Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (6): 1-15.DOI: 10.13304/j.nykjdb.2024.0002
• AGRICULTURAL INNOVATION FORUM •
Minrui TANG1(), Liang HE1,2(
), Shenghao GU3,4, Wanxia YANG5, Ruijun YUE1, Yi TAN1, Lei WANG1, Tengfei FENG1
Received:
2024-01-03
Accepted:
2024-05-05
Online:
2025-06-15
Published:
2025-06-23
Contact:
Liang HE
汤敏睿1(), 何亮1,2(
), 顾生浩3,4, 杨婉霞5, 岳瑞君1, 谭艺1, 王磊1, 冯腾飞1
通讯作者:
何亮
作者简介:
汤敏睿 E-mail: tangminrui@stu.xju.edu.cn;
基金资助:
CLC Number:
Minrui TANG, Liang HE, Shenghao GU, Wanxia YANG, Ruijun YUE, Yi TAN, Lei WANG, Tengfei FENG. A Review of Application of Federated Learning in Smart Agriculture Systems[J]. Journal of Agricultural Science and Technology, 2025, 27(6): 1-15.
汤敏睿, 何亮, 顾生浩, 杨婉霞, 岳瑞君, 谭艺, 王磊, 冯腾飞. 联邦学习在智慧农业系统中的应用研究综述[J]. 中国农业科技导报, 2025, 27(6): 1-15.
方法 Method | 描述 Describe | 实现 Achieve |
---|---|---|
数据标准化法 Data standardization method | 对数据进行标准化处理,包括命名统一、单位转换、数值范围调整等,以确保数据格式一致,使其适应模型训练的要求 Standardize data through processes such as uniform naming, unit conversion, and adjustment of numerical ranges to ensure consistent data formats, meeting the requirements for model training | 列出数据格式标准,将所有数据字段的名称、数据单位和范围进行统一。但对于数据量较大、管理框架耦合度较高的农场,将历史数据标准化,会有较大的工作量 List data format standards by unifying the names, units, and ranges of all data fields. However, for large-scale farms with high coupling in the management framework, standardizing historical data may entail significant workload |
特征选择法 Feature selection method | 针对不同农场的数据特征进行筛选和选择,确定共同的特征,丢弃不一致或不相关的数据特征,建立更一致的数据集 Tailor the selection of data features based on the characteristics of different farms, identifying common attributes, discarding inconsistent or irrelevant data features, and establishing a more cohesive dataset | 使用机器学习中的实体对齐模型对数据字段、数据单位进行匹配,根据匹配结果进行调整。但是训练一个准确度高的实体对齐的模型,也是不小的工作量 Utilize entity alignment models in machine learning to match data fields and units, and make adjustments based on the matching results. However, training a high-precision entity alignment model is also a non-trivial undertaking |
数据映射法 Data mapping method | 通过特征转换、映射或转换函数来调整数据,使其在数值范围或格式上更为一致,以帮助模型更好地理解和处理数据 Utilize transfer learning techniques to train historical agricultural models or relevant task models for new tasks, thereby reducing agricultural model training time | 每个农场给出自己的数据字段、数据单位和数据范围,联邦学习模型训练的发起方根据这些自己模型训练所需数据,开发转换函数,完成字段格式、数据单位和数据范围的转换,并对缺失值作出插值 Each farm provides its own data fields, data units, and data ranges. The initiator of federated learning model training, based on the required data for their own model training, develops transformation functions to perform conversions of field formats, data units, and data ranges. Additionally, interpolation is applied to handle missing values |
Table 1 Heterogeneous data processing methods in federated learning
方法 Method | 描述 Describe | 实现 Achieve |
---|---|---|
数据标准化法 Data standardization method | 对数据进行标准化处理,包括命名统一、单位转换、数值范围调整等,以确保数据格式一致,使其适应模型训练的要求 Standardize data through processes such as uniform naming, unit conversion, and adjustment of numerical ranges to ensure consistent data formats, meeting the requirements for model training | 列出数据格式标准,将所有数据字段的名称、数据单位和范围进行统一。但对于数据量较大、管理框架耦合度较高的农场,将历史数据标准化,会有较大的工作量 List data format standards by unifying the names, units, and ranges of all data fields. However, for large-scale farms with high coupling in the management framework, standardizing historical data may entail significant workload |
