中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (4): 52-62.DOI: 10.13304/j.nykjdb.2020.0783
周雨青1,2(), 杨永飞1,2, 葛常伟2, 沈倩2, 张思平2, 刘绍东2, 马慧娟2, 陈静2, 刘瑞华2, 李士丛2, 赵新华2, 李存东1(
), 庞朝友2(
)
收稿日期:
2020-09-07
接受日期:
2021-03-03
出版日期:
2022-04-15
发布日期:
2022-04-20
通讯作者:
李存东,庞朝友
作者简介:
周雨青 E-mail: zhouyuqing0803@163.com
基金资助:
Yuqing ZHOU1,2(), Yongfei YANG1,2, Changwei GE2, Qian SHEN2, Siping ZHANG2, Shaodong LIU2, Huijuan MA2, Jing CHEN2, Ruihua LIU2, Shicong LI2, Xinhua ZHAO2, Cundong LI1(
), Chaoyou PANG2(
)
Received:
2020-09-07
Accepted:
2021-03-03
Online:
2022-04-15
Published:
2022-04-20
Contact:
Cundong LI,Chaoyou PANG
摘要:
权重基因共表达网络分析(weighted gene co-expression network analysis, WGCNA)是系统生物学的一种研究方法,在多样本转录组数据中挖掘与目标性状相关的基因模块应用较广泛。为深入探究棉花应对冷害胁迫的分子机制,以4 ℃低温处理不同时间点的2个棉花品种(新陆中16和新陆中32)幼苗子叶转录组数据为基础,过滤低表达量基因, 最终利用筛选的22 083个表达的基因来构建共表达矩阵, 得到9个共表达模块,其中2个为抗冷相关特异性模块(Blue模块与低温处理0、1和3 h时间点正相关,Brown模块与低温处理9和12 h时间点正相关)。GO和KEGG富集分析表明, 特异性模块可以富集到对刺激反应的调节(GO:0048583)、对胁迫反应的调节(GO:0080134)、对油菜素类固醇的反应(GO:0009741)等抗逆相关通路。通过计算模块内基因的连通性挖掘网络中的核心基因,功能注释表明这些基因可能在棉花抗冷过程中发挥着重要作用。该结果为进一步研究棉花抗冷调控机理提供数据支持。
中图分类号:
周雨青, 杨永飞, 葛常伟, 沈倩, 张思平, 刘绍东, 马慧娟, 陈静, 刘瑞华, 李士丛, 赵新华, 李存东, 庞朝友. 基于WGCNA的棉花子叶抗冷相关共表达模块鉴定[J]. 中国农业科技导报, 2022, 24(4): 52-62.
Yuqing ZHOU, Yongfei YANG, Changwei GE, Qian SHEN, Siping ZHANG, Shaodong LIU, Huijuan MA, Jing CHEN, Ruihua LIU, Shicong LI, Xinhua ZHAO, Cundong LI, Chaoyou PANG. Identification of Cold-related Co-expression Modules in Cotton Cotyledon by WGCNA[J]. Journal of Agricultural Science and Technology, 2022, 24(4): 52-62.
