Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (7): 122-132.DOI: 10.13304/j.nykjdb.2024.0458
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Guotao YANG1(), Shijie ZHANG2, Chao CHEN3, Yun LIU2, Chen HE1, Yinghao NING1, Qing ZHANG1(
)
Received:
2024-06-07
Accepted:
2025-04-08
Online:
2025-07-15
Published:
2025-07-11
Contact:
Qing ZHANG
杨国涛1(), 张世杰2, 陈超3, 刘云2, 贺琛1, 宁英豪1, 张勍1(
)
通讯作者:
张勍
作者简介:
杨国涛 E-mail:ygt3315@163.com;
基金资助:
CLC Number:
Guotao YANG, Shijie ZHANG, Chao CHEN, Yun LIU, Chen HE, Yinghao NING, Qing ZHANG. Identification of 5 Common Pesticides Used in Flue-tobacco Field Production Based on Hyperspectral Technology[J]. Journal of Agricultural Science and Technology, 2025, 27(7): 122-132.
杨国涛, 张世杰, 陈超, 刘云, 贺琛, 宁英豪, 张勍. 5种烟草常用农药的高光谱识别技术研究[J]. 中国农业科技导报, 2025, 27(7): 122-132.
农药品种 Pesticide type | 有效成分含量 Active ingredient content | 农药品牌 Brand | 包装规格 Packaging pecification | 剂型 Pesticide form | 稀释倍数 Dilution ratio |
---|---|---|---|---|---|
高效氯氟氰菊酯Lambda-cyhalothrin | 25 g·L-1 | 先正达 Syngenta | 250 mL | 乳油 Emulsifiable concentrate | 1∶1 500 |
吡虫啉 Imidacloprid | 20% | 沃德伊诺 World Yinuo | 100 g | 可溶液剂 Soluble concentrate | 1∶3 000 |
三唑酮 Triadimefon | 20% | 国光 Guoguang | 200 mL | 乳油 Emulsifiable concentrate | 1∶1 000 |
多菌灵 Carbendazim | 50% | 中保 Zhongbao | 200 g | 可湿性粉剂 Wettable powder | 1∶1 000 |
甲基硫菌灵Thiophanate-methyl | 50% | 国光 Guoguang | 200 g | 可湿性粉剂 Wettable powder | 1∶1 000 |
Table 1 Pesticide brands and forms
农药品种 Pesticide type | 有效成分含量 Active ingredient content | 农药品牌 Brand | 包装规格 Packaging pecification | 剂型 Pesticide form | 稀释倍数 Dilution ratio |
---|---|---|---|---|---|
高效氯氟氰菊酯Lambda-cyhalothrin | 25 g·L-1 | 先正达 Syngenta | 250 mL | 乳油 Emulsifiable concentrate | 1∶1 500 |
吡虫啉 Imidacloprid | 20% | 沃德伊诺 World Yinuo | 100 g | 可溶液剂 Soluble concentrate | 1∶3 000 |
三唑酮 Triadimefon | 20% | 国光 Guoguang | 200 mL | 乳油 Emulsifiable concentrate | 1∶1 000 |
多菌灵 Carbendazim | 50% | 中保 Zhongbao | 200 g | 可湿性粉剂 Wettable powder | 1∶1 000 |
甲基硫菌灵Thiophanate-methyl | 50% | 国光 Guoguang | 200 g | 可湿性粉剂 Wettable powder | 1∶1 000 |
处理 Trentment | 训练集样本数 Number of training set samples | 测试集样本数 Number of test set samples |
---|---|---|
水Water | 149 | 35 |
高效氯氟氰菊酯Lambda-cyhalothrin | 143 | 56 |
吡虫啉Imidacloprid | 146 | 57 |
三唑酮Triadimefon | 141 | 50 |
多菌灵Carbendazim | 150 | 56 |
甲基硫菌灵Thiophanate-methyl | 171 | 27 |
Table 2 Results of sample set partitioning based on joint x-y distances method division
处理 Trentment | 训练集样本数 Number of training set samples | 测试集样本数 Number of test set samples |
---|---|---|
水Water | 149 | 35 |
高效氯氟氰菊酯Lambda-cyhalothrin | 143 | 56 |
吡虫啉Imidacloprid | 146 | 57 |
三唑酮Triadimefon | 141 | 50 |
多菌灵Carbendazim | 150 | 56 |
甲基硫菌灵Thiophanate-methyl | 171 | 27 |
预处理方法 Preprocessing method | 训练集准确率 Training set accuracy/% | 测试集准确率 Test set accuracy/% |
---|---|---|
原始数据Raw data | 92.32 | 89.50 |
一阶导数D1 | 91.66 | 91.28 |
二阶导数D2 | 92.23 | 91.35 |
标准正态变换SNV | 99.67 | 98.58 |
多重散射校正MSC | 96.40 | 94.77 |
Table 3 LSSVM model results of different preprocessing methods
预处理方法 Preprocessing method | 训练集准确率 Training set accuracy/% | 测试集准确率 Test set accuracy/% |
---|---|---|
原始数据Raw data | 92.32 | 89.50 |
一阶导数D1 | 91.66 | 91.28 |
二阶导数D2 | 92.23 | 91.35 |
标准正态变换SNV | 99.67 | 98.58 |
多重散射校正MSC | 96.40 | 94.77 |