特征选择法 Feature selection method | 针对不同农场的数据特征进行筛选和选择,确定共同的特征,丢弃不一致或不相关的数据特征,建立更一致的数据集 Tailor the selection of data features based on the characteristics of different farms, identifying common attributes, discarding inconsistent or irrelevant data features, and establishing a more cohesive dataset | 使用机器学习中的实体对齐模型对数据字段、数据单位进行匹配,根据匹配结果进行调整。但是训练一个准确度高的实体对齐的模型,也是不小的工作量 Utilize entity alignment models in machine learning to match data fields and units, and make adjustments based on the matching results. However, training a high-precision entity alignment model is also a non-trivial undertaking |
数据映射法 Data mapping method | 通过特征转换、映射或转换函数来调整数据,使其在数值范围或格式上更为一致,以帮助模型更好地理解和处理数据 Utilize transfer learning techniques to train historical agricultural models or relevant task models for new tasks, thereby reducing agricultural model training time | 每个农场给出自己的数据字段、数据单位和数据范围,联邦学习模型训练的发起方根据这些自己模型训练所需数据,开发转换函数,完成字段格式、数据单位和数据范围的转换,并对缺失值作出插值 Each farm provides its own data fields, data units, and data ranges. The initiator of federated learning model training, based on the required data for their own model training, develops transformation functions to perform conversions of field formats, data units, and data ranges. Additionally, interpolation is applied to handle missing values |
Fig. 6 Schematic diagram of tfederated learning resource coordination moduleNote: TPU—Tensor processing unit; NPU—Neural network processing unit; GPU—Graphic processing unit; CPU—central processing unit.
特征 Feature | 基于联邦学习的智慧农业系统 Smart agriculture system based on federated learning | 传统智慧农业系统 Traditional smart agriculture system |
---|---|---|
数据来源 Data source | 可以从农业机构、学校、企业、各个农业平台(隐私保护后的模型梯度)和本地农场采集等获得数据 Collecting data from agricultural institutions, schools, businesses, various agricultural platforms (with privacy-protected model gradients) and local farms | 可以从农业机构、学校、企业和本地农场采集。其他农业平台较为隐私保密的数据无法获取利用 Collecting data from agricultural institutions, schools, businesses and local farms. Data from other agricultural platforms, which are more privacy-sensitive, cannot be accessed or utilized |
数据隐私和安全性 Data privacy and security | 参与方可以在本地更新模型梯度,发送给中心训练服务器时会使用隐私加密算法对梯度进行加密,可以减少数据隐私泄漏的风险 Participants can locally update model gradients, and when sending them to the central training server, privacy encryption algorithms will be used to encrypt the gradients, reducing the risk of data privacy leakage | 如果进行直接的数据共享,可能会存在着数据隐私泄漏的风险 If direct data sharing is carried out, there may be a risk of data privacy leakage |
模型泛化能力 Model generalization capability | 可以使用更多的数据进行模型训练,使得模型可以更好的适应不同的农业环境,提升模型性能 By utilizing a greater volume of data for model training, the model can better adapt to diverse agricultural environments, enhancing overall performance | 数据量不够大,可能在某些场景下会出现过拟合,使得模型性能波动较大 If the dataset is not sufficiently large, there may be instances of overfitting in certain scenarios, leading to significant fluctuations in model performance |
