中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (5): 209-217.DOI: 10.13304/j.nykjdb.2021.0015
• 生物制造 资源生态 • 上一篇
魏艳晨1(), 陈吉祥1(
), 王永刚2, 孟彤彤3, 韩亚龙1, 李美1
收稿日期:
2021-01-07
接受日期:
2021-06-01
出版日期:
2022-05-15
发布日期:
2022-06-06
通讯作者:
陈吉祥
作者简介:
魏艳晨 E-mail:2542893966@qq.com;
基金资助:
Yanchen WEI1(), Jixiang CHEN1(
), Yonggang WANG2, Tongtong MENG3, Yalong HAN1, Mei LI1
Received:
2021-01-07
Accepted:
2021-06-01
Online:
2022-05-15
Published:
2022-06-06
Contact:
Jixiang CHEN
摘要:
为了解珍珠猪毛菜(Salsolapasserina)的生态适应机制,采用细菌16S rDNA高通量测序、纯培养方法及荧光染色激光共聚焦显微镜计数法研究了甘肃景泰地区荒漠草原珍珠猪毛菜根际土壤的细菌类群及其与土壤理化性质相关性,并与荒漠土壤进行对比。结果表明,珍珠猪毛菜根际土壤的养分含量显著高于荒漠土壤。猪毛菜根际土壤微生物检测到5 655 OUT,其中特有的为2 580个。根际土壤可培养细菌数和细菌总数分别为1.62×106 CFU·g-1和1.33×107个·g-1,高于非根际土壤(5.40 ×105 CFU·g-1和1.12×107 个·g-1);且2种土壤细菌的多样性存在显著差异。珍珠猪毛菜根际土壤中优势细菌门为放线菌门(Actinobacteria)、浮霉菌门(Planctomycetes)、变形菌门(Proteobacteria)、芽单胞菌门(Gemmatimonadetes)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)和疣微菌门(Verrucomicrobia),占总细菌类群的97.7%;优势细菌属依次为红色杆菌属(Rubrobacter)、RB41、类诺卡氏菌属(Nocardioides)、链霉菌属(Streptomyces)、Pir4_lineage、芽孢杆菌属(Bacillus)、土壤红杆菌属(Solirubrobacter)、芽单胞菌属(Gemmatimonas)和小梨形菌属(Pirellula)。主要菌群及环境因子的相关分析表明,土壤养分含量、pH和含水率是影响土壤细菌群落组成的重要因子。
中图分类号:
魏艳晨, 陈吉祥, 王永刚, 孟彤彤, 韩亚龙, 李美. 荒漠植物珍珠猪毛菜根际土壤细菌多样性与土壤理化性质相关性分析[J]. 中国农业科技导报, 2022, 24(5): 209-217.
Yanchen WEI, Jixiang CHEN, Yonggang WANG, Tongtong MENG, Yalong HAN, Mei LI. Analysis of Bacterial Diversity in the Rhizosphere Soil of Salsolapasserina and Its Correlation with the Soil Physical and Chemical Properties[J]. Journal of Agricultural Science and Technology, 2022, 24(5): 209-217.