基因 ID Gene ID | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
Gh_A11G0969 | GAAGGCATTCCACCTGACCAAC | CTTGACCTTCTTCTTCTTGTGCTTG |
Gh_A05G1931 | TGCCCAATGGTGGAAAACCACT | CGGCTCATGCAGAACCCTTCAA |
Gh_D13G0160 | CGAACATGATGCCAACCGATGC | TGCAATCGAGCTTCCGTAGGTG |
Gh_A13G2112 | CCACAAGAGTTTCCCTACGGGC | CGTGGTTTCTTGGTCGGCAATG |
Gh_A05G0483 | GCCGAGTGTGAGGATTATGCCA | TTCTTGACGGGACAACTTGGGG |
Gh_A12G2357 | CGTGGCAGCTATAGCACTGA | TTCTGAAAGTCTCCGCCACC |
Gh_D09G1773 | AATAGGGCTACCGAGGCTGGTT | AGCCCTCCCGTTGTAAAACACC |
Gh_D05G2642 | GCAGCAACCCCAAAATCCCAAC | CCACATCCCCGTATTCAGCACC |
Gh_A05G1554 | GCCTCAAGAGGAGGTGATCG | GCTGCTGCTATCTGATCGGT |
Gh_D05G0600 | AAGGGCTTACGTCCGCACAAAT | GCACTTGAAGTATGCCCTCGGA |
Gh_A13G0138 | AGGGTGCATGTCCTAAGGGTGA | GACCTCGGTGAAGGCATAGCAG |
表1 qRT-PCR 所用基因引物序列
Table 1 Specific primers for the selected genes
基因 ID Gene ID | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
Gh_A11G0969 | GAAGGCATTCCACCTGACCAAC | CTTGACCTTCTTCTTCTTGTGCTTG |
Gh_A05G1931 | TGCCCAATGGTGGAAAACCACT | CGGCTCATGCAGAACCCTTCAA |
Gh_D13G0160 | CGAACATGATGCCAACCGATGC | TGCAATCGAGCTTCCGTAGGTG |
Gh_A13G2112 | CCACAAGAGTTTCCCTACGGGC | CGTGGTTTCTTGGTCGGCAATG |
Gh_A05G0483 | GCCGAGTGTGAGGATTATGCCA | TTCTTGACGGGACAACTTGGGG |
Gh_A12G2357 | CGTGGCAGCTATAGCACTGA | TTCTGAAAGTCTCCGCCACC |
Gh_D09G1773 | AATAGGGCTACCGAGGCTGGTT | AGCCCTCCCGTTGTAAAACACC |
Gh_D05G2642 | GCAGCAACCCCAAAATCCCAAC | CCACATCCCCGTATTCAGCACC |
Gh_A05G1554 | GCCTCAAGAGGAGGTGATCG | GCTGCTGCTATCTGATCGGT |
Gh_D05G0600 | AAGGGCTTACGTCCGCACAAAT | GCACTTGAAGTATGCCCTCGGA |
Gh_A13G0138 | AGGGTGCATGTCCTAAGGGTGA | GACCTCGGTGAAGGCATAGCAG |
图2 基因聚类树和模块划分A:基于拓扑重叠构建的基因聚类树;B:动态剪切树法得到的基因模块,颜色代表模块;C:表达模式相似模块合并后的共表达模块
Fig.2 Gene cluster dendrograms and module divisionA: Clustering of genes based on the topological overlap; B: Gene modules obtained from the dynamic tree cut, and different colors represent different modules; C: Merged co-expression modules with similar expression pattern
图4 基因共表达网络模块与不同样本的关联热图注:红色和绿色格分别代表性状与模块具有正相关性和负相关性。
Fig.4 Association analysis of gene co-expression network modules with different samplesNote: Red and green lattice represent positive correlation and negative correlation, respectively.
图5 不同模块两两之间 ME 的相关性注:红色和绿色格分别代表性状与模块具有正相关性和负相关性。格中数值代表模块与性状之间的相关系数和相应的P值(括号中)。
Fig.5 ME correlation between different modulesNote : Red and green lattice represent positive correlation and negative correlation, respectively. The numbers in the lattice show correlation coefficient and the corresponding P value (in the bracket).
