Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (6): 113-121.DOI: 10.13304/j.nykjdb.2023.0169
• ANIMAL AND PLANT HEALTH • Previous Articles
Haili LI1,2(), Yindi XU1, Zhifang WANG1, Wenhao ZHU1, Lixian ZHANG1, Chunjiang MA2
Received:
2023-03-09
Accepted:
2023-12-06
Online:
2024-06-15
Published:
2024-06-12
李海利1,2(), 徐引弟1, 王治方1, 朱文豪1, 张立宪1, 马春江2
作者简介:
李海利 E-mail:haili8693@sina.com
基金资助:
CLC Number:
Haili LI, Yindi XU, Zhifang WANG, Wenhao ZHU, Lixian ZHANG, Chunjiang MA. Whole Genome Sequencing of Multi-drug Resistant Escherichia coli and Its Drug Resistance Analysis[J]. Journal of Agricultural Science and Technology, 2024, 26(6): 113-121.
李海利, 徐引弟, 王治方, 朱文豪, 张立宪, 马春江. 一株多重耐药大肠杆菌全基因组测序及其耐药性分析[J]. 中国农业科技导报, 2024, 26(6): 113-121.
引物名称 Primer name | 引物序列 Primer sequence(5’-3’) | 产物长度 Product length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
Mcr4-F | TTGCAGACGCCCATGGAATA | 207 | 57 |
Mcr4-R | GCCGCATGAGCTAGTATCGT | ||
Mcr5-F | GGACGCGACTCCCTAACTTC | 608 | 58 |
Mcr5-R | ACAACCAGTACGAGAGCACG | ||
blaTEM-F | CCAATGCTTAATCAGTGAGG | 400 | 57 |
blaTEM-R | ATGAGTATTCAACATTTCCG | ||
AmpC-F | GATCGTTCTGCCGCTGTG | 270 | 57 |
AmpC-R | GGGCAGCAAATGTGGAGCAA |
Table 1 Primer sequence of resistance gene
引物名称 Primer name | 引物序列 Primer sequence(5’-3’) | 产物长度 Product length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
Mcr4-F | TTGCAGACGCCCATGGAATA | 207 | 57 |
Mcr4-R | GCCGCATGAGCTAGTATCGT | ||
Mcr5-F | GGACGCGACTCCCTAACTTC | 608 | 58 |
Mcr5-R | ACAACCAGTACGAGAGCACG | ||
blaTEM-F | CCAATGCTTAATCAGTGAGG | 400 | 57 |
blaTEM-R | ATGAGTATTCAACATTTCCG | ||
AmpC-F | GATCGTTCTGCCGCTGTG | 270 | 57 |
AmpC-R | GGGCAGCAAATGTGGAGCAA |
抗生素 Antibiotics | 敏感性 Susceptibility | 抗生素 Antibiotics | 敏感性 Susceptibility | 抗生素 Antibiotics | 敏感性 Susceptibility | 抗生素 Antibiotics | 敏感性 Susceptibility | 抗生素 Antibiotics | 敏感性 Susceptibility |
---|---|---|---|---|---|---|---|---|---|
氨苄西林 Ampicillin | R | 磺胺甲异恶唑 Sulfamethoxazole | R | 羧苄西林 Carbenicillin | R | 阿奇霉素 Azithromycin | R | 头孢唑林 Cefazolin | S |
苯唑西林 Oxacillin | R | 多粘菌素B Polymyxin B | R | 哌拉西林 Piperacillin | R | 痢特灵 Furazone | R | 头孢哌酮 Cefoperazone | S |
青霉素G Penicillin G | R | 磺胺甲恶唑 Sulfamethoxazole | R | 头孢噻吩 Cephalothiophene | R | 阿莫西林 Amoxicillin | R | 头孢噻肟 Cefotaxime | S |
庆大霉素 Gentamicin | R | 氨苄西林/舒巴坦 Ampicillin/sulbactam | R | 妥布霉素 Tobramycin | R | 美洛西林 Melocillin | R | 头孢他啶 Ceftazidime | S |
卡那霉素 Kanamycin | R | 阿莫西林/克拉维酸 Amoxicillin/clavulanic acid | R | 氟罗沙星 Fleroxacin | R | 新霉素 Neomycin | R | 头孢呋辛 Cefuroxime | S |
阿米卡星 Kmikacin | R | 左氧氟沙星 Levofloxacin | R | 万古霉素 vancomycin | R | 替考拉宁 Teicalnine | R | 头孢曲松 Ceftriaxone | S |
链霉素 Streptomycin | R | 美洛西林/舒巴坦 Melocillin/sulbactam | R | 利福平 Rifampicin | R | 司帕沙星 Sparfloxacin | R | 氨曲南 Aztreonam | S |
多西环素 Doxycycline | R | 阿莫西林/舒巴坦 Amoxicillin/Sulbactam | R | 大观霉素 Macromycin | R | 阿洛西林 Aloxicillin | R | 哌拉西林/他唑巴坦 Piperacillin/Tazobactam | S |
四环素 Tetracycline | R | 头孢匹胺 Cefpiramide | R | 氧氟沙星 Ofloxacin | R | 克拉霉素 Clarithromycin | R | 替卡西林/克拉维酸 Ticacillin/clavulanic acid | S |
