中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (2): 83-98.DOI: 10.13304/j.nykjdb.2022.0256
尹林江1(), 李威1(
), 赵卫权1,2, 赵祖伦1, 吕思思1, 孙小琼1
收稿日期:
2022-04-02
接受日期:
2022-06-20
出版日期:
2023-02-15
发布日期:
2023-05-17
通讯作者:
李威
作者简介:
尹林江 E-mail:ylj8575@163.com;
基金资助:
Linjiang YIN1(), Wei LI1(
), Weiquan ZHAO1,2, Zulun ZHAO1, Sisi LYU1, Xiaoqiong SUN1
Received:
2022-04-02
Accepted:
2022-06-20
Online:
2023-02-15
Published:
2023-05-17
Contact:
Wei LI
摘要:
为准确快速获取水稻的植被指数特征和植被覆盖度信息,利用无人机采集水稻分蘖期、抽穗期和结实期的多光谱影像数据,选择不同类型的植被指数,利用样本统计法和植被指数交点法,提取并探究水稻3个生长期在地块和像元尺度下的植被指数特征,并运用阈值分割法提取水稻植被信息及覆盖度信息。结果表明,水稻3个生长期内,在像元和地块尺度下均表现出明显的物候特征,且与杂草和树木存在明显区别;多光谱植被指数的植被覆盖度提取精度整体高于可见光植被指数;归一化植被指数(normalized difference vegetation index,NDVI)对水稻3个时期植被覆盖度提取精度最高,提取误差分别为0.40%、0.43%和0.81%,R2为0.77、0.92和0.98,均方根误差(root mean square error,RMSE)为9.09%、2.97%和0.38%;可见光波段差异植被指数(visible-band difference vegetation index,VDVI)提取精度高于超绿红蓝差分指数(excess green-red-blue difference index,EGEBDI)和过绿减过红指数(excess green-excess red index,ExG-ExR),提取误差分别为4.30%、1.36%和1.60%,R2分别为0.53、0.77和0.80,RMSE分别为14.62%、3.70%和5.50%。该研究成果可为作物长势监测及其植被覆盖度提取提供技术支撑。
中图分类号:
尹林江, 李威, 赵卫权, 赵祖伦, 吕思思, 孙小琼. 水稻多时相植被指数特征及覆盖度提取研究[J]. 中国农业科技导报, 2023, 25(2): 83-98.
Linjiang YIN, Wei LI, Weiquan ZHAO, Zulun ZHAO, Sisi LYU, Xiaoqiong SUN. Research on Characteristics and Coverage Extraction of Rice Multi-phase Vegetation Index[J]. Journal of Agricultural Science and Technology, 2023, 25(2): 83-98.
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | 红光波段 Red band | 绿光波段 Green band | 蓝光波段 Blue band | 红边波段 Red edge band | 近红外波段 NIR | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
均值Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | ||
2020-06-05 | 水稻Rice | 105.44 | 15.16 | 115.69 | 12.74 | 81.68 | 13.16 | 4 097.38 | 738.29 | 4 276.35 | 892.60 |
杂草Weed | 107.77 | 21.66 | 112.70 | 21.09 | 64.44 | 12.99 | 4 886.33 | 951.77 | 7 367.03 | 1 492.79 | |
树木Tree | 93.58 | 25.49 | 101.18 | 26.44 | 59.50 | 16.63 | 4 078.05 | 1 247.79 | 6 043.23 | 1 688.11 | |
裸土Soil | 173.12 | 19.08 | 153.24 | 19.75 | 132.63 | 22.51 | 3 213.34 | 1 566.75 | 3 556.76 | 623.46 | |
建设用地 Construction land | 191.34 | 29.29 | 179.54 | 29.28 | 176.37 | 27.12 | 3 422.87 | 1 213.22 | 3 603.97 | 1 198.49 | |
2020-07-15 | 水稻Rice | 99.69 | 12.74 | 108.80 | 11.39 | 70.90 | 8.70 | 4 793.58 | 921.97 | 8 032.65 | 1 285.57 |