合规性和法规要求 Compliance and regulatory requirements | 联邦学习训练模型时,参与方可以在本地训练模型,不需要传输原始数据。本地训练模型过程中,可以通过同态加密和差分隐私的算法防止训练数据泄漏。这样的方式,可以满足大部分数据安全管理的法律法规要求 In federated learning model training, participants can train the model locally without the need to transmit raw data. During local model training, algorithms such as homomorphic encryption and differential privacy can be employed to prevent the leakage of training data. This approach ensures compliance with most legal and regulatory requirements for data security management | 在一些国家和地区,数据的共享受到严格的法律保护。传统智慧农业平台要想使用这批农业数据会非常的困难,甚至是无法使用 In some countries and regions, data sharing is subject to strict legal protection. Traditional smart agriculture platforms may find it challenging, or even impossible, to use this batch of agricultural data |
智慧农业系统的 可持续性 Sustainability of smart agriculture systems | 通过对数据的隐私保护,联邦学习可以打造更大的加密数据资源共享生态,为农业生产的可持续发展提供更好的支持 By ensuring privacy protection for data, federated learning can establish a larger ecosystem of encrypted data sharing, providing better support for the sustainable development of agricultural production | 需要考虑数据中心的可持续性 Need to consider the sustainability of data center |
Table 2 Comparison between federated learning based smart agriculture systems and traditional smart agriculture systems
特征 Feature | 基于联邦学习的智慧农业系统 Smart agriculture system based on federated learning | 传统智慧农业系统 Traditional smart agriculture system |
---|---|---|
数据来源 Data source | 可以从农业机构、学校、企业、各个农业平台(隐私保护后的模型梯度)和本地农场采集等获得数据 Collecting data from agricultural institutions, schools, businesses, various agricultural platforms (with privacy-protected model gradients) and local farms | 可以从农业机构、学校、企业和本地农场采集。其他农业平台较为隐私保密的数据无法获取利用 Collecting data from agricultural institutions, schools, businesses and local farms. Data from other agricultural platforms, which are more privacy-sensitive, cannot be accessed or utilized |
数据隐私和安全性 Data privacy and security | 参与方可以在本地更新模型梯度,发送给中心训练服务器时会使用隐私加密算法对梯度进行加密,可以减少数据隐私泄漏的风险 Participants can locally update model gradients, and when sending them to the central training server, privacy encryption algorithms will be used to encrypt the gradients, reducing the risk of data privacy leakage | 如果进行直接的数据共享,可能会存在着数据隐私泄漏的风险 If direct data sharing is carried out, there may be a risk of data privacy leakage |
模型泛化能力 Model generalization capability | 可以使用更多的数据进行模型训练,使得模型可以更好的适应不同的农业环境,提升模型性能 By utilizing a greater volume of data for model training, the model can better adapt to diverse agricultural environments, enhancing overall performance | 数据量不够大,可能在某些场景下会出现过拟合,使得模型性能波动较大 If the dataset is not sufficiently large, there may be instances of overfitting in certain scenarios, leading to significant fluctuations in model performance |
合规性和法规要求 Compliance and regulatory requirements | 联邦学习训练模型时,参与方可以在本地训练模型,不需要传输原始数据。本地训练模型过程中,可以通过同态加密和差分隐私的算法防止训练数据泄漏。这样的方式,可以满足大部分数据安全管理的法律法规要求 In federated learning model training, participants can train the model locally without the need to transmit raw data. During local model training, algorithms such as homomorphic encryption and differential privacy can be employed to prevent the leakage of training data. This approach ensures compliance with most legal and regulatory requirements for data security management | 在一些国家和地区,数据的共享受到严格的法律保护。传统智慧农业平台要想使用这批农业数据会非常的困难,甚至是无法使用 In some countries and regions, data sharing is subject to strict legal protection. Traditional smart agriculture platforms may find it challenging, or even impossible, to use this batch of agricultural data |
