中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (3): 188-197.DOI: 10.13304/j.nykjdb.2021.0748
• 生物制造 资源生态 • 上一篇
刘云飞1(), 韦凤杰2, 夏茂林1, 于兆锦1, 夏昊3, 衣春宇1, 常剑波4(
), 姬小明1(
)
收稿日期:
2021-08-27
接受日期:
2022-01-18
出版日期:
2023-03-15
发布日期:
2023-05-22
通讯作者:
常剑波,姬小明
作者简介:
刘云飞 E-mail:1448789042@qq.com
基金资助:
Yunfei LIU1(), Fengjie WEI2, Maolin XIA1, Zhaojin YU1, Hao XIA3, Chunyu YI1, Jianbo CHANG4(
), Xiaoming JI1(
)
Received:
2021-08-27
Accepted:
2022-01-18
Online:
2023-03-15
Published:
2023-05-22
Contact:
Jianbo CHANG,Xiaoming JI
摘要:
为研究新型复合水凝胶对镉(Cd)胁迫烟草幼苗的缓解作用及其对Cd的吸附机理,以合成的新型生物炭复合水凝胶(PVA/AA/B)和改性生物炭复合水凝胶(PVA/AA/MB)为材料,开展Cd吸附试验和烟草盆栽试验。结果表明,2种复合水凝胶对Cd的吸附方式均以多分子层吸附为主,PVA/AA/B和PVA/AA/MB对Cd的最大吸附量分别为314.17和371.83 mg·g-1;与CK相比,PVA/AA/B和PVA/AA/MB处理的植株鲜重分别显著增加172.94%和231.32%,干重分别显著增加135.29%和188.24%,土壤有效态Cd含量分别显著降低36.27%和65.18%,植株Cd含量分别显著降低54.47%和63.23%,叶片的SPAD值及抗氧化酶活性显著提高。2种合成的新型材料均能有效缓解Cd胁迫对烟草幼苗的毒害,促进Cd胁迫下烟草幼苗的生长,减少烟草中Cd积累,其中PVA/AA/MB效果更好,可为缓解烟草Cd胁迫提供理论依据。
中图分类号:
刘云飞, 韦凤杰, 夏茂林, 于兆锦, 夏昊, 衣春宇, 常剑波, 姬小明. 新型复合水凝胶对镉胁迫烟草幼苗的缓解效应[J]. 中国农业科技导报, 2023, 25(3): 188-197.
Yunfei LIU, Fengjie WEI, Maolin XIA, Zhaojin YU, Hao XIA, Chunyu YI, Jianbo CHANG, Xiaoming JI. Alleviative Effect of New Composite Hydrogels on Cadmium Stress Tobacco Seedlings[J]. Journal of Agricultural Science and Technology, 2023, 25(3): 188-197.
图1 PVA/AA、PVA/AA/B和PVA/AA/MB的红外光谱图及吸附Cd+前后的红外光谱对比
Fig.1 FTIR diagram of PVA/AA, PVA/AA/B and PVA/AA/MB and FTIR comparison diagram before and after adsorption of Cd+
指标 Idex | 材料Materials | ||||
---|---|---|---|---|---|
B | MB | PVA/AA | PVA/AA/B | PVA/AA/MB | |
Qe /(mg·g-1) | 38.67 e | 48.61 d | 60.27 c | 130.89 b | 187.45 a |
去除率 Removal rate/% | 19.34 e | 24.30 d | 30.14 c | 65.44 b | 93.72 a |
表1 不同材料对水溶液中Cd的平衡吸附量及去除率
Table 1 Equilibrium adsorption capacity and removal rate of Cd in aqueous solution by different materials
指标 Idex | 材料Materials | ||||
---|---|---|---|---|---|
B | MB | PVA/AA | PVA/AA/B | PVA/AA/MB | |
Qe /(mg·g-1) | 38.67 e | 48.61 d | 60.27 c | 130.89 b | 187.45 a |
去除率 Removal rate/% | 19.34 e | 24.30 d | 30.14 c | 65.44 b | 93.72 a |
材料 Materials | Langmuir等温吸附模型 Langmuir isothermal adsorption model | Freundlich等温吸附模型 Freundlich isothermal adsorption model | 样本数 Sample number | ||||
---|---|---|---|---|---|---|---|
Qm/(mg·g-1) | KL/(L·mg-1) | R12 | KF/(mg1-n·g-1·L-n) | 1/n | R22 | ||
PVA/AA | 271.15 | 0.038 | 0.983 7** | 40.94 | 0.356 7 | 0.923 5** | 6 |
PVA/AA/B | 314.17 | 0.046 | 0.955 2** | 47.79 | 0.372 4 | 0.991 5** | 6 |
PVA/AA/MB | 371.83 | 0.178 | 0.938 7** | 101.91 | 0.310 5 | 0.994 7** | 6 |
表2 PVA/AA、PVA/AA/B、PVA/AA/MB吸附等温线拟合参数
Table 2 Fitting parameters of adsorption isotherms for PVA/AA, PVA/AA/B and PVA/AA/MB
材料 Materials | Langmuir等温吸附模型 Langmuir isothermal adsorption model | Freundlich等温吸附模型 Freundlich isothermal adsorption model | 样本数 Sample number | ||||
---|---|---|---|---|---|---|---|
Qm/(mg·g-1) | KL/(L·mg-1) | R12 | KF/(mg1-n·g-1·L-n) | 1/n | R22 | ||