杂草Weed | 109.65 | 14.17 | 119.35 | 12.59 | 66.83 | 11.58 | 6 143.60 | 813.66 | 9 432.08 | 1 311.49 | |
树木Tree | 77.22 | 13.74 | 88.96 | 13.70 | 48.49 | 11.94 | 5 173.32 | 972.48 | 8 003.82 | 1 471.76 | |
裸土Soil | 173.51 | 21.69 | 158.72 | 22.89 | 133.89 | 24.95 | 5 201.71 | 1 549.99 | 6 006.72 | 1 553.39 | |
建设用地 Construction land | 178.33 | 41.08 | 171.82 | 39.37 | 163.84 | 39.62 | 4 145.68 | 1 831.42 | 4 472.33 | 1 846.63 | |
2020-08-26 | 水稻Rice | 130.82 | 23.13 | 117.57 | 17.50 | 76.11 | 17.84 | 4 733.62 | 918.47 | 6 378.96 | 1 186.74 |
杂草Weed | 106.61 | 16.98 | 106.66 | 15.10 | 65.99 | 12.27 | 5 286.67 | 1 196.71 | 8 110.84 | 1 909.15 | |
树木Tree | 81.88 | 20.18 | 85.56 | 19.61 | 61.04 | 15.17 | 4 977.61 | 1 559.80 | 7 536.33 | 2 405.31 | |
裸土Soil | 172.64 | 23.02 | 151.57 | 23.83 | 131.93 | 27.50 | 4 389.74 | 1 420.15 | 5 125.09 | 1 554.97 | |
建设用地 Construction land | 181.40 | 34.88 | 170.88 | 34.36 | 170.33 | 31.12 | 4 628.57 | 1 050.65 | 5 151.88 | 1 044.32 |
表1 地物在不同波段的像元灰度值
Table 1 Pixel values of ground objects in red, green and blue bands
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | 红光波段 Red band | 绿光波段 Green band | 蓝光波段 Blue band | 红边波段 Red edge band | 近红外波段 NIR | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
均值Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | ||
2020-06-05 | 水稻Rice | 105.44 | 15.16 | 115.69 | 12.74 | 81.68 | 13.16 | 4 097.38 | 738.29 | 4 276.35 | 892.60 |
杂草Weed | 107.77 | 21.66 | 112.70 | 21.09 | 64.44 | 12.99 | 4 886.33 | 951.77 | 7 367.03 | 1 492.79 | |
树木Tree | 93.58 | 25.49 | 101.18 | 26.44 | 59.50 | 16.63 | 4 078.05 | 1 247.79 | 6 043.23 | 1 688.11 | |
裸土Soil | 173.12 | 19.08 | 153.24 | 19.75 | 132.63 | 22.51 | 3 213.34 | 1 566.75 | 3 556.76 | 623.46 | |
建设用地 Construction land | 191.34 | 29.29 | 179.54 | 29.28 | 176.37 | 27.12 | 3 422.87 | 1 213.22 | 3 603.97 | 1 198.49 | |
2020-07-15 | 水稻Rice | 99.69 | 12.74 | 108.80 | 11.39 | 70.90 | 8.70 | 4 793.58 | 921.97 | 8 032.65 | 1 285.57 |
杂草Weed | 109.65 | 14.17 | 119.35 | 12.59 | 66.83 | 11.58 | 6 143.60 | 813.66 | 9 432.08 | 1 311.49 | |
树木Tree | 77.22 | 13.74 | 88.96 | 13.70 | 48.49 | 11.94 | 5 173.32 | 972.48 | 8 003.82 | 1 471.76 | |
裸土Soil | 173.51 | 21.69 | 158.72 | 22.89 | 133.89 | 24.95 | 5 201.71 | 1 549.99 | 6 006.72 | 1 553.39 | |
建设用地 Construction land | 178.33 | 41.08 | 171.82 | 39.37 | 163.84 | 39.62 | 4 145.68 | 1 831.42 | 4 472.33 | 1 846.63 | |