氯霉素 Chloramphenicol | R | 依替米星 Etimicin | R | 环丙沙星 Ciprofloxacin | R | 磷霉素 Fosfomycin | S | 头孢哌酮/舒巴坦 Cefoperazone/sulbactam | S |
克林霉素 Clindamycin | R | 罗红霉素 Roxithromycin | R | 依诺沙星 Enoxacin | R | 头孢比肟 Cefbioxime | S | 头孢他啶/克拉维酸 Ceftazidime/clavulanic acid | S |
红霉素 Erythromycin | R | 加替沙星 Gatifloxacin | R | 米诺环素 Minocycline | R | 头孢地嗪 Cefodizime | S | 头孢噻肟/克拉维酸 Cefotaxime/clavulanic acid | S |
呋喃妥因 Furantoin | R | 庆大霉素 Gentamicin | R | 罗美沙星 Lomefloxacin | R | 头孢克肟 Cefixime | S | 头孢唑肟 Cefazoxime | S |
奈替米星 Netimicin | R | 链霉素 Streptomycin | R | 头孢克罗 Cefaclor | R | 美洛培南 Meropenem | S | 头孢美唑 Cefmetazole | S |
杆菌肽 Bacitracin | R | 新生霉素 Neomycin | R | 替加环素 Tigacycline | R | 头孢西丁 Cefoxitin | S | 头孢他美 Ceftamet | S |
头孢丙烯 Cefprozil | R | 诺氟沙星 Norfloxacin | R |
Table 2 Drug susceptibility of HN2149 strain
抗生素 Antibiotics | 敏感性 Susceptibility | 抗生素 Antibiotics | 敏感性 Susceptibility | 抗生素 Antibiotics | 敏感性 Susceptibility | 抗生素 Antibiotics | 敏感性 Susceptibility | 抗生素 Antibiotics | 敏感性 Susceptibility |
---|---|---|---|---|---|---|---|---|---|
氨苄西林 Ampicillin | R | 磺胺甲异恶唑 Sulfamethoxazole | R | 羧苄西林 Carbenicillin | R | 阿奇霉素 Azithromycin | R | 头孢唑林 Cefazolin | S |
苯唑西林 Oxacillin | R | 多粘菌素B Polymyxin B | R | 哌拉西林 Piperacillin | R | 痢特灵 Furazone | R | 头孢哌酮 Cefoperazone | S |
青霉素G Penicillin G | R | 磺胺甲恶唑 Sulfamethoxazole | R | 头孢噻吩 Cephalothiophene | R | 阿莫西林 Amoxicillin | R | 头孢噻肟 Cefotaxime | S |
庆大霉素 Gentamicin | R | 氨苄西林/舒巴坦 Ampicillin/sulbactam | R | 妥布霉素 Tobramycin | R | 美洛西林 Melocillin | R | 头孢他啶 Ceftazidime | S |
卡那霉素 Kanamycin | R | 阿莫西林/克拉维酸 Amoxicillin/clavulanic acid | R | 氟罗沙星 Fleroxacin | R | 新霉素 Neomycin | R | 头孢呋辛 Cefuroxime | S |
阿米卡星 Kmikacin | R | 左氧氟沙星 Levofloxacin | R | 万古霉素 vancomycin | R | 替考拉宁 Teicalnine | R | 头孢曲松 Ceftriaxone | S |
链霉素 Streptomycin | R | 美洛西林/舒巴坦 Melocillin/sulbactam | R | 利福平 Rifampicin | R | 司帕沙星 Sparfloxacin | R | 氨曲南 Aztreonam | S |
多西环素 Doxycycline | R | 阿莫西林/舒巴坦 Amoxicillin/Sulbactam | R | 大观霉素 Macromycin | R | 阿洛西林 Aloxicillin | R | 哌拉西林/他唑巴坦 Piperacillin/Tazobactam | S |
四环素 Tetracycline | R | 头孢匹胺 Cefpiramide | R | 氧氟沙星 Ofloxacin | R | 克拉霉素 Clarithromycin | R | 替卡西林/克拉维酸 Ticacillin/clavulanic acid | S |
氯霉素 Chloramphenicol | R | 依替米星 Etimicin | R | 环丙沙星 Ciprofloxacin | R | 磷霉素 Fosfomycin | S | 头孢哌酮/舒巴坦 Cefoperazone/sulbactam | S |
克林霉素 Clindamycin | R | 罗红霉素 Roxithromycin | R | 依诺沙星 Enoxacin | R | 头孢比肟 Cefbioxime | S | 头孢他啶/克拉维酸 Ceftazidime/clavulanic acid | S |
红霉素 Erythromycin | R | 加替沙星 Gatifloxacin | R | 米诺环素 Minocycline | R | 头孢地嗪 Cefodizime | S | 头孢噻肟/克拉维酸 Cefotaxime/clavulanic acid | S |
呋喃妥因 Furantoin | R | 庆大霉素 Gentamicin | R | 罗美沙星 Lomefloxacin | R | 头孢克肟 Cefixime | S | 头孢唑肟 Cefazoxime | S |
奈替米星 Netimicin | R | 链霉素 Streptomycin | R | 头孢克罗 Cefaclor | R | 美洛培南 Meropenem | S | 头孢美唑 Cefmetazole | S |
杆菌肽 Bacitracin | R | 新生霉素 Neomycin | R | 替加环素 Tigacycline | R | 头孢西丁 Cefoxitin | S | 头孢他美 Ceftamet | S |
头孢丙烯 Cefprozil | R | 诺氟沙星 Norfloxacin | R |
植物提取物 Plant extract | 提取物质量浓度Mass concentration of extract/(g·mL-1) | |||||
---|---|---|---|---|---|---|