模块 Module | GO条目 GO term | 基因本体 Ontology | 描述 Description | 基因数目 Genes No. | P值 P value |
---|---|---|---|---|---|
蓝色 Blue | GO:0048583 | P | 对刺激反应的调节Regulation of response to stimulus | 538 | 0.001 08 |
GO:0080134 | P | 对胁迫反应的调节Regulation of response to stress | 282 | 0.000 45 | |
GO:0031347P | P | 对防御反应的调节Regulation of defense response | 216 | 0.000 15 | |
GO:0009738 | P | 脱落酸激活的信号通路 Abscisic acid-activated signaling pathway | 216 | 0.000 32 | |
GO:0010200 | P | 对几丁质的反应Response to chitin | 166 | 0.000 15 | |
GO:0009741 | P | 对油菜素类固醇的反应Response to brassinosteroid | 114 | 0.001 47 | |
GO:0003700 | F | 转录因子活性,特异性DNA序列结合 Transcription factor activity, sequence-specific DNA binding | 1 275 | 0.000 68 | |
GO:0005623 | C | 细胞Cell | 12 853 | 1.05e-06 | |
GO:0043227 | C | 膜结合细胞器Membrane-bounded organelle | 10 326 | 7.51e-06 |
表2 特异性模块的部分GO富集分析结果
Table 2 Partial GO enrichment analysis of target module
模块 Module | GO条目 GO term | 基因本体 Ontology | 描述 Description | 基因数目 Genes No. | P值 P value |
---|---|---|---|---|---|
蓝色 Blue | GO:0048583 | P | 对刺激反应的调节Regulation of response to stimulus | 538 | 0.001 08 |
GO:0080134 | P | 对胁迫反应的调节Regulation of response to stress | 282 | 0.000 45 | |
GO:0031347P | P | 对防御反应的调节Regulation of defense response | 216 | 0.000 15 | |
GO:0009738 | P | 脱落酸激活的信号通路 Abscisic acid-activated signaling pathway | 216 | 0.000 32 | |
GO:0010200 | P | 对几丁质的反应Response to chitin | 166 | 0.000 15 | |
GO:0009741 | P | 对油菜素类固醇的反应Response to brassinosteroid | 114 | 0.001 47 | |
GO:0003700 | F | 转录因子活性,特异性DNA序列结合 Transcription factor activity, sequence-specific DNA binding | 1 275 | 0.000 68 | |
GO:0005623 | C | 细胞Cell | 12 853 | 1.05e-06 | |
GO:0043227 | C | 膜结合细胞器Membrane-bounded organelle | 10 326 | 7.51e-06 |
模块 Module | 核心基因编号 Hub gene ID | 模块内连通性 Connectivity | 拟南芥同源基因编号 Homologous gene ID in A. thaliana | 基因功能 Gene function |
---|---|---|---|---|
蓝色Blue | Gh_A05G1931 | 4 300.865 | AT4G08950 | 磷酸盐反应1家族蛋白 Phosphate-responsive 1 family protein |
Gh_D13G0160 | 4 218.162 | AT2G40140 | 锌指(C3H型)蛋白家族 Zinc finger (C3H-type) family protein | |
Gh_A13G2112 | 3 944.263 | AT1G27730 | 耐盐锌指Salt tolerance zinc finger | |
Gh_A05G0483 | 3 864.472 | AT1G80840 | WRKY DNA结合蛋白40 WRKY DNA-binding protein 40 | |
Gh_A12G2357 | 3 096.27 | AT5G51990 | C重复结合因子4 C-repeat-binding factor 4 | |
棕色 Brown | Gh_D09G1773 | 628.545 | AT3G49530 | 含有NAC结构域的蛋白质62 NAC domain containing protein 62 |
Gh_D05G2642 | 601.582 | AT3G56400 | WRKY DNA结合蛋白70 WRKY DNA-binding protein 70 | |
Gh_A05G1554 | 557.708 | AT1G20440 | 低温调节47 Cold-regulated 47 | |
Gh_D05G0600 | 550.86 | AT1G80840 | WRKY DNA结合蛋白40 WRKY DNA-binding protein 40 | |
Gh_A13G0138 | 517.077 | AT2G40140 | 锌指(C3H型)蛋白家族 Zinc finger (C3H-type) family protein 图8 核心基因的表达模式 Fig.8 Expression pattern of hub genes 图9 核心基因的 RT-qPCR 验证 Fig.9 qRT-PCR validation of hub genes |
表3 目标模块中核心基因的功能注释
Table 3 Annotation of hub genes in target module