PVA/AA | 271.15 | 0.038 | 0.983 7** | 40.94 | 0.356 7 | 0.923 5** | 6 |
PVA/AA/B | 314.17 | 0.046 | 0.955 2** | 47.79 | 0.372 4 | 0.991 5** | 6 |
PVA/AA/MB | 371.83 | 0.178 | 0.938 7** | 101.91 | 0.310 5 | 0.994 7** | 6 |
材料 Material | 准一级动力学模型 Pseudo-first-order plots | 准二级动力学模型 Pseudo-second-order plots | 样本数 Sample number | ||||
---|---|---|---|---|---|---|---|
Qe/(mg·g-1) | k1/h-1 | R32 | Qe/(mg·g-1) | k2/(10-4·g·mg-1·h-1) | R42 | ||
PVA/AA | 59.03 | 0.016 | 0.995 7** | 66.56 | 2.96 | 0.958 7** | 8 |
PVA/AA/B | 134.81 | 0.006 | 0.996 1** | 169.46 | 3.43 | 0.987 9** | 8 |
PVA/AA/MB | 197.63 | 0.005 | 0.993 4** | 255.98 | 1.78 | 0.989 8** | 8 |
表3 PVA/AA、PVA/AA/B、PVA/AA/MB的吸附动力学拟合参数
Table 3 Adsorption kinetics fitting parameters of PVA/AA, PVA/AA/B and PVA/AA/MB
材料 Material | 准一级动力学模型 Pseudo-first-order plots | 准二级动力学模型 Pseudo-second-order plots | 样本数 Sample number | ||||
---|---|---|---|---|---|---|---|
Qe/(mg·g-1) | k1/h-1 | R32 | Qe/(mg·g-1) | k2/(10-4·g·mg-1·h-1) | R42 | ||
PVA/AA | 59.03 | 0.016 | 0.995 7** | 66.56 | 2.96 | 0.958 7** | 8 |
PVA/AA/B | 134.81 | 0.006 | 0.996 1** | 169.46 | 3.43 | 0.987 9** | 8 |
PVA/AA/MB | 197.63 | 0.005 | 0.993 4** | 255.98 | 1.78 | 0.989 8** | 8 |
根系指标 Root index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | T5 | |
鲜重 Fresh weight/g | 0.728 d | 1.406 c | 1.584 c | 1.876 b | 1.987 b | 2.412 a |
干重 Dry weight/g | 0.085 d | 0.131 c | 0.155 bc | 0.187 b | 0.200 b | 0.245 a |
总根长 Total length of root/cm | 15.37 d | 28.14 c | 25.75 c | 34.47 b | 46.16 a | 49.34 a |
根表面积 Root surface area/cm2 | 1.77 e | 3.45 d | 3.48 d | 5.92 c | 6.95 b | 8.89 a |
根体积 Root volume/(10-3·cm-3) | 18.88 d | 43.68 c | 42.82 cd | 59.02 c | 84.66 b | 118.49 a |
平均根直径 Average root diameter/mm | 0.477 c | 0.519 bc | 0.515 bc | 0.530 b | 0.543 ab | 0.576 a |
根尖数 Number of root tips | 29 f | 52 e | 94 d | 159 c | 179 b | 205 a |
表4 不同处理下生物量积累及根系指标
Table 4 Biomass accumulation and root indexes under different treatments
根系指标 Root index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | T5 | |
鲜重 Fresh weight/g | 0.728 d | 1.406 c | 1.584 c | 1.876 b | 1.987 b | 2.412 a |
干重 Dry weight/g | 0.085 d | 0.131 c | 0.155 bc | 0.187 b | 0.200 b | 0.245 a |
总根长 Total length of root/cm | 15.37 d | 28.14 c | 25.75 c | 34.47 b | 46.16 a | 49.34 a |
根表面积 Root surface area/cm2 | 1.77 e | 3.45 d | 3.48 d | 5.92 c | 6.95 b | 8.89 a |
根体积 Root volume/(10-3·cm-3) | 18.88 d | 43.68 c | 42.82 cd | 59.02 c | 84.66 b | 118.49 a |
平均根直径 Average root diameter/mm | 0.477 c | 0.519 bc | 0.515 bc | 0.530 b | 0.543 ab | 0.576 a |
根尖数 Number of root tips | 29 f | 52 e | 94 d | 159 c | 179 b | 205 a |
图5 不同处理下烟草幼苗抗氧化酶活性注:同一指标中不同小写字母表示处理间在P<0.05水平差异显著。
Fig.5 Antioxidant enzyme activities of tobacco seedlings under different treatmentsNote: Different lowercase letters in same index indicate significant differences between treatments at P<0.05 level.