1 | 0.1 | 0.01 | 0.001 | 0.000 1 | 0.000 01 | |
黄藤素Palmatine | — | — | — | — | — | — |
黄连Berberine | — | — | — | — | — | — |
黄芩苷Baicalin | — | — | — | — | — | — |
薄落回Macleaya cordata | 30 | 25 | 17 | — | — | — |
Table 3 Bacteriostasis zone of Different content of natural plant extracts on HN2149 strain
植物提取物 Plant extract | 提取物质量浓度Mass concentration of extract/(g·mL-1) | |||||
---|---|---|---|---|---|---|
1 | 0.1 | 0.01 | 0.001 | 0.000 1 | 0.000 01 | |
黄藤素Palmatine | — | — | — | — | — | — |
黄连Berberine | — | — | — | — | — | — |
黄芩苷Baicalin | — | — | — | — | — | — |
薄落回Macleaya cordata | 30 | 25 | 17 | — | — | — |
1 | HUR J, STEIN B D, LEE J H. A vaccine candidate for post-weaning diarrhea in swine constructed with a live attenuated Salmonella delivering Escherichia coli K88ab, K88ac, FedA, and FedF fimbrial antigens and its immune responses in a murine model [J]. Can. J. Vet. Res., 2012, 76(3):186-194. |
2 | CASEY T A, BOSWORTH B T. Design and evaluation of a multiplex polymerase chain reaction assay for the simultaneous identification of genes for nine different virulence factors associated with Escherichia coli that cause diarrhea and edema disease in swine [J]. J. Vet. Diagn. Invest., 2009, 21(1):25-30. |
3 | BEIER R C, BISCHOFF K M, ZIPRIN R L, et al.. Nisbet DJ: chlorhexidine susceptibility, virulence factors, and antibiotic resistance of beta-hemolytic Escherichia coli isolated from neonatal swine with diarrhea [J]. Bull. Environ. Contam. Toxicol., 2005, 75(5):835-844. |
4 | WADA Y, KATO M, YAMAMOTO S, et al.. Invasive ability of Escherichia coli O18 isolated from swine neonatal diarrhea [J]. Vet. Pathol., 2004, 41(4):433-437. |
5 | STAHL C H, CALLAWAY T R, LINCOLN L M, et al.. Inhibitory activities of colicins against Escherichia coli strains responsible for postweaning diarrhea and edema disease in swine [J]. Antimicrob. Agents Chemother., 2004, 48(8):3119-3121. |
6 | THOMAS P W, CHO E J, BETHEL C R, et al.. Discovery of an effective small-molecule allosteric inhibitor of New Delhi metallo-beta-lactamase (NDM) [J]. ACS Infect. Dis., 2022, 8(4):811-824. |
7 | QUAN J, DAI H, LIAO W, et al.. Etiology and prevalence of ESBLs in adult community-onset urinary tract infections in East China: a prospective multicenter study [J]. J. Infect., 2021, 83(2):175-181. |
8 | XIONG Y, ZHANG C, GAO W, et al.. Genetic diversity and co-prevalence of ESBLs and PMQR genes among plasmid-mediated AmpC beta-lactamase-producing Klebsiella pneumoniae isolates causing urinary tract infection [J]. J. Antibiot. (Tokyo), 2021, 74(6):397-406. |
9 | JOMEHZADEH N, AHMADI K, JAVAHERIZADEH H, et al.. The first evaluation relationship of integron genes and the multidrug-resistance in class a ESBLs genes in enteropathogenic Escherichia coli strains isolated from children with diarrhea in Southwestern Iran [J]. Mol. Biol. Rep., 2021, 48(1):307-313. |
10 | BABAZADEH F, TEIMOURPOUR R, ARZANLOU M, et al.. Phenotypic and molecular characterization of extended-spectrum beta-lactamase/AmpC- and carbapenemase-producing Klebsiella pneumoniae in Iran [J]. Mol. Biol. Rep., 2022, 49(6):4769-4776. |