模块 Module | 核心基因编号 Hub gene ID | 模块内连通性 Connectivity | 拟南芥同源基因编号 Homologous gene ID in A. thaliana | 基因功能 Gene function |
---|---|---|---|---|
蓝色Blue | Gh_A05G1931 | 4 300.865 | AT4G08950 | 磷酸盐反应1家族蛋白 Phosphate-responsive 1 family protein |
Gh_D13G0160 | 4 218.162 | AT2G40140 | 锌指(C3H型)蛋白家族 Zinc finger (C3H-type) family protein | |
Gh_A13G2112 | 3 944.263 | AT1G27730 | 耐盐锌指Salt tolerance zinc finger | |
Gh_A05G0483 | 3 864.472 | AT1G80840 | WRKY DNA结合蛋白40 WRKY DNA-binding protein 40 | |
Gh_A12G2357 | 3 096.27 | AT5G51990 | C重复结合因子4 C-repeat-binding factor 4 | |
棕色 Brown | Gh_D09G1773 | 628.545 | AT3G49530 | 含有NAC结构域的蛋白质62 NAC domain containing protein 62 |
Gh_D05G2642 | 601.582 | AT3G56400 | WRKY DNA结合蛋白70 WRKY DNA-binding protein 70 | |
Gh_A05G1554 | 557.708 | AT1G20440 | 低温调节47 Cold-regulated 47 | |
Gh_D05G0600 | 550.86 | AT1G80840 | WRKY DNA结合蛋白40 WRKY DNA-binding protein 40 | |
Gh_A13G0138 | 517.077 | AT2G40140 | 锌指(C3H型)蛋白家族 Zinc finger (C3H-type) family protein 图8 核心基因的表达模式 Fig.8 Expression pattern of hub genes 图9 核心基因的 RT-qPCR 验证 Fig.9 qRT-PCR validation of hub genes |
模块 Module | GO条目 GO term | 基因本体 Ontology | 描述 Description | 基因数目 Genes No. | P值 P value |
---|---|---|---|---|---|
棕色 Brown | GO:0050896 | P | 对刺激的反应Response to stimulus | 644 | 6.16e-10 |
GO:0006950 | P | 对胁迫的反应Response to stress | 365 | 1.39e-05 | |
GO:0009719 | P | 对内源性刺激的反应Response to endogenous stimulus | 269 | 7.26e-14 | |
GO:0009628 | P | 对非生物刺激的反应Response to abiotic stimulus | 263 | 2.57e-07 | |
GO:1901700 | P | 对含氧化合物的反应Response to oxygen-containing compound | 253 | 3.61e-14 | |
GO:0009725 | P | 对激素的反应Response to hormone | 233 | 1.08e-08 | |
GO:0048583 | P | 对刺激反应的调节Regulation of response to stimulus | 106 | 3.83e-08 | |
GO:0009737 | P | 对脱落酸的反应Response to abscisic acid | 103 | 3.37e-08 | |
GO:0009723 | P | 对乙烯的反应Response to ethylene | 68 | 6.83e-08 | |
GO:0080134 | P | 对胁迫反应的调节Regulation of response to stress | 66 | 3.94e-09 | |
GO:0010200 | P | 对几丁质的反应Response to chitin | 64 | 2.87e-20 | |
GO:0009751 | P | 对水杨酸的反应Response to salicylic acid | 47 | 4.46e-08 | |
GO:0031347 | P | 对防御反应的调节Regulation of defense response | 47 | 1.41e-06 | |
GO:0009753 | P | 对茉莉酸的反应Response to jasmonic acid | 46 | 2.71e-05 | |
GO:0003700 | F | 转录因子活性,特异性DNA序列结合 Transcription factor activity, sequence-specific DNA binding | 262 | 3.74e-20 | |
GO:0005634 | C | 核nucleus | 797 | 1.94e-06 | |
GO:0005887 | C | 质膜的组成部分Integral component of plasma membrane | 24 | 0.024 88 |
表2 特异性模块的部分GO富集分析结果 (续表Continued)
Table 2 Partial GO enrichment analysis of target module
模块 Module | GO条目 GO term | 基因本体 Ontology | 描述 Description | 基因数目 Genes No. | P值 P value |
---|---|---|---|---|---|
棕色 Brown | GO:0050896 | P | 对刺激的反应Response to stimulus | 644 | 6.16e-10 |
GO:0006950 | P | 对胁迫的反应Response to stress | 365 | 1.39e-05 | |
GO:0009719 | P | 对内源性刺激的反应Response to endogenous stimulus | 269 | 7.26e-14 | |