智慧农业系统的 可持续性 Sustainability of smart agriculture systems | 通过对数据的隐私保护,联邦学习可以打造更大的加密数据资源共享生态,为农业生产的可持续发展提供更好的支持 By ensuring privacy protection for data, federated learning can establish a larger ecosystem of encrypted data sharing, providing better support for the sustainable development of agricultural production | 需要考虑数据中心的可持续性 Need to consider the sustainability of data center |
1 | 陈晓静,杨润昌,洪璟.联邦学习在保险行业的应用探索[J].上海保险, 2023(7): 44-46. |
2 | 新华社. 国务院印发《“十四五” 推进农业农村现代化规划》[J].农业工程技术,2022,42(6):8. |
3 | 杨瑞丽, 谢文丹.基于云平台的智慧农业系统设计与实现[J].微处理机,2022,43(2):30-33. |
YANG R L, XIE W D. Design and implementation of a smart agriculture system based on cloud platform [J]. Microprocessors,2022, 43(2):30-33. | |
4 | 韩鹏,王军红,王金炜.智慧农业大棚计算机信息管理系统的设计与实现[J].河北农业,2023(10):85-87. |
5 | CONDRAN S, BEWONG M, ISLAM M Z, et al.. Machine learning in precision agriculture: a survey on trends, applications and evaluations over two decades [J]. IEEE Access, 2022, 10: 73786-73803. |
6 | 王周生,杨庚,戴华.基于梯度选择的轻量化差分隐私保护联邦学习[J].计算机科学, 2024, 51(1): 345-354. |
WANG Z S, YANG G, DAI H.Lightweight differential privacy federated learning based on gradient dropout [J].Comput.Sci.,2024, 51(1): 345-354. | |
7 | RIVEST R L, SHAMIR A, ADLEMAN L. Cryptographic communications system and method: WO1983/4405829 [P].1983-09-20. |
8 | 邵航,高思琪,钟离,等.同态加密在隐私计算中的应用综述[J].信息通信技术与政策,2022(8):75-88. |
SHAO H, GAO S Q, ZHONG L, et al.. Homomorphic encryption protocols and applications in privacy preserving computation [J]. Inf. Commun. Technol. Policy, 2022(8): 75-88. | |
9 | RIVEST R L, SHAMIR A, ADLEMAN L. A method for obtaining digital signatures and public-key cryptosystems [J]. Commun. ACM, 1983, 26(1): 96-99. |
10 | 张啸剑,孟小峰.面向数据发布和分析的差分隐私保护[J].计算机学报, 2014, 37(4): 927-949. |
ZHANG X J, MENG X F. Differential privacy in data publication and analysis [J]. Chin. J. Comput., 2014,37(4):927-949. | |
11 | 孙一帆,张锐,陶杨,等. 本地化差分隐私综述[J]. 数据与计算发展前沿,2023,5(5):74-97. |
SUN Y F, ZHANG R, TAO Y, et al.. A survey on local differential privacy [J]. Front. Data Comput., 2023, 5(5): 74-97. | |
12 | 周俊,方国英,吴楠.联邦学习安全与隐私保护研究综述[J].西华大学学报(自然科学版), 2020, 39(4): 9-17. |
ZHOU J, FANG G Y, WU N. Survey on security and privacy-preserving in federated learning [J]. J. Xihua Univ. (Nat. Sci.),2020, 39(4): 9-17. | |
13 | 陈学斌,任志强,张宏扬.联邦学习中的安全威胁与防御措施综述[J].计算机应用, 2024, 44(6): 1663-1672. |
CHEN X B, REN Z Q, ZHANG H Y. Review on security threats and defense measures in federated learning [J]. J.Comput. Appl., 2024, 44(6): 1663-1672. | |
14 | BLANCHARD P, El MHAMDI E M, GUEERAOUI R, et al.. Machine learning with adversaries: byzantine tolerant gradient descent [C]// Proceedings of 31st Conference on Neural Information Processing Systems. NY, USA: Curran Associates Inc., 2017: 118-128. |
15 | MUÑOZ-GONZÁLEZ L, CO K T, LUPU E C. Byzantine-robust federated machine learning through adaptive model averaging [EB/OL]. (2019-09-11)[2024-09-03]. . |
16 | AWAN S N, LUO B, LI F J. CONTRA:defending against poisoning attacks in federated learning [C]// Proceedings of Computer Security-ESORICS 2021. Cham: Springer International Publishing, 2021: 455-475. |
17 | ZHANG Z, CAO X, JIA J, et al.. Fldetector: defending federated learning against model poisoning attacks via detecting malicious clients [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022: 2545-2555. |
18 | LAI Y C, LIN J Y, LIN Y D, et al.. Two-phase defense against poisoning attacks on federated learning-based intrusion detection [J/OL].Comput. Secur.,2023,129:103205 [2024-09-03]. . |