图6 不同处理下叶片SPAD值、土壤有效态镉和植株镉含量注:同一指标中不同小写字母表示处理间在P<0.05水平差异显著。
Fig.6 Leaf SPAD value, soil available Cd and plant Cd contents under different treatmentsNote: Different lowercase letters in same index indicate significant differences between treatments at P<0.05 level.
1 | ZHAO F J, MA Y, ZHU Y G, et al.. Soil contamination in China: current status and mitigation strategies [J]. Environ. Sci. Technol., 2015, 49(2):750-759. |
2 | 陈能场,郑煜基,何晓峰,等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al.. Analysis of the bulletin of national soilpollution survey [J]. J. Agro-Environ. Sci., 2017, 36(9):1689-1692. | |
3 | RAI V, KHATOON S, BISHT S S, et al.. Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn [J]. Chemosphere, 2005, 61(11):1644-1650. |
4 | RIZWAN M, ALI S, REHMAN M, et al.. A critical review on the effects of zinc at toxic levels of cadmium in plants [J]. Environ. Sci. Pollut. Res., 2019, 26(7):6279-6289. |
5 | ROSEN K, ERIKSSON J, VINICHUK M. Uptake and translocation of 109Cd and stable Cd within tobacco plants [J]. J. Environ. Radioactiv., 2012, 113:16-20. |
6 | 刘领,悦飞雪,李继伟,等. 镉胁迫下生物炭与锌/钾叶面肥促进烟草生长降低镉富集的协同效应[J]. 植物营养与肥料学报, 2019, 25(6):982-990. |
LIU L, YUE F X, LI J W, et al.. Interaction between biochar and Zn or K foliar fertilizer on the growth and Cd uptake of tobacco under cadmium stress [J]. Plant Nutr. Fert. Sci., 2019, 25(6):982-990. | |
7 | MOHAN D, KUMAR H, SARSWAT A, et al.. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars [J]. Chem. Eng. J., 2014, 236:513-528. |
8 | JARUP L, AKESSON A. Current status of cadmium as an environmental health problem [J]. Toxicol. Appl. Pharm., 2009, 238(3):201-208. |
9 | SARMAH D, KARAK N. Double network hydrophobic starch based amphoteric hydrogel as an effective adsorbent for both cationic and anionic dyes [J/OL]. Carbohyd. Polym., 2020, 242:116320 [2021-08-26]. . |
10 | WANG H, DING J, CHI Q, et al.. The effect of biochar on soil-plant-earthworm-bacteria system in metal(loid) contaminated soil [J/OL]. Environ. Pollut., 2020, 263:114610 [2021-08-26]. . |
11 | WIBOWO N, SETYADHI L, WIBOWO D, et al.. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption [J]. J. Hazard. Mater., 2007, 146(1-2):237-242. |
12 | 王瑞峰, 周亚男, 孟海波, 等. 不同改性生物炭对溶液中Cd的吸附研究[J].中国农业科技导报,2016,18(6):103-111. |
WANG R F, ZHOU Y N, MENG H B, et al.. Adsorption of Cd in solution by different modified biochar [J]. J. Agric. Sci. Technol., 2016, 18(6):103-111. | |