理化因子 Physical and chemical factor | 根际土壤 RS | 非根际土壤 NR |
---|---|---|
全氮TN/(g·kg-1) | 0.15±0.012 1 a | 0.09±0.024 1 b |
全磷TP/(g·kg-1) | 0.20±0.001 7 a | 0.20±0.000 1 a |
全钾TK/(g·kg-1) | 19.96±4.320 2 a | 16.87±0.157 5 b |
速效氮AN/(mg·kg-1) | 14.61±0.565 6 a | 9.93±0.280 0 b |
速效磷AP/(mg·kg-1) | 0.12±0.001 8 a | 0.10±0.002 2 b |
速效钾AK/(mg·kg-1) | 0.28±0.004 3 a | 0.15±0.016 0 b |
pH | 8.26±0.264 6 b | 8.87±0.052 9 a |
含水量WC/% | 6.33±0.413 7 b | 7.65±0.307 6 a |
表1 珍珠猪毛菜根际和非根际土壤的理化性质
Table 1 Physicochemical properties of RS and NR
理化因子 Physical and chemical factor | 根际土壤 RS | 非根际土壤 NR |
---|---|---|
全氮TN/(g·kg-1) | 0.15±0.012 1 a | 0.09±0.024 1 b |
全磷TP/(g·kg-1) | 0.20±0.001 7 a | 0.20±0.000 1 a |
全钾TK/(g·kg-1) | 19.96±4.320 2 a | 16.87±0.157 5 b |
速效氮AN/(mg·kg-1) | 14.61±0.565 6 a | 9.93±0.280 0 b |
速效磷AP/(mg·kg-1) | 0.12±0.001 8 a | 0.10±0.002 2 b |
速效钾AK/(mg·kg-1) | 0.28±0.004 3 a | 0.15±0.016 0 b |
pH | 8.26±0.264 6 b | 8.87±0.052 9 a |
含水量WC/% | 6.33±0.413 7 b | 7.65±0.307 6 a |
样品 Sample | Chao1指数 Chao1 index | Shannon 指数 Shannon index |
---|---|---|
根际土壤RS | 6 461.13±584.37 a | 10.35±0.10 b |
非根际土壤NR | 5 524.19±297.09 a | 9.72±0.12 a |
表2 土壤细菌的多样性指数
Table 2 Diversity indices of soil bacteria
样品 Sample | Chao1指数 Chao1 index | Shannon 指数 Shannon index |
---|---|---|
根际土壤RS | 6 461.13±584.37 a | 10.35±0.10 b |
非根际土壤NR | 5 524.19±297.09 a | 9.72±0.12 a |
理化因子 Physical and chemical factor | 可培养细菌数量 Culturable bacteria count | 细菌总数 Total bacterial count |
---|---|---|
全氮 TN | 0.565 | 0.670 |
全磷 TP | 0.800 | 0.578 |
全钾 TK | 0.718 | 0.672 |
速效氮 AN | 0.396 | 0.738 |
速效磷 AP | 0.537 | 0.726 |
速效钾 AK | 0.413 | 0.745 |
pH | -0.950** | -0.022 |
含水率 WC | -0.309 | -0.115 |
表3 土壤可培养细菌和细菌总数与理化因子之间的相关性
Table 3 Correlation between the number of bacteria and soil physical and chemical properties
理化因子 Physical and chemical factor | 可培养细菌数量 Culturable bacteria count | 细菌总数 Total bacterial count |
---|---|---|
全氮 TN | 0.565 | 0.670 |
全磷 TP | 0.800 | 0.578 |
全钾 TK | 0.718 | 0.672 |
速效氮 AN | 0.396 | 0.738 |
速效磷 AP | 0.537 | 0.726 |
速效钾 AK | 0.413 | 0.745 |
pH | -0.950** | -0.022 |
含水率 WC | -0.309 | -0.115 |
理化因子 Physical and chemical factor | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao1指数 Chao1 index |
---|---|---|---|---|
全氮 TN | 0.798 | 0.863* | 0.532 | 0.522 |
全磷 TP | 0.717 | 0.764 | 0.348 | 0.357 |
全钾 TK | 0.583 | 0.673 | 0.156 | 0.165 |
速效氮 AN | 0.961** | 0.961** | 0.804 | 0.802 |
速效磷 AP | 0.945** | 0.973** | 0.705 | 0.704 |
速效钾 AK | 0.979** | 0.966** | 0.815* | 0.819* |
pH | -0.194 | -0.188 | 0.068 | 0.062 |
含水率 WC | -0.024 | -0.203 | 0.364 | 0.360 |
表4 细菌多样性与土壤理化因子之间的相关性