11 | FAVIER P, RAFFO C, TORRES D, et al.. Third-generation cephalosporins programmed restriction in the context of an outbreak of AmpC beta-lactamase-producing gram-negative bacilli in critical units: a real-life experience [J]. Rev. Chilena Infectol., 2021, 38(5):597-604. |
12 | MUDDASSIR M, MUNIR S, RAZA A, et al.. Epidemiology and high incidence of metallo-beta-lactamase and AmpC-beta-lactamases in nosocomial [J] Iran. J. Basic Med. Sci., 2021, 24(10):1373-1379. |
13 | FETAHAGIC M, IBRAHIMAGIC A, UZUNOVIC S, et al.. Detection and characterisation of extended-spectrum and plasmid-mediated AmpC beta-lactamase produced by Escherichia coli isolates found at poultry farms in Bosnia and Herzegovina [J]. Arh. Hig. Rada Toksikol., 2021, 72(4):305-314. |
14 | MATHILDE L, LAURENT P, PATRICE N. Rapid multiplex polymerase chain reaction for detection of mcr-1 to mcr-5 genes [J]. Diag. Microbiol. Infect. Dis., 2018, 92(4):267-269. |
15 | DONG F, LU J, WANG Y, et al.. A five-year surveillance of carbapenemase-producing Klebsiella pneumoniae in a pediatric hospital in China reveals increased predominance of NDM-1 [J]. Biomed. Environ. Sci., 2017, 30(8):562-569. |
16 | DOMINGUEZ-PEREZ R A, DE LA TORRE-LUNA R, AHUMADA-CANTILLANO M, et al.. Detection of the antimicrobial resistance genes blaTEM-1, cfxA, tetQ, tetM, tetW and ermC in endodontic infections of a Mexican population [J]. J. Glob. Antimicrob. Resist., 2018, 15:20-24. |
17 | WAGNER K, MANCINI S, RITTER C, et al.. Evaluation of the AID AmpC line probe assay for molecular detection of AmpC-producing Enterobacterales [J]. J. Glob. Antimicrob. Resist., 2019, 19:8-13. |
18 | 李海利,方剑玉,游一,等.中草药提取物对多重耐药猪胸膜肺炎放线杆菌体外抑菌效果研究[J].中国兽药杂志,2022,56(2):70-77. |
LI H L, FANG J Y, YOU Y, et al.. In vitro antibacterial experiment and antibacterial effect of Chinese herbal medicine extracts on multi-drug resistant Actinobacillus pleuropneumoniae of pigs [J]. Chin. J. Vet. Drug, 2022, 56(2):70-77. | |
19 | ABDEL AAL A M, KHALIL N O, RASHED H G, et al.. Genetic detection of AmpC beta-lactamase among gram negative isolates “a single center experience” [J]. Egypt. J. Immunol., 2021, 28(4):195-205. |
20 | SHAH A, ALAM S, KABIR M, et al.. Migratory birds as the vehicle of transmission of multi drug resistant extended spectrum beta lactamase producing Escherichia fergusonii, an emerging zoonotic pathogen [J]. Saudi J. Biol. Sci., 2022, 29(5):3167-3176. |
21 | BAKR K I, ABDUL-RAHMAN S M, MUHAMMAD HAMASALIH R. Molecular detection of beta-lactamase genes in Klebsiella pneumoniae and Escherichia coli isolated from different clinical sources [J]. Cell Mol. Biol. (Noisy-le-grand), 2022, 67(4):170-180. |
22 | LU J, WANG L, WEI Y, et al.. Trends and risk factors of extended-spectrum beta-lactamase urinary tract infection in Chinese children: a nomogram is built and urologist should act in time [J]. Transl. Pediatr., 2022, 11(6):859-868. |