19 | XIE C, HUANG K, CHEN P Y, et al.. DBA: distributed backdoor attacks against federated learning [C]// Proceedings of the 8th International Conference on Learning Representations. Ethiopia, 2020: 1-19. |
20 | NGUYEN T D, NGUYEN T, NGUYEN P L, et al.. Backdoor attacks and defenses in federated learning: survey, challenges and future research directions [J/OL]. Eng. Appl. Artif. Intell., 2024,127:107166 [2024-09-03]. . |
21 | WANG Y, ZHAI D H, HAN D, et al.. MITDBA: mitigating dynamic backdoor attacks in federated learning for iot applications [J]. IEEE Int. Things J., 2023, 8(1): 1-19. |
22 | 余晟兴,陈泽凯,陈钟,等.DAGUARD:联邦学习下的分布式后门攻击防御方案[J].通信学报,2023,44(5):110-122. |
YU S X, CHEN Z K, CHEN Z, et al.. DAGUARD:distributed backdoor attack defense scheme under federated learning [J]. J.Commun., 2023, 44(5): 110-122. | |
23 | NGUYEN T D, RIGER P, DE V R, et al.. FLAME: taming backdoors in federated learning [C]// Proceedings of 31st USENIX Security Symposium (USENIX Security 22). Boston, USA: USENIX, 2022: 1415-1432. |
24 | 王勇,李国良,李开宇.联邦学习贡献评估综述[J].软件学报,2023,34(3):1168-1192. |
WANG Y, LI G L, LI K Y. Survey on contribution evaluation for federated learning [J]. J. Softw., 2023, 34(3): 1168-1192. | |
25 | CHEN Y Q, YANG X D, QIN X, et al.. FOUCS:dealing with label quality disparity in federated learning [EB/OL]. (2020-01-19) [2024-09-03]. . |
26 | KANG J W, XIONG Z H, NIYATO D, et al.. Incentive design for efficient federated learning in mobile networks:a contract theory approach [C]// 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS). IEEE, 2019. |
27 | FU Y C, LI C L, YU F R, et al.. An incentive mechanism of incorporating supervision game for federated learning in autonomous driving [J]. IEEE Trans. Int. Transport. Syst., 2023,24(12):14800-14812. |
28 | REHMAN M H, DIRIR A M, SALAH K, et al.. TrustFed: a framework for fair and trustworthy cross-device federated learning in IIoT [J]. IEEE Trans. Ind. Inform., 2021, 17(12): 8485-8494. |
29 | XIONG A, CHEN Y, CHEN H, et al.. A truthful and reliable incentive mechanism for federated learning based on reputation mechanism and reverse auction [J/OL]. Electronics, 2023,12(3): 517 [2024-09-03]. . |
30 | GUO W, WANG Y J, JIANG P Y. Incentive mechanism design for federated learning with stackelberg game perspective in the industrial scenario [J/OL].Comput.Ind.Eng.,2023,184:109592 [2024-09-03]. . |
31 | NA S J, LIANG Y Z, YIU S M. A federated learning incentive mechanism in a non-monopoly market [J/OL].Neurocomputing,2024,586:127630 [2024-09-03]. . |
32 | XUAN S C, WANG M D, ZHANG J Y, et al.. An incentive mechanism design for federated learning with multiple task publishers by contract theory approach [J/OL]. Inf.Sci.,2024,664:120330 [2024-09-03]. . |
33 | 阎逸飞,王智立,邱雪松,等.Spark环境下基于数据倾斜模型的Shuffle分区优化方案[J].北京邮电大学学报,2020,43(2):116-121. |
YAN Y F, WANG Z L, QIU X S, et al.. A Shuffle partition optimization scheme based on data skew model in Spark [J]. J.Beijing Univ. Posts Telecommun., 2020, 43(2): 116-121. | |
34 | JONES J W. Decision Support Systems for Agricultural Development [M]. Dordrecht: Springer Netherlands,1993: 459-471. |
35 | ASAAD Y G, GHARGHAN S K. Wireless sensor network-based artificial intelligent irrigation system: challenges and limitations [J]. J. Techniques, 2023, 5(3): 26-41. |