Table 4 Correlation between physical and chemical properties and diversity index of bacteria
理化因子 Physical and chemical factor | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao1指数 Chao1 index |
---|---|---|---|---|
全氮 TN | 0.798 | 0.863* | 0.532 | 0.522 |
全磷 TP | 0.717 | 0.764 | 0.348 | 0.357 |
全钾 TK | 0.583 | 0.673 | 0.156 | 0.165 |
速效氮 AN | 0.961** | 0.961** | 0.804 | 0.802 |
速效磷 AP | 0.945** | 0.973** | 0.705 | 0.704 |
速效钾 AK | 0.979** | 0.966** | 0.815* | 0.819* |
pH | -0.194 | -0.188 | 0.068 | 0.062 |
含水率 WC | -0.024 | -0.203 | 0.364 | 0.360 |
门 Phylum | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
放线菌门Actinobacteria | -0.737 | -0.848* | -0.546 | -0.879* | 0.294 | -0.900* | 0.921** | 0.804 |
变形菌门Proteobacteria | 0.079 | -0.493 | 0.193 | 0.139 | 0.595 | -0.044 | 0.092 | 0.088 |
浮霉菌门Planctomycetes | -0.767 | 0.765 | 0.504 | -0.772 | -0.614 | 0.756 | -0.766 | -0.690 |
酸杆菌门Acidobacteria | 0.880* | 0.728 | 0.512 | 0.903* | 0.168 | 0.888* | -0.911* | -0.851* |
绿弯菌门Chloroflexi | 0.876* | 0.867* | 0.599 | 0.943** | -0.375 | 0.955** | -0.966** | -0.888* |
拟杆菌门Bacteroidetes | -0.471 | 0.349 | 0.178 | -0.466 | 0.698 | 0.411 | -0.467 | -0.472 |
表5 不同土壤细菌优势菌门与土壤理化因子的相关性
Table 5 Correlation of dominant communities of bacteria at the phylum level with soil physical and chemical factors
门 Phylum | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
放线菌门Actinobacteria | -0.737 | -0.848* | -0.546 | -0.879* | 0.294 | -0.900* | 0.921** | 0.804 |
变形菌门Proteobacteria | 0.079 | -0.493 | 0.193 | 0.139 | 0.595 | -0.044 | 0.092 | 0.088 |
浮霉菌门Planctomycetes | -0.767 | 0.765 | 0.504 | -0.772 | -0.614 | 0.756 | -0.766 | -0.690 |
酸杆菌门Acidobacteria | 0.880* | 0.728 | 0.512 | 0.903* | 0.168 | 0.888* | -0.911* | -0.851* |
绿弯菌门Chloroflexi | 0.876* | 0.867* | 0.599 | 0.943** | -0.375 | 0.955** | -0.966** | -0.888* |
拟杆菌门Bacteroidetes | -0.471 | 0.349 | 0.178 | -0.466 | 0.698 | 0.411 | -0.467 | -0.472 |
属 Genus | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
红色杆菌属Rubrobacter | 0.910* | 0.613 | 0.779 | 0.974** | -0.165 | 0.944** | -0.934** | -0.976** |
RB41 | 0.808 | 0.774 | 0.341 | 0.818* | 0.271 | 0.828* | -0.863* | -0.733 |
类诺卡氏菌属Nocardioides | -0.830* | -0.800 | -0.644 | -0.961** | 0.149 | -0.956** | 0.974** | 0.906* |
链霉菌属Streptomyces | -0.524 | -0.645 | -0.406 | -0.738 | -0.299 | -0.801 | 0.820* | 0.631 |
芽孢杆菌属Bacillus | -0.232 | -0.687 | -0.033 | -0.360 | 0.277 | -0.414 | 0.460 | 0.248 |
土壤红杆菌属Solirubrobacter | 0.550 | 0.124 | 0.791 | 0.681 | 0.043 | 0.541 | -0.541 | -0.762 |
芽单胞菌属Gemmatimonas | 0.555 | 0.163 | 0.609 | 0.660 | 0.484 | 0.579 | -0.582 | -0.688 |