23 | GHARAIBEH M H, ALYAFAWI D A, ELNASSER Z A, et al.. Emergence of mcr-1 gene and carbapenemase-encoding genes among colistin-resistant Klebsiella pneumoniae clinical isolates in Jordan [J]. J. Infect. Public Health., 2022, 15(8):922-929. |
24 | XU T, XUE C X, CHEN Y, et al.. Frequent convergence of mcr-9 and carbapenemase genes in Enterobacter cloacae complex driven by epidemic plasmids and host incompatibility [J]. Emerg. Microbes Infect., 2022, 11(1):1959-1972. |
25 | TALAT A, USMANI A, KHAN A U. Detection of E. coli IncX1 plasmid-mediated mcr-5.1 gene in an Indian hospital sewage water using shotgun metagenomic sequencing: a first report [J]. Microb. Drug Resist., 2022, 28(7):759-764. |
26 | KASSEM, I I, ASSI A, OSMAN M, et al.. Letter to the editor: first report of the detection of the plasmid-borne colistin resistance gene, mcr-1.26, in multidrug-resistant Escherichia coli isolated from a domesticated pigeon [J]. Microb. Drug Resist., 2022, 28(7):821-823. |
27 | OTEO J, MENCIA A, BAUTISTA V, et al.. Colonization with enterobacteriaceae-producing ESBLs, AmpCs, and OXA-48 in wild avian species, Spain 2015-2016 [J]. Microb. Drug Resist., 2018, 24(7):932-938. |
28 | SALAMANDANE A, MALFEITO-FERREIRA M, BRITO L. A high level of antibiotic resistance in Klebsiella and Aeromonas isolates from street water sold in Mozambique, associated with the prevalence of extended-spectrum and AmpC ss-lactamases [J]. J. Environ. Sci. Health B., 2022, 57(7):561-567. |
29 | GARCIA-FIERRO R, DRAPEAU A, DAZAS M, et al.. Comparative phylogenomics of ESBL-, AmpC- and carbapenemase-producing Klebsiella pneumoniae originating from companion animals and humans [J]. J. Antimicrob. Chemother., 2022, 77(5):1263-1271. |
30 | MUNTEAN M M, MUNTEAN A A, GUERIN F, et al.. Optimization of the rapid carbapenem inactivation method for use with AmpC hyperproducers-authors’ response [J]. J. Antimicrob. Chemother., 2022, 77(4):1210-1211. |
31 | GONZALEZ MESA L, RAMOS MORI A, NADAL BECERRA L, et al.. Phenotypic and molecular identification of extended-spectrum beta-lactamase (ESBL) TEM and SHV produced by clinical isolates Escherichia coli and Klebsiella spp. in hospitals [J]. Rev. Cubana Med. Trop., 2007, 59(1):52-58. |
32 | BROWN R P, APLIN R T, SCHOFIELD C J, et al.. Mass spectrometric studies on the inhibition of TEM-2 beta-lactamase by clavulanic acid derivatives [J]. J. Antibiot. (Tokyo), 1997, 50(2):184-185. |
33 | BROWN R P, APLIN R T, SCHOFIELD C J. Inhibition of TEM-2 beta-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry [J]. Biochemistry, 1996, 35(38):12421-12432. |
34 | BRET L, CHANAL C, SIROT D, et al.. Characterization of an inhibitor-resistant enzyme IRT-2 derived from TEM-2 beta-lactamase produced by Proteus mirabilis strains [J]. J. Antimicrob. Chemother., 1996, 38(2):183-191. |
[1] | Hongbo LI, Yueyue CHEN, Yujie YANG, Qiqi XU, Lei QIN, Xin CAI, Lining XIA. Drug Resistance and Genotype Analysis of Escherichia coli in Healthy Chickens from Zhaosu, Yili, Xinjiang [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 123-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||