GO:0009628 | P | 对非生物刺激的反应Response to abiotic stimulus | 263 | 2.57e-07 | |
GO:1901700 | P | 对含氧化合物的反应Response to oxygen-containing compound | 253 | 3.61e-14 | |
GO:0009725 | P | 对激素的反应Response to hormone | 233 | 1.08e-08 | |
GO:0048583 | P | 对刺激反应的调节Regulation of response to stimulus | 106 | 3.83e-08 | |
GO:0009737 | P | 对脱落酸的反应Response to abscisic acid | 103 | 3.37e-08 | |
GO:0009723 | P | 对乙烯的反应Response to ethylene | 68 | 6.83e-08 | |
GO:0080134 | P | 对胁迫反应的调节Regulation of response to stress | 66 | 3.94e-09 | |
GO:0010200 | P | 对几丁质的反应Response to chitin | 64 | 2.87e-20 | |
GO:0009751 | P | 对水杨酸的反应Response to salicylic acid | 47 | 4.46e-08 | |
GO:0031347 | P | 对防御反应的调节Regulation of defense response | 47 | 1.41e-06 | |
GO:0009753 | P | 对茉莉酸的反应Response to jasmonic acid | 46 | 2.71e-05 | |
GO:0003700 | F | 转录因子活性,特异性DNA序列结合 Transcription factor activity, sequence-specific DNA binding | 262 | 3.74e-20 | |
GO:0005634 | C | 核nucleus | 797 | 1.94e-06 | |
GO:0005887 | C | 质膜的组成部分Integral component of plasma membrane | 24 | 0.024 88 |
1 | 付小琼,彭军.国家棉花区域试验工作十年回顾与展望[J].棉花学报,2017,29(S1):113-117. |
FU X Q, PENG J. Prospect and retrospection of national cotton regional test of China in last decade [J]. Cotton Sci., 2017, 29(S1):113-117. | |
2 | 李俊义,王润珍,王宗洪,等.环境条件与棉苗冻害程度研究简报[J].新疆农垦科技,2000(1):19. |
3 | 龚双军,李国英,杨德松,等.不同棉花品种苗期抗寒性及其生理指标测定[J].中国棉花,2005,32(3):16-17. |
GONG S J, LI G Y, YANG D S, et al.. Determination of cold resistance and physiological indexes of different cotton varieties at seedling stage [J]. China Cotton, 2005, 32(3):16-17. | |
4 | 秦天元,孙超,毕真真,等.基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J].作物学报,2020,46(7):1033-1051. |
QIN T Y, SUN C, BI Z Z, et al.. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA [J]. Acta Agron. Sin., 2020, 46(7):1033-1051. | |
5 | 巨飞燕,张思平,刘绍东,等.利用WGCNA进行棉花果枝节间伸长相关基因共表达模块鉴定[J].棉花学报,2019,31(5)403-413. |
JU F Y, ZHANG S P, LIU S D, et al.. Identification of co-expression modules of genes related to internode elongation of cotton fruiting branches by WGCNA [J]. Cotton Sci., 2019, 31(5)403-413. | |
6 | 傅明川,李浩,陈义珍,等.利用WGCNA鉴定棉花抗黄萎病相关基因共表达网络[J].作物学报,2020,46(5)668-679. |
FU M C, LI H, CHEN Y Z, et al.. Identification of co-expressed modules of cotton genes responding to Verticillium dahliae infection by WGCNA [J]. Acta Agron. Sin., 2020, 46(5):668-679. | |
7 | 李旭凯,李任建,张宝俊.利用WGCNA鉴定非生物胁迫相关基因共表达网络[J].作物学报,2019,45(9)1349-1364. |
LI X K, LI R J, ZHANG B J. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agron. Sin., 2019, 45(9)1349-1364. | |
8 | 秦梦凡,李浩东,左凯峰,等.利用WGCNA鉴定甘蓝型油菜低温胁迫的基因共表达网络[J].中国油料作物学报,2020,42(4)554-562. |
QIN M F, LI H D, ZUO K F, et al.. Identification of co-expression networks responding to low-temperature stress by WGCNA in Brassica napus L. [J]. Chin. J. Oil Crop Sci., 2020, 42(4)554-562. | |
9 | MORTAZAVI A, WILLIAMS B A, MCCUE K, et al.. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat. Methods, 2008, 5(7):621-628. |