13 | 况帅,冯迪,宋科,等. 低钾胁迫对烟草幼苗活性氧及抗氧化酶系统的影响[J]. 中国烟草学报, 2018, 24(2):48-54. |
KUANG S, FENG D, SONG K, et al.. Effect of potassium deficiency stress on active oxygen and antioxidant enzyme system in tobacco seedlings [J]. Acta Tab. Sin., 2018, 24(2):48-54. | |
14 | 刘宛宜,王天野,王铖熠,等. 聚(丙烯酸酸-co-丙烯酰胺)水凝胶对阳离子染料亚甲基蓝和孔雀石绿吸附性能的研究[J]. 分析化学, 2019, 47(11):1785-1793. |
LIU W Y, WANG T Y, WANG C Y, et al.. Study of adsorption performance of cationic dyes methylene blue and malachite green by poly (acrylate-co-acrylamide) hydrogel [J]. Chin. J. Anal. Chem., 2019, 47(11):1785-1793. | |
15 | PAULINO A T, GUILHERME M R, REIS A V, et al.. Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation [J]. J. Hazard. Mater., 2007, 147(1-2):139-147. |
16 | 张立志,易平,方丹丹,等. 超顺磁性纳米Fe3O4@SiO2功能化材料对镉的吸附机制[J]. 环境科学, 2021, 42(6):2917-2927. |
ZHANG L Z, YI P, FANG D D, et al.. Adsorption mechanism of cadmium by superparamangnetic nano-Fe3O4@SiO2 functionalized materials [J]. Environ. Sci., 2021, 42(6):2917-2927. | |
17 | 庞发虎,吴雪姣,孔雪菲,等. 重金属钝化剂阻控生菜Cd吸收的功能稳定性和适用性[J]. 环境科学, 2021, 42(5):2502-2511. |
PANG F H, WU X J, KONG X F, et al.. Functional stability and applicability of heavy metal passivators in reducing Cd uptake by lettuce [J]. Environ. Sci., 2021, 42(5):2502-2511. | |
18 | NOLAN A L, ZHANG H, MCLAUGHLIN M J. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques [J]. J. Environ. Qual., 2005, 34(2): 496-507. |
19 | 程启明,黄青,刘英杰,等. 花生壳与花生壳生物炭对镉离子吸附性能研究[J]. 农业环境科学学报, 2014, 33(10):2022-2029. |
CHENG Q M, HUANG Q, LIU Y J, et al.. Adsorption of cadmium (Ⅱ) on peanut shell and its biochar [J]. J. Agro-Environ. Sci., 2014, 33(10):2022-2029. | |
20 | WAN S, HE F, WU J, et al.. Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites [J]. J. Hazard. Mater., 2016, 314:32-40. |
21 | 邢瑶,马兴华. 氮素形态对植物生长影响的研究进展[J]. 中国农业科技导报, 2015, 17(2):109-117. |
XING Y, MA X H. Research progress on effect of nitrogen form on plant growth [J]. J. Agric. Sci. Technol., 2015, 17(2):109-117. | |
22 | GUO T R, ZHANG G P, ZHOU M X, et al.. Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars [J]. Pedosphere, 2007, 17(4): 505-512. |
23 | 刘庆,董元杰,刘双,等. 外源水杨酸(SA)对NaCl胁迫下棉花幼苗生理生化特性的影响[J]. 水土保持学报, 2014, 28(2):165-168, 174. |
LIU Q, DONG Y J, LIU S, et al.. Effects of exogenous salicylic acid on the physiological and biochemical characteristics of contton seedlings under salt stress [J]. J. Soil Water Conserv., 2014, 28(2):165-168, 174. | |