36 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computat., 1997, 9(8):1735-1780. |
37 | DAHANE A, BENAMEUR R, KECHAR B. An Innovative Smart and Sustainable Low-cost Irrigation System for Smallholder Farmers’ Communities [M]. Oran: Algeria, 2022: 37-42. |
38 | ABIOYE E A, HENSEL O, ESAU T J, et al.. Precision irrigation management using machine learning and digital farming solutions [J]. Agric. Eng., 2022, 4(1): 70-103. |
39 | MEHTA S, KUKREJA V, VATS S. Empowering farmers with AI: federated learning of CNNs for wheat diseases multi-classification [C]// Proceedings of 2023 4th International Conference for Emerging Technology (INCET). IEEE, 2023: 1-6. |
40 | MEHTA S, KUKREJA V, VATS S. Advancing Agricultural Practices: Federated Learning-based CNN for Mango Leaf Disease Detection [M]. India: Hubli, 2023:1-6. |
41 | MEHTA S, KUKREJA V, GUPTA R. Empowering Precision Agriculture: Detecting Apple Leaf Diseases and Severity Levels with Federated Learning CNN [M]. India: Hubli, 2023:1-6. |
42 | KHAN F S. Federated Learning-based UAVs for the Diagnosis of Plant Diseases [M]. 2022 ICEET, Kuala Lumpur, Malaysia, 2022:1-6. |
43 | DENG F M, MAO W, ZENG Z Q, et al.. Multiple diseases and pests detection based on federated learning and improved faster R-CNN [J]. IEEE Trans. Instrument. Measurem., 2022,71:1-11. |
44 | GUPTA P, YADAV K, GUPTA B B, et al.. A novel data poisoning attack in federated learning based on inverted loss function [J/OL].Comput.Secur.,2023,130:103270 [2024-09-03]. . |
45 | 何常乐,袁培燕. 边缘联邦学习的客户端选择机制[J].计算机应用,2023,43():147-153. |
HE C L, YUAN P Y. Client selection mechanism of federated learning in edge computing [J]. J. Comput. Appl., 2023,43(S1):147-153. | |
46 | 梁文雅,刘波,林伟伟,等.联邦学习激励机制研究综述[J].计算机科学,2022,49(12):46-52. |
LIANG W Y, LIU B, LIN W W, et al.. Survey of incentive mechanism for federated learning [J]. Comput.Sci., 2022,49(12):46-52. | |
47 | ZHANG J, WU Y, PAN R. Incentive mechanism for horizontal federated learning based on reputation and reverse auction [C]//Proceedings of The Web Conference: WWW'21.NY, USA: Association for Computing Machinery, 2021: 947-956. |
48 | 肖雄,唐卓,肖斌,等.联邦学习的隐私保护与安全防御研究综述[J].计算机学报,2023,46(5):1019-1044. |
XIAO X, TANG Z, XIAO B, et al.. A survey on privacy and security issues in federated learning [J].Chin. J. Comput.,2023,46(5):1019-1044. | |
49 | MCMAHAN H B, MOORE E, RAMAGE D,et al..Communication-efficient learning of deep networks from decentralized data [EB/OL]. (2016-02-17) [2024-09-03]. . |
50 | WU C H, WU F Z, LYU L J, et al.. A federated graph neural network framework for privacy-preserving personalization [J/OL]. Nat.Commun.,2022,13(1):3091 [2024-09-03]. . |
51 | LIU Y, KANG Y, ZHANG X W, et al.. A communication efficient collaborative learning framework for distributed features [EB/OL]. (2019-12-24)[2024-09-03]. . |
52 | SINIOSOGLOU I, XOUVEROUDIS K, ARGYRIOU V, et al.. Applying federated learning on decentralized smart farming: a case study [C]// 2023 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2023:1295-1300. |
53 | KAUR A, KUKREJA V, CHAMOLI S, et al.. A unified framework for chili leaf disease classification using federated learning CNN [C]// 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). IEEE, 2023: 1398-1403. |
