中国农业科技导报 ›› 2020, Vol. 22 ›› Issue (8): 83-92.DOI: 10.13304/j.nykjdb.2019.1058

• 智慧农业 农机装备 • 上一篇    下一篇

基于遗传算法优化的BP神经网络进行水稻氮素营养诊断

罗建军1,杨红云2*,路艳1,易文龙2,孙爱珍1   

  1. 1.江西农业大学计算机与信息工程学院, 南昌 330045;2.江西农业大学软件学院, 江西省高等学校农业信息技术重点实验室, 南昌 330045
  • 收稿日期:2019-12-18 出版日期:2020-08-15 发布日期:2020-04-09
  • 通讯作者: *通信作者 杨红云 E-mail:nc_yhy@163.com
  • 作者简介:罗建军 E-mail:ljj1781891045@163.com;
  • 基金资助:
    国家自然科学基金项目(61562039,61762048,61862032);江西省教育厅科技项目(GJJ160374,GJJ170279)。

Identification of Nitrogen Nutrition in Rice Based on BP Neural Network Optimized by Genetic Algorithms

LUO Jianjun 1, YANG Hongyun 2*, LU Yan1, YI Wenlong 2, SUN Aizhen1   

  1. 1.School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
    2.Key Laboratory of Agricultural Information Technology of Colleges and Universities in Jiangxi Province; School of Software,
    Jiangxi Agricultural University, Nanchang 330045, China
  • Received:2019-12-18 Online:2020-08-15 Published:2020-04-09

摘要: 应用遗传算法优化BP神经网络进行水稻氮素营养诊断,为水稻的合理施氮提供理论指导。水稻田间试验供试品种为‘两优培九’,设置4个施氮水平(0、210、300、390 kg·hm-2)。在水稻幼穗分化期,扫描获取水稻顶部第三完全展开叶图像,并通过图像处理技术获取19维水稻图像中的颜色和几何形态特征,采用归一化处理、离散小波变换及主成分分析对原始数据进行预处理,并应用遗传算法优化的BP神经网络进行水稻氮素营养诊断。该方法建立的水稻氮素营养诊断模型较单一BP神经网络模型和传统遗传算法优化BP神经网络模型好,模型测试所得4个施氮水平的平均识别率分别为100.000%、99.000%、97.000%、100.000%,测试集样本平均总识别率达到99.000%。基于遗传算法优化的BP神经网络所建立的水稻氮素营养诊断模型具有较强的学习能力和泛化能力,能够很好地识别出水稻氮素营养的缺失,表明运用该方法能够很好地进行水稻氮素营养诊断识别。

关键词: 水稻, 氮素营养诊断, 离散小波变换, 遗传算法, BP神经网络

Abstract: The genetic algorithm was used to optimize the BP neural network for rice nitrogen nutrition diagnosis, which provided theoretical guidance for the rational nitrogen application of rice. The rice variety used in field experiment was ‘Liangyoupei 9’, and four nitrogen levels (0, 210, 300, 390 kg·hm-2) were set. During the young panicle stage, the image of the third fully expanded leaf on the top of the rice was scanned, and the color and geometric features of the 19-dimensional rice images were obtained through image processing technology. Normalized processing, discrete wavelet transform and principal component analysis were used to preprocess the original data, and BP neural network optimized by genetic algorithm was used to diagnose nitrogen nutrition of rice. The rice nitrogen diagnosis model established by this method was better than the single BP neural network model and the traditional genetic algorithm optimized BP neural network model. The average recognition rates of the four nitrogen application levels obtained by the model tests were 100.000%, 99.000%, 97.000% and 100.000%, respectively, and the average total recognition rate of the test set samples reached 99.000%. The rice nitrogen nutrition diagnosis model established based on the genetic algorithm optimized BP neural network had strong learning ability and generalization ability, and could also well identify the lack of rice nitrogen nutrition, which indicated that the application of this method could be used to diagnose and identify nitrogen nutrition in rice very well.

Key words: rice, nitrogen nutrition diagnosis, discrete wavelet transform, genetic algorithm, BP neural network