预处理方法 Preprocessing method | 训练集准确率 Training set accuracy/% | 测试集准确率 Test set accuracy/% |
---|---|---|
原始数据Raw data | 99.89 | 63.35 |
一阶导数D1 | 100.00 | 97.55 |
二阶导数D2 | 100.00 | 98.58 |
标准正态变换SNV | 100.00 | 85.41 |
多重散射校正MSC | 99.78 | 85.77 |
Table 4 RF model results of different preprocessing methods
预处理方法 Preprocessing method | 训练集准确率 Training set accuracy/% | 测试集准确率 Test set accuracy/% |
---|---|---|
原始数据Raw data | 99.89 | 63.35 |
一阶导数D1 | 100.00 | 97.55 |
二阶导数D2 | 100.00 | 98.58 |
标准正态变换SNV | 100.00 | 85.41 |
多重散射校正MSC | 99.78 | 85.77 |
模型 Model | 特征数量 Feature quantity | 测试集准确率 Test set accuracy/% | 单个样本检测时间 Single sample test time/ms |
---|---|---|---|
D2-RF | 81 | 98.58 | 38.06 |
D2-SPA-RF | 17 | 98.22 | 10.28 |
D2-CARS-RF | 44 | 99.64 | 19.56 |
SNV-LSSVM | 81 | 98.58 | 52.38 |
SNV-CARS-LSSVM | 43 | 98.56 | 30.54 |
Table 5 Model efficiency evaluation results
模型 Model | 特征数量 Feature quantity | 测试集准确率 Test set accuracy/% | 单个样本检测时间 Single sample test time/ms |
---|---|---|---|
D2-RF | 81 | 98.58 | 38.06 |
D2-SPA-RF | 17 | 98.22 | 10.28 |
D2-CARS-RF | 44 | 99.64 | 19.56 |
SNV-LSSVM | 81 | 98.58 | 52.38 |
SNV-CARS-LSSVM | 43 | 98.56 | 30.54 |
[1] | 司晓喜,刘志华,李中昌,等.5种农药在采收前和初烤后的烟叶及土壤中的残留量变化[J].烟草科技,2016,49(7):44-50. |
SI X X, LIU Z H, LI Z C, et al.. Residues of five pesticides in tobacco leaves before harvesting and after flue-curing and soils [J]. Tob. Sci. Technol., 2016, 49(7): 44-50. | |
[2] | 罗华元,王绍坤,常寿荣,等.12种农药在烟叶中残留及烟气中转移试验初报[J].云南农业大学学报(自然科学版),2010,25(5): 636-641. |
LUO H Y, WANG S K, CHANG S R, et al.. Determination of 12 pesticides residues in tobacco leaf and shifting to smoke [J].J. Yunnan Agric. Univ. (Nat. Sci.), 2010, 25(5): 636-641. | |
[3] | 王刚,孔凡玉,刘建利,等. 烟草田间农药合理使用规程: [S].北京:中国标准出版社,2011. |
[4] | 熊巍,张海燕,靳冬梅,等.UPLC-MS/MS同时测定烟草中5种新烟碱杀虫剂残留[J]. 湖南农业科学, 2021(2): 91-95. |
XIONG W, ZHANG H Y, JIN D M, et al.. Determination of five neonicotinoid insecticide residues in tobacco by ultra performance liquid chromatography tandem mass spectrometry [J]. Hunan Agric. Sci., 2021(2): 91-95. | |
[5] | 许泳吉,刘云云,韩玮,等.固相萃取-高效液相色谱法同时测定烟草中吡虫啉和多菌灵[J].青岛科技大学学报(自然科学版), 2016, 37(1): 26-31. |
XU Y J, LIU Y Y, HAN W, et al.. Simultaneous detection of carbendazim and imidacloprid in tobacco with solid-phase extraction and high-performance liquid chromatography [J]. J. Qingdao Univ. Sci. Technol. (Nat. Sci.), 2016, 37(1): 26-31. | |
[6] | 王彧婕, 冯德建, 冯双, 等. 吡虫啉和啶虫脒胶体金免疫层析法试纸条性能评估及应用效果探究[J].食品安全质量检测学报, 2024, 15(3): 133-139. |
WANG Y J, FENG D J, FENG S, et al.. Performance evaluation and application effect study of colloidal gold immunochromatographic test strips for imidacloprid and acetamiprid [J]. J. Food Saf. Qual., 2024, 15(3): 133-139. | |
[7] | 楼小华,高川川,朱文静,等.胶体金免疫层析法快速检测烟草中吡虫啉残留[J].食品安全质量检测学报,2017,8(5):1739-1744. |
LOU X H, GAO C C, ZHU W J, et al.. Rapid detection of imidacloprid residues in tobacco leaf by colloidal gold immunochromatographic assay [J]. J.Food Saf. Qual., 2017, 8(5): 1739-1744. | |
[8] | 孙杰. 基于荧光高光谱技术的红茶农药残留检测[D]. 成都:四川农业大学, 2023. |
SUN J. Detection of pesticide residues in black tea based on fluorescence hyperspectral technology [D]. Chengdu: Sichuan Agricultural University, 2023. | |
[9] | SUN J, CONG S L, MAO H P,et al..Quantitative detection of mixed pesticide residue of lettuce leaves based on hyperspectral technique [J/OL].J.Food Process Eng., 2018, 41(2): 12654 [2024-05-16]. . |
