等.施氮量对麻疯树幼苗生长及叶片光合特性的影响[J].生态学报,2011,31(17):4977-4984. |
YIN L, HU T X, LIU Y A, et al.. Effect of nitrogen application rate on growth and leaf photosynthetic characteristics of Jatropha curcas L. seedlings [J]. Acta Ecol. Sin., 2011, 31(17):4977-4984. | |
39 | 董菊兰,麻文俊,王军辉,等.氮素对楸树无性系幼苗的生长影响研究[J].西部林业科学,2012,41(5):31-35. |
DONG J L, MA W J, WANG J H, et al.. Growth responses of Catalpa bungei to nitrogen [J]. J. West China For. Sci., 2012, 41(5):31-35. | |
40 | 冯会丽,吴正保,史彦江,等.基于因子分析的灰枣优良无性系果实品质评价[J].食品科学,2016,37(9):77-81. |
FENG H L, WU Z B, SHI Y J, et al.. Fruit quality evaluation of superior clones of Zizyphus jujube cv. Huizao based on factor analysis [J]. Food Sci., 2016, 37(9):77-81. |
[1] | CHEN Xiaojie, LYU Desheng, WANG Zhenhua, LI Wenhao, ZONG Rui, WEN Yue, ZOU Jie. Effects of Water and Nitrogen Coupling on the Yield and Quality of Processing Tomato Under Aerated Irrigation [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 191-200. |
[2] | XU Yanhong, ZUO Yicai, XI Yi*, XU Zhongdan, LI Bin. Influences of Different Ca/P Ratios and Concentrations on Growth Characteristics of Lolium multiflorum [J]. Journal of Agricultural Science and Technology, 2020, 22(5): 174-180. |
[3] | WANG Ruixia, LI Xiaoyu, TIAN Hongxian*. Drought Resistance Identification and Comprehensive Drought Resistance Index Screening of Rapeseed(Brassica juncea L.)in North Shanxi#br# [J]. Journal of Agricultural Science and Technology, 2020, 22(11): 42-51. |
[4] | WANG Yuan, XING Xuexia, LI Xiaohui, ZHANG Mingzhen, LIU Bingyang, . Resistance Identification of Tobacco Varieties to Meloidogyne incognita and Selection of the Resistance Indexes [J]. Journal of Agricultural Science and Technology, 2017, 19(8): 124-131. |
[5] | JIANG Jinglong1, JIANG Chao1, LI Li2, SHEN Jixue1, TIAN Yun1, REN Xuming1. Studies on Effects of Different Conditions on Induction Rate of Hairy Roots in Cucumis sativus L. [J]. Journal of Agricultural Science and Technology, 2017, 19(4): 24-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||