Pelagibius | -0.890* | -0.865* | -0.604 | -0.953** | 0.338 | -0.958** | 0.972** | 0.901* |
表6 不同土壤细菌优势菌属与土壤理化因子的相关性
Table 6 Correlation of dominant communities of bacteria at the genus level with soil physical and chemical factors
属 Genus | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
红色杆菌属Rubrobacter | 0.910* | 0.613 | 0.779 | 0.974** | -0.165 | 0.944** | -0.934** | -0.976** |
RB41 | 0.808 | 0.774 | 0.341 | 0.818* | 0.271 | 0.828* | -0.863* | -0.733 |
类诺卡氏菌属Nocardioides | -0.830* | -0.800 | -0.644 | -0.961** | 0.149 | -0.956** | 0.974** | 0.906* |
链霉菌属Streptomyces | -0.524 | -0.645 | -0.406 | -0.738 | -0.299 | -0.801 | 0.820* | 0.631 |
芽孢杆菌属Bacillus | -0.232 | -0.687 | -0.033 | -0.360 | 0.277 | -0.414 | 0.460 | 0.248 |
土壤红杆菌属Solirubrobacter | 0.550 | 0.124 | 0.791 | 0.681 | 0.043 | 0.541 | -0.541 | -0.762 |
芽单胞菌属Gemmatimonas | 0.555 | 0.163 | 0.609 | 0.660 | 0.484 | 0.579 | -0.582 | -0.688 |
Pelagibius | -0.890* | -0.865* | -0.604 | -0.953** | 0.338 | -0.958** | 0.972** | 0.901* |
1 | 魏桂英,陈少勇,张媛文.腾格里沙漠南缘沙尘暴气候变化特征——以甘肃省景泰县为例[J].干旱区研究,2015,32(6):1133-1139. |
WEI G Y, CHEN S Y, ZHANG Y W. Sandstorms changing characteristics in the south edge of the Tengger Desert—Jingtai County, Gansu Province as a case study [J]. Arid Zone Res., 2015, 32 (6):1133-1139. | |
2 | 康宝天,侯扶江,BOWATTESaman.祁连山高寒草甸和荒漠草原土壤细菌群落的结构特征[J].草业科学,2020,37(1):10-19. |
KANG B T, HOU F J, BOWATTE S. Characterization of soil bacterial communities in alpine and desert grasslands in the Qilian Mountain range [J]. Pratac. Sci., 2020, 37(1):10-19. | |
3 | 黄耀龙. 荒漠区两种典型荒漠植物根际细菌的分布特征及其富集模式[D].兰州:兰州大学,2018. |
HUANG Y L. Distribution and enrichment patterns of rhizosphere bacteria of two typical desert plants in the desert area [D]. Lanzhou: Lanzhou University, 2018. | |
4 | 单立山,苏铭,张正中,等.不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J].植物生态学报,2018,42(4):475-486. |
SHAN L S, SU M, ZHANG L Z, et al.. Vertical distribution pattern of mixed root systems of desert plants Reaumuria soongarica and Salsola passerina under different environmental gradients [J]. Chin. J. Plant Ecol., 2018, 42(4):475-486. | |
5 | 李善家,王辉,苟伟,等.混生荒漠植物叶片功能性状与其根际微生物多样性的关系[J].生态环境学报,2020,29(9):1713-1722. |
LI S J, WANG H, GOU W, et al.. Relationship between leaf functional traits of mixed desert plants and microbial diversity in rhizosphere [J]. Ecol. Environ. Sci., 2020, 29(09):1713-1722. | |
6 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:1-495. |
BAO S D. Analytical methods of soil agricultural chemistry [M]. Beijing: China Agriculture Press, 2000:1-495. | |
7 | MICHAEL B, FREDERIK H, FRANZISKA B, et al.. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry [J]. Appl. Environ. Microbiol., 2007, 73(10):3283-3290. |