[10] | 吉海彦,任占奇,饶震红.高光谱成像技术鉴别菠菜叶片农药残留种类[J].发光学报,2018,39(12):1778-1784. |
JI H Y, REN Z Q, RAO Z H. Identification of pesticide residue types in spinach leaves based on hyperspectral imaging [J].Chin. J. Lumin., 2018, 39(12):1778-1784. | |
[11] | LU X C, ZHAO C, QIN Y Q, et al.. The application of hyperspectral images in the classification of fresh leaves' maturity for flue-curing tobacco [J/OL]. Processes, 2023, 11(4):1249 [2024-05-06]. . |
[12] | JIA F F, HAN S, CHANG D, et al.. Monitoring flue-cured tobacco leaf chlorophyll content under different light qualities by hyperspectral reflectance [J]. Am. J. Plant Sci., 2020, 11(8): 1217-1234. |
[13] | 潘兆杰,孙根云,张爱竹,等.基于波段选择的烟草病害检测模型[J].光谱学与光谱分析,2023,43(4):1023-1029. |
PAN Z J, SUN G Y, ZHANG A Z, et al.. Tobacco disease detection model based on band selection [J]. Spectrosc. Spectr. Anal., 2023, 43(4): 1023-1029. | |
[14] | 张慧,张文伟,张永毅,等.基于高光谱与纹理融合的烤烟分类方法研究[J].中国烟草学报,2022,28(3):72-80. |
ZHANG H, ZHANG W W, ZHANG Y Y,et al.. Research on classification method of flue-cured tobacco based on fusion of hyperspectral and texture features [J]. Acta Tab. Sin., 2022, 28(3): 72-80. | |
[15] | MARK H. Use of Mahalanobis distances to evaluate sample preparation methods for near-infrared reflectance analysis [J].Anal. Chem., 2002, 59(5): 790-795. |
[16] | GALVÃO R K H, ARAUJO M C U, JOSÉ G E, et al.. A method for calibration and validation subset partitioning [J]. Talanta, 2005, 67(4): 736-740. |
[17] | RINNAN Å, VAN DEN BERG F, ENGELSEN S B. Review of the most common pre-processing techniques for near-infrared spectra [J]. Trends Anal. Chem., 2009, 28(10): 1201-1222. |
[18] | ENGEL J, GERRETZEN J, SZYMANSKA E, et al.. Breaking with trends in pre-processing [J]. Trends Anal. Chem., 2013, 50: 96-106. |
[19] | RINNAN Å. Pre-processing in vibrational spectroscopy-when, why and how [J]. Anal. Meth., 2014, 6(18): 7124-7129. |
[20] | LEE L C, LIONG C Y, JEMAIN A A. A contemporary review on data preprocessing (DP) practice strategy in ATR-FTIR spectrum [J]. Chemom. Intell. Lab. Syst., 2017, 163: 64-75. |
[21] | WAN X H, LI G, ZHANG M Q, et al.. A review on the strategies for reducing the non-linearity caused by scattering on spectrochemical quantitative analysis of complex solutions [J]. Appl. Spectro. Rev., 2020, 55(5): 351-377. |
[22] | 唐杰,罗彦波,李翔宇,等.基于近红外光谱数据的一维卷积神经网络模型研究[J].光谱学与光谱分析, 2024, 44(3): 731-736. |
TANG J, LUO Y B, LI X Y, et al.. Study on one-dimensional convolutional neural network model based on near-infrared spectroscopy data [J]. Spectro. Spectr. Anal., 2024, 44(3):731-736. | |
[23] | 李国厚,李泽旭,金松林,等.混合卷积神经网络用于高光谱小麦品种鉴别[J].光谱学与光谱分析,2024,44(3):807-813. |
LI G H, LI Z X, JIN S L, et al.. Mix convolutional neural networks for hyperspectral wheat variety discrimination [J].Spectro. Spectr. Anal., 2024, 44(3): 807-813. | |
[24] | KE Y C, SHI Z K, LI P J, et al.. Lithological classification and analysis using Hyperion hyperspectral data and random forest method [J]. Acta Petrol. Sin., 2018, 34(7): 2181-2188. |
[25] | ARAÚJO M C U, SALDANHA T C B, GALVÃO R K H, et al.. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis [J]. Chemom. Intell. Lab. Syst., 2001, 57(2): 65-73. |
[26] | MOREIRA E D T, PONTES M J C, GALVÃO R K H, et al.. Near infrared reflectance spectrometry classification of cigarettes using the successive projections algorithm for variable selection [J]. Talanta, 2009, 79(5): 1260-1264. |