54 | FAN Z N, FANG H, ZHOU Z R, et al.. Improving fairness for data valuation in horizontal federated learning [C]// 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 2022:2440-2453. |
55 | SUN Q, LI X, ZHANG J, et al.. Shapleyfl: robust federated learning based on shapley value [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023: 2096-2108. |
56 | ZHANG C, LIU X, ZHENG X, et al.. Fenghuolun: a federated learning based edge computing platform for cyber-physical systems [C]// Proceedings of 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 2020: 1-4. |
57 | FERRAG M A, FRIHA O, HAMOUDA D, et al.. Edge-IIoTset: a new comprehensive realistic cyber security dataset of IoT and IIoT applications for centralized and federated learning [J]. IEEE Access, 2022,10: 40281-40306. |
58 | ASAD M, MOUSTAFA A, ITO T, et al.. Evaluating the communication efficiency in federated learning algorithms [C]// 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2021. |
59 | ZHUANG W, WEN Y G, LYU Y J, et al.. MAS: towards resource-efficient federated multiple-task learning [C]// 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2023: 23357-23367. |
60 | XIA Q, YE W, TAO Z Y, et al.. A survey of federated learning for edge computing:Research problems and solutions [J/OL].High Confid.Comput.,2021,1(1):100008 [2024-09-03]. . |
61 | 侯琛,牛培宇.农业知识图谱技术研究现状与展望[J].农业机械学报,2024,55(6):1-17. |
HOU C, NIU P Y.Review of research status and prospects of agricultural knowledge graphs [J].Trans. Chin. Soc. Agric. Mach., 2024, 55(6): 1-17. |
[1] | Song FANG, Lihua JIANG, Jingjun CAO, Xiao WANG, Minghui QIU, Xiaoyi TIAN. Reaearch on the Application of AI for Science in Agricultural Field [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 1-10. |
[2] | Jianhua ZHENG, Ruixue ZHAO, Hua ZHAO, Sijing LI, Guogang WANG. International Experience and Enlightenment on Development of Smart Agricultural Information Services [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 9-18. |
[3] | Wei LI, Deli ZHU, Qing WANG, Shaohua ZENG. Research Review on Crop Digital Twin System for Monitoring Growth Status and Environmental Response [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 90-105. |
[4] | HANG Xiaoning, LUO Jia, ZHANG Pengcheng, LI Zhenyi, ZHANG Jian, HU Liujie, YU Duan, HE Weiyuan, ZHOU Youliang, LIAO Dunxiu. Countermeasures on Developing Climate-smart Agriculture in Southwest China [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 8-15. |
[5] | MA Hao1, ZHANG Kai1, JIN Xin1*, JI Jiangtao1, ZHU Xu1. Identification of Blueberry Fruit Maturity Using Hyperspectral Images Technology [J]. Journal of Agricultural Science and Technology, 2020, 22(2): 80-90. |
[6] | GUAN Dahai1, ZHANG Jun2, WANG Qingmei1, ZHANG Yanping1, . Climate-Smart Agriculture and its Enlightenment to Agricultural Development of China [J]. Journal of Agricultural Science and Technology, 2017, 19(10): 7-13. |
[7] | CHEN Xiao-dong1, YUAN Xiang-yang1, GUO Ping-yi1*, NING Na1, GUO Mei-jun1, LAN Ya. Progress and Prospect in Agricultural Internet of Things [J]. , 2015, 17(2): 8-16. |
[8] | SUN Zhong\, fu, DU Ke\, ming, ZHENG Fei\, xiang, YIN Shou\, yi. Perspectives of Research and Application of Big Data on Smart Agriculture [J]. Journal of Agricultural Science and Technology, 2013, 15(6): 63-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||