10 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J]. Methods, 2001, 25(4):402-408. |
11 | 谢勇军.水稻非生物逆境差异表达基因分析及共表达网络构建[D].武汉:华中农业大学,2018. |
XIE Y J. Analysis of ifferentially expressed genes and construction of gene co-expression network in rice under abiotic stresses [D]. Wuhan: Huazhong Agricultural University, 2018. | |
12 | SHARMA N, CRAM D, HUEBERT T, et al.. Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant's response to cold stress [J]. Plant Mol. Biol., 2007, 63(2):171-184. |
13 | 赵娟 .反义抑制GhDET2对棉花生长发育的影响[D].重庆:西南大学,2009. |
ZHAO J. Effects of down-regulation of GhDET2, a steroid 5α-reducase gene of cotton, on the growth and development of cotton (Gossypium hirsutum L.) [D]. Chongqing: Southwest University, 2009. | |
14 | KAZAN K. Negative regulation of defence and stress genes by EAR-motif-containing repressors [J]. Trends Plant Sci., 2006, 11(3):109-112. |
15 | SAKAMOTO H, MARUYAMA K, SAKUMA Y, et al.. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions [J]. Plant Physiol., 2004, 136(1):2734-2746. |
16 | OHTA M, MATSUI K, HIRATSU K, et al.. Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression [J]. Plant Cell, 2001, 13(8):1959-1968. |
17 | SAKAMOTO H, ARAKI T, MESHI T, et al.. Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress [J]. Gene,2000,248(1):23-32. |
18 | ENGLBRECHT C C, SCHOOF H, BOHM S. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome [J/OL]. BMC Genomics, 2004, 5(1):39 [2021-06-21]. . |
19 | MITTLER R, KIM Y, SONG L, et al.. Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress [J]. FEBS Lett., 2006, 580(28-29):6537-6542. |
20 | ROSSEL J B, WILSON P B, HUSSAIN D, et al.. Systemic and intracellular responses to photooxidative stress in Arabidopsis [J]. Plant Cell, 2007, 19(12):4091-4110. |
21 | NGUYEN X C, KIM S H, LEE K, et al.. Identification of a C2H2-type zinc finger transcription factor (ZAT10) from Arabidopsis as a substrate of MAP kinase [J]. Plant Cell Rep.,2012, 31(4):737-745. |
22 | DROILLARD M, BOUDSOCQ M, BARBIER-BRYGOO H, et al.. Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6 [J]. FEBS Lett., 2002, 527(1-3):43-50. |
23 | LIU X M, KIM K E, KIM K C, et al.. Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species [J]. Phytochemistry, 2010, 71(56):614-618. |
24 | NAKAGAMI H, PITZSCHKE A, HIRT H. Emerging MAP kinase pathways in plant stress signalling [J]. Trends Plant Sci., 2005, 10(7):339-346. |
25 | SAMUEL M A, MILES G P, ELLIS B E. Ozone treatment rapidly activates MAP kinase signalling in plants [J]. Plant J., 2000, 22(4):367-376. |
26 | TENA G, ASAI T, CHIU W L, et al.. Plant mitogen-activated protein kinase signaling cascades [J]. Curr. Opin. Plant Biol., 2001, 4(5):392-400. |
27 | YUASA T, ICHIMURA K, MIZOGUCHI T, et al.. Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase [J]. Plant Cell Physiol., 2001, 42(9):1012-1016. |