24 | 杨彪,杜荣宇,杨玉,等. 便携式植物叶片叶绿素含量无损检测仪设计与试验[J]. 农业机械学报, 2019, 50(12):180-186. |
YANG B, DU R Y, YANG Y, et al.. Design of portable nondestructive detector for chlorophyll content of plant leaves [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50(12):180-186. | |
25 | CHOPPALA G, SAIFULLAH, BOLAN N, et al.. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity [J]. Crit. Rev. Plant. Sci., 2014, 33(5):374-391. |
26 | 悦飞雪,李继伟,王艳芳,等. 施用秸秆生物炭和鸡粪对镉胁迫下玉米生长及镉吸收的影响[J]. 农业环境科学学报, 2018, 37(10):2118-2126. |
YUE F X, LI J W, WANG Y F, et al.. Effects of soil amendments with stalk-derived biochar and chicken manure on the growth and Cd uptake of maize under Cd stress [J]. J. Agro-Environ. Sci., 2018, 37(10):2118-2126. | |
27 | 刘彩凤,史刚荣,余如刚,等. 硅缓解植物镉毒害的生理生态机制[J]. 生态学报, 2017, 37(23):7799-7810. |
LIU C F, SHI G R, YU R G, et al.. Eco-physiological mechanisms of silicon-induced alleviation of cadmium toxicity in plants: a review [J]. Acta Ecol. Sin., 2017, 37(23):7799-7810. |
[1] | 郑云珠, 孙树臣. 秸秆生物炭和秸秆对麦玉轮作系统土壤养分及作物产量的影响[J]. 中国农业科技导报, 2023, 25(2): 152-162. |
[2] | 张豫丹, 王卫民, 倪博, 马晓寒, 李俊领, 许自成, 贾玮, 史久长. 烟草秸秆绿原酸提取工艺优化及其抑菌效果研究[J]. 中国农业科技导报, 2023, 25(1): 119-127. |
[3] | 肖雨沁, 雷晓, 张明金, 张远盖, 唐珊, 姬鸿飞, 王川, 马翠玲, 景延秋. 三种芽孢杆菌菌剂对烤烟育苗效果的影响[J]. 中国农业科技导报, 2022, 24(5): 85-92. |
[4] | 刘著文, 杨龙飞, 刘茂林, 贾国涛, 姚倩, 马一琼, 崔廷, 杨欣玲, 陈洋, 程良琨. 不同土壤改良剂对土壤养分及烤烟内在品质的影响[J]. 中国农业科技导报, 2022, 24(11): 190-198. |
[5] | 周蕾, 陈兆兰, 严玉波, 李桥. 鸡粪生物炭吸附固定铅的研究[J]. 中国农业科技导报, 2022, 24(11): 199-207. |
[6] | 魏俞涌, 张庆法, 盛奎川. 生物炭对玉米醇溶蛋白/聚丙烯复合材料力学性能的影响[J]. 中国农业科技导报, 2022, 24(10): 161-168. |
[7] | 刘利佳, 徐志强, 何佳, 丁永乐, 孙聚涛. 哈茨木霉菌诱导烟草抗黑胫病代谢差异的研究[J]. 中国农业科技导报, 2021, 23(8): 91-105. |
[8] | 朱利霞, 陈居田, 徐思薇, 陈如冰, 李俐俐. 生物炭施用下土壤微生物量碳氮的动态变化[J]. 中国农业科技导报, 2021, 23(8): 193-200. |
[9] | 胡朝华, 刘曰明, 庞孜钦, 袁照年. 农田土壤活性氮损失现状和生物炭调控途径研究进展[J]. 中国农业科技导报, 2021, 23(6): 120-129. |
[10] | 黄清扬, 江超, 俞元春, 谢祖彬. 不同秸秆生物炭复配基质对波斯菊生理性质的影响[J]. 中国农业科技导报, 2021, 23(6): 147-153. |
[11] | 何甜甜, 刘天, 云菲, 马彩娟, 符云鹏. 生物炭对农田N2O排放的影响机制研究[J]. 中国农业科技导报, 2021, 23(5): 124-131. |
[12] | 张璐翔1,陈思蒙1,郑聪2,金伊楠1,韩艺3,许自成1,黄五星1,邵惠芳1*. 脱驯化时长对烟草幼苗抗旱性的影响[J]. 中国农业科技导报, 2021, 23(2): 57-64. |
[13] | 王鑫宇1,2,张曦2,孟海波2,沈玉君2,解恒燕1*,周海宾2,程红胜2,宋立秋2. 温度对生物炭吸附重金属特性的影响研究[J]. 中国农业科技导报, 2021, 23(2): 150-158. |
[14] | 郝正刚,赵会君,魏玉清*,曾周琦,王志恒. 甜高粱对镉胁迫的生理生化响应及镉富集研究[J]. 中国农业科技导报, 2021, 23(1): 30-42. |
[15] | 罗勇1,焦桂珍1,刘胜波2*,魏跃伟1,邵惠芳1,贾宏昉1*. 不同浓度镉对烟草幼苗生长发育及生长素相关基因表达的影响[J]. 中国农业科技导报, 2021, 23(1): 58-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||