[27] | SOARES S F C, GOMES A A, ARAUJO M C U, et al.. The successive projections algorithm [J]. Trends Anal. Chem., 2013, 42: 84-98. |
[28] | LI H D, LIANG Y Z, XU Q S, et al.. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration [J].Anal.Chim. Acta, 2009,648(1):77-84. |
[29] | ZHU H Y, CHU B Q, ZHANG C,et al.. Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers [J/OL]. Sci. Rep., 2017, 7(1): 4125 [2024-05-06]. . |
[30] | SAMPAIO P S, CASTANHO A, ALMEIDA A S, et al.. Identification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods [J].Eur. Food Res.Technol., 2020, 246(3): 527-537. |
[31] | GARCÍA-VERA Y E, POLOCHÈ-ARANGO A, MENDIVELSO-FAJARDO C A,et al.. Hyperspectral image analysis and machine learning techniques for crop disease detection and identification:a review [J/OL].Sustainability, 2024, 16(14): 6064 [2024-05-06]. . |
[1] | Qian GUO, Jiahao WEI, Jian ZHANG, Zhangxi YE, Houxi ZHANG, Zhengqing LAI, Hui DENG. Vegetable Recognition Based on Unmanned Aerial Vehicle (UAV) Multispectral Imagery and Random Forest Algorithm [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 99-110. |
[2] | Xin LU, Guiping LIAO, Fan LIU. Inversion Model of Oleic Acid Content in Rape Seeds Based on Hyperspectral Imaging Technology [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 92-99. |
[3] | ZHANG Guanhong, WANG Xinjun, XU Xiaolong, YAN Linan, CHANG Mengdi, LI Yongkang, . Desert Vegetation Classification Based on Object-oriented UAV Remote Sensing Images [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 69-77. |
[4] | YU Yang, ZHANG Jue, TIAN Haiqing, WANG Di, WANG Ke, ZHANG Hongqi. Detection Method for Tenderness of Chilled Fresh Lamb Based on Hyperspectral Imaging Technology [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 101-108. |
[5] |
YANG Jing, LIAO Guiping*, LIU Fan, GUAN Chunyun.
Prediction of Chlorophyll Content of Rape Leaves with Hyperspectral Imaging Technology
[J]. Journal of Agricultural Science and Technology, 2020, 22(5): 86-96.
|
[6] | YANG Xuecheng, HUANG Runxia, ZHOU Qing, XU Mingfeng, TANG Qiming, SU Zhiyao*. Association of Bryophytes with Site Factors and Indicator Species in Agroforestry Ecotone of East Guangdong [J]. Journal of Agricultural Science and Technology, 2020, 22(4): 177-186. |
[7] |
SHEN Yu1,2, FANG Sheng2, WANG Fengyun1, LI Zhe2, ZHANG Chen1,2, ZHENG Jiye1*.
Effective Wavelengths Study on the Identification of Slight Bruises of Apples Based on Hyperspectral Imaging
[J]. Journal of Agricultural Science and Technology, 2020, 22(3): 64-71.
|
[8] | TANG Zixia, LI Mengmeng*, WANG Xiaoqin, QIU Pengxun. Extraction of Grape Greenhouses From GF-2 Remote Sensing Images#br# [J]. Journal of Agricultural Science and Technology, 2020, 22(11): 95-105. |
[9] | REN Xianghui, CUI Jianxin, YANG Meng, LI Peng, NIU Xinyue, LI Wenjie. Radom Forest Model Analysis on Environment Factors of Phyllotreta striolata Occurrence in Brassica chinensis Field#br# [J]. Journal of Agricultural Science and Technology, 2017, 19(7): 117-123. |
[10] | REN Yong-xin, SHAN Zhong-de, ZHANG Jing, ZHAN Li. Research Progress on Computer Vision Technique in Fruit Quality Inspection [J]. , 2012, 14(1): 98-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||