8 | 张秀霞,张守娟,张涵,等.固定化微生物对石油污染土壤理化性质的调控作用[J].石油学报(石油加工),2014,30(6):1106-1112. |
ZHANG X X, ZHANG S J, ZHANG H, et al.. Control effect of immobilized microorganisms on physical and chemical properties of petroleum-contaminated soil [J]. Acta Petrol. Sin. (Petrol. Proc.), 2014, 30(6):1106-1112. | |
9 | NI J J, LI X J, XU M Y. A novel method to determine the minimum number of sequences required for reliable microbial community analysis [J]. J. Microbiol. Methods, 2017, 137(8):196-201. |
10 | 杨阳,刘秉儒.荒漠草原不同植物根际与非根际土壤养分及微生物量分布特征[J].生态学报,2015,35(22):7562-7570. |
YANG Y, LIU B R. Distribution of soil nutrient and microbial biomass in rhizosphere versus non-rhizosphere area of different plant species in desertified steppe [J]. Acta Ecol. Sin., 2015, 35(22):7562-7570. | |
11 | 李丽娟,李昌晓,陈春桦,等.三峡消落带适生植物根系活动调控土壤养分与细菌群落多样性特征[J].环境科学,2020,41(6):2898-2907. |
LI L J, LI C X, CHEN C H, et al.. Root activities of re-vegetated plant species regulate soil nutrients and bacterial diversity in the Riparian Zone of the Three Gorges Reservoir [J]. Environ. Sci., 2020, 41(6):2898-2907. | |
12 | H F L, M C S, DAVID S. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms [J]. Bioresour. Technol., 2004, 94(2):185-192. |
13 | C L, LI Y J, LIU X X, et al.. Identification of growth-promoting bacteria from rhizosphere of pastures and their effects on growth of Lotus corniculatus L. [J]. Agric. Biotechnol., 2019, 8(5):106-111. |
14 | L R, D Y Y, S L B. Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species [J/OL]. PLoS ONE, 2015, 10(3): e0120369 [2020-12-10]. . |
15 | KANRUVELAN M, NAMASIVAYAM V. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation [J]. Ecotoxicol. Environ. Saf., 2018, 157(8):40-60. |
16 | 范念斯,齐嵘,杨敏.未培养微生物的培养方法进展[J].应用与环境生物学报,2016,22(3):524-530. |
FAN N S, QI R, YANG M. Current technical progresses in the cultivation for uncultured microorganism [J]. Chin. J. Appl. Environ. Biol., 2016, 22(3):524-530. | |
17 | MANUEL A, SETH B, JORGE D. Carnivory does not change the rhizosphere bacterial community of the plant Drosera intermedia [J]. Appl. Soil Ecol., 2015, 92:14-17. |
18 | RU Y, WEI F. Effect of vegetation on soil bacteria and their potential functions for ecological restoration in the Hulun Buir Sandy Land, China [J]. J. Arid Land, 2020, 12(3):473-494. |
19 | 高雪峰,韩国栋,张国刚.短花针茅荒漠草原土壤微生物群落组成及结构[J].生态学报,2017,37(15):5129-5136. |
GAO X F, HAN G D, ZHANG G G. Soil microbial community structure and composition of Stipa Breviflora on the desert steppe [J]. Acta Ecol. Sin., 2017, 37(15):5129-5136. | |
20 | 刘洋,黄懿梅,曾全超.黄土高原不同植被类型下土壤细菌群落特征研究[J].环境科学,2016,37(10):3931-3938. |