28 | 张丽丽,李景富,王傲雪.转录激活因子CBF基因在植物抗冷分子机制中的作用[J].园艺学报,2008,35(5):765-771. |
ZHANG L L, LI J F, WANG A X. The role of the transcription factor CBF genes in cold-responsive molecular mechanism [J]. Acta Hortic. Sin., 2008, 35(5):765-771. | |
29 | CAI X, MAGWANGA R O, XU Y, et al.. Comparative transcriptome, physiological and biochemical analyses reveal response mechanism mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurberi [J]. AoB Plants, 2019:1-17. |
30 | HAAKE V, COOK D, RIECHMANN J L, et al.. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis [J]. Plant Physiol., 2002, 130(2):639-648. |
31 | CHAWADE A, BRAUTIGAM M, LINDLOF A, et al.. Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors [J]. BMC Genomics, 2007, 8(1):304. |
32 | SEO P J, KIM M J, PARK J Y, et al.. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis [J]. Plant J., 2010, 61(4):661-671. |
33 | BOZOVIC V, SVENSSON J, SCHMITT J, et al.. Dehydrins (LTI29, LTI30, COR47) from Arabidopsis thaliana expressed in Escherichia coli protect thylakoid membrane during freezing [J]. J. Serb. Chem. Soc., 2013, 78(8):1149-1160. |
34 | HERNANDEZ-SANCHEZ I E, MARURI-LOPEZ I, GRAETHER S P, et al.. In vivo evidence for homo-and heterodimeric interactions of Arabidopsis thaliana dehydrins AtCOR 47, AtERD10, and AtRAB18 [J/OL]. Sci. Rep., 2019, 7(1):17036 [2021-06-21]. . |
[1] | 李舒欣, 张浩, 郑厚胜, 郑培和, 逄世峰, 许世泉. 转录组分析二马牙和长脖类型林下参表型差异[J]. 中国农业科技导报, 2021, 23(9): 56-68. |
[2] | 李生梅, 张大伟, 迪丽拜尔·迪力买买提, 魏鑫, 芮存, 杨涛, 耿世伟, 高文伟. 减量灌溉对转ScALDH21基因棉花农艺性状、产量和品质的影响[J]. 中国农业科技导报, 2021, 23(9): 152-159. |
[3] | 刘源, 张秀妍, 徐妙云, 郑红艳, 邹俊杰, 张兰, 王磊. 水稻干旱胁迫的small RNA转录组分析[J]. 中国农业科技导报, 2021, 23(6): 23-32. |
[4] | 张旭1,何俊峰1,陈佛文1,李继福1*,吴启侠1,谭京红1,邹家龙2. 麦秆还田对直播和移栽棉花产量及氮素吸收的影响[J]. 中国农业科技导报, 2021, 23(3): 122-131. |
[5] | 张特,康正华,赵强*,聂志勇,王蜜蜂,崔延楠. 施氮量及打顶方式对棉花营养积累与分配及产量的影响[J]. 中国农业科技导报, 2021, 23(3): 139-147. |
[6] | 马盼盼1,2,赵曾强1,2,祝建波2,孙国清3*. 棉花耐旱耐盐碱生理和分子机制研究进展[J]. 中国农业科技导报, 2021, 23(2): 27-36. |
[7] | 王国宁, 张艳, 宋俊丽, 杨君, 王省芬, 吴立强, 张桂寅. 黄萎病胁迫下抗病陆地棉茎组织lncRNA的鉴定与分析[J]. 中国农业科技导报, 2021, 23(12): 29-41. |
[8] | 吴雪琴, 崔延楠, 赵强. 化学打顶后使用外源物质对棉花脱叶催熟及产量品质的影响[J]. 中国农业科技导报, 2021, 23(12): 151-160. |
[9] | 李憬霖, 刘绍东, 张思平, 陈静, 刘瑞华, 沈倩, 李阳, 马慧娟, 赵新华, 庞朝友. 棉花品种资源全生育期抗旱性评价及抗旱指标筛选[J]. 中国农业科技导报, 2021, 23(10): 52-65. |
[10] | 刘梦丽1,李进2,张军高2,周小云2,杜鹏程1,郭庆元1*,雷斌2*. 棉花红腐病菌不同致病力菌株间毒素活性差异[J]. 中国农业科技导报, 2020, 22(7): 99-105. |
[11] | 刘松涛1,田春丽1,曹雯梅1,郑贝贝1,李鹏程2,董合林2. 基于不同土壤质地棉花根际微生物和酶活性特征分析[J]. 中国农业科技导报, 2020, 22(2): 73-79. |
[12] | 段怡红,阎媛媛,陈丽婷,李青,张冬梅,孙正文,张艳,马峙英,王省芬*. 陆地棉开花时间相关基因GhMYB44的克隆与功能验证[J]. 中国农业科技导报, 2020, 22(12): 29-38. |
[13] | 张文云1,张建诚2,姚景珍2*. 氮胁迫下小麦叶片转录组分析[J]. 中国农业科技导报, 2020, 22(11): 26-34. |
[14] | 王潭刚1§,马丽1§,李克富1,王冀川2*,李慧琴1,吉光鹏1,郝全有1,崔建强1,胡宝1. 不同密度下封顶方式对南疆棉花生长及产量性状的影响[J]. 中国农业科技导报, 2019, 21(6): 110-116. |
[15] | 赵婧文,张庆伟,李政,张文太*. 膜下滴灌施用生物有机肥对土壤盐分及棉花产量的影响[J]. 中国农业科技导报, 2019, 21(3): 102-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||