LIU Y, HUANG Y M, ZENG Q C. Soil bacterial communities under different vegetation types in the loess plateau [J]. Environ. Sci., 2016, 37(10):3931-3938. | |
21 | 杨秉珣,刘泉,董廷旭.川西北不同沙化程度草地土壤细菌群落特征[J].水土保持研究,2018,25(6):45-52. |
YANG B X, LIU Q, DONG T X. Soil bacterial communities of grasslands with different desertification degrees in northwest Sichuan [J]. Res. Soil Water Conserv., 2018, 25(6):45-52. | |
22 | ZIEGLER M, ENGEL M, WELZL G. Development of a simple root model to study the effects of single exudates on the development of bacterial community structure [J]. J. Microbiol. Methods, 2013, 94(1):30-36. |
23 | LING N, DENG K Y, SONG Y, et al.. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a noval bioorganic fertilizer [J]. Microbiol. Res., 2014, 169(7-8):570-578. |
24 | YANG H, HU J, LONG X, et al.. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke [J]. Sci. Rep., 2016, 6(1):787-805. |
25 | 赵璇. 中国北方主要草地类型土壤放线菌多样性和群落结构的比较研究[D].长春:东北师范大学,2015:39-42. |
ZHAO X. Comparison of diversity and structure of soil Actinobacteria communities across the main grasslands in Northern China [D]. Changchun: Northeast Normal University, 2015:39-42. | |
26 | 胡杰,何晓红,李大平,等.鞘氨醇单胞菌研究进展[J].应用与环境生物学报,2007:13(3):431-437. |
HU J, HE X H, LI D P, et al.. Progress in research of Sphingomonas [J]. Chin. J. Appl. Environ. Biol., 2007(3):431-437. |
[1] | 赵宏岩, 谭君伟, 张杰, 陈浩楠, 王春旭, 赵地, 李海鹏, 朱李霞, 韩毅强. 小豆和绿豆茎基感病部位真菌群落结构研究[J]. 中国农业科技导报, 2022, 24(5): 129-136. |
[2] | 李敏, 李钢铁, 张宏武, 陈家欢. 平茬对3种苗木来源蛋白桑林地土壤理化性质的影响[J]. 中国农业科技导报, 2022, 24(1): 172-182. |
[3] | 苏雨萌§,张旭婷§,特日格乐,田敏,尚晓蕊,李国婧,王瑞刚*. 高通量测序鉴定中间锦鸡儿干旱条件下的microRNA[J]. 中国农业科技导报, 2021, 23(3): 51-57. |
[4] | 刘璐1,名晓东1,张晓艳2,郝俊杰2,付丽平1,王乾坤1,吕鑫1,陈旺1,刘全兰1*. 高通量测序分析蚕豆种子内生细菌的多样性[J]. 中国农业科技导报, 2021, 23(2): 73-80. |
[5] | 黄艳飞, 陈君梅, 辛亚宁, 吴庆丽. 石膏对苏打盐碱土壤理化性质的影响[J]. 中国农业科技导报, 2021, 23(11): 139-146. |
[6] | 樊帆1,李正涛1,李世钰1,2,山云辉3,黄家雄4,吕玉兰4,何飞飞1,秦世雯1*. 云南热区咖啡种植地红壤细菌群落多样性分析[J]. 中国农业科技导报, 2020, 22(8): 178-186. |
[7] | 杨晶晶,张青青*,吐尔逊娜依·热依木,阿马努拉·依明尼亚孜,雪热提江·麦提努日. 游牧和定居对伊犁绢蒿荒漠草地土壤真菌群落多样性的影响[J]. 中国农业科技导报, 2020, 22(7): 166-173. |
[8] | 史芳芳,李向泉*. 葡萄根际土壤真菌群落多样性分析[J]. 中国农业科技导报, 2019, 21(7): 47-58. |
[9] | 贾国涛,杨永锋,杨欣玲*,王宝林,刘超,王根发,申洪涛,张书伟,刘向真,赵森森. 腐熟秸秆对植烟土壤理化性质和酶活性的影响[J]. 中国农业科技导报, 2018, 20(9): 138-145. |
[10] | 张艺洁,邵惠芳*,张珂,贾宏昉,黄五星,韩丹. 基于高通量测序研究施肥对连作植烟土壤环境及微生物的影响[J]. 中国农业科技导报, 2018, 20(5): 16-25. |
[11] | 尹继清,范弢*. 滇东南峰林湖盆区土壤理化性质的空间异质性分析[J]. 中国农业科技导报, 2017, 19(9): 117-127. |
[12] | 曲梦楠1,2§,蒋炳军2§,刘薇2,毛婷婷2,马立明2,林抗雪2,韩天富1,2*. 大豆分子育种研究新进展[J]. , 2014, 16(3): 8-13. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 417
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||