2020-08-26 | 水稻Rice | 130.82 | 23.13 | 117.57 | 17.50 | 76.11 | 17.84 | 4 733.62 | 918.47 | 6 378.96 | 1 186.74 |
杂草Weed | 106.61 | 16.98 | 106.66 | 15.10 | 65.99 | 12.27 | 5 286.67 | 1 196.71 | 8 110.84 | 1 909.15 | |
树木Tree | 81.88 | 20.18 | 85.56 | 19.61 | 61.04 | 15.17 | 4 977.61 | 1 559.80 | 7 536.33 | 2 405.31 | |
裸土Soil | 172.64 | 23.02 | 151.57 | 23.83 | 131.93 | 27.50 | 4 389.74 | 1 420.15 | 5 125.09 | 1 554.97 | |
建设用地 Construction land | 181.40 | 34.88 | 170.88 | 34.36 | 170.33 | 31.12 | 4 628.57 | 1 050.65 | 5 151.88 | 1 044.32 |
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | NDVI | GNDVI | NDRE | LCI | OSAVI | VDVI | EGRBDI | ExG-ExR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值Mean | 标准差 Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | ||
2020-06-05 | 水稻Rice | 0.30 | 0.16 | 0.41 | 0.12 | 0.19 | 0.04 | 0.21 | 0.06 | 0.30 | 0.05 | 0.07 | 0.02 | 0.68 | 0.02 | -35.68 | 16.03 |
杂草Weeds | 0.81 | 0.07 | 0.65 | 0.06 | 0.20 | 0.05 | 0.30 | 0.07 | 0.35 | 0.05 | 0.13 | 0.02 | 0.76 | 0.02 | 15.03 | 15.11 | |
树木Trees | 0.83 | 0.03 | 0.68 | 0.05 | 0.19 | 0.04 | 0.30 | 0.05 | 0.31 | 0.05 | 0.14 | 0.04 | 0.76 | 0.04 | 19.45 | 14.68 | |
裸土Soil | 0.17 | 0.09 | 0.20 | 0.08 | 0.05 | 0.02 | 0.05 | 0.03 | 0.06 | 0.03 | 0.00 | 0.01 | 0.61 | 0.03 | -88.39 | 11.86 | |
建设用地 Construction land | 0.02 | 0.09 | 0.03 | 0.10 | 0.02 | 0.06 | 0.02 | 0.06 | 0.01 | 0.03 | -0.01 | 0.02 | 0.58 | 0.02 | -96.98 | 21.53 | |
2020-07-15 | 水稻Rice | 0.81 | 0.04 | 0.66 | 0.04 | 0.26 | 0.04 | 0.38 | 0.05 | 0.37 | 0.05 | 0.12 | 0.02 | 0.74 | 0.02 | 16.25 | 11.73 |
杂草Weeds | 0.82 | 0.06 | 0.65 | 0.05 | 0.20 | 0.04 | 0.31 | 0.05 | 0.40 | 0.04 | 0.15 | 0.04 | 0.77 | 0.04 | 28.05 | 24.07 | |
树木Trees | 0.83 | 0.04 | 0.68 | 0.06 | 0.21 | 0.04 | 0.32 | 0.05 | 0.37 | 0.04 | 0.18 | 0.04 | 0.79 | 0.04 | 33.06 | 14.54 | |
裸土Soil | 0.29 | 0.15 | 0.29 | 0.12 | 0.07 | 0.05 | 0.09 | 0.06 | 0.13 | 0.06 | 0.02 | 0.02 | 0.63 | 0.03 | -74.14 | 17.46 | |
建设用地 Construction land | 0.06 | 0.13 | 0.04 | 0.10 | 0.04 | 0.07 | 0.04 | 0.07 | 0.02 | 0.05 | 0.00 | 0.01 | 0.60 | 0.02 | -76.37 | 23.05 | |
2020-08-26 | 水稻Rice | 0.58 | 0.14 | 0.52 | 0.08 | 0.16 | 0.04 | 0.22 | 0.07 | 0.25 | 0.07 | 0.07 | 0.02 | 0.69 | 0.03 | -37.36 | 21.95 |
杂草Weeds | 0.75 | 0.09 | 0.62 | 0.06 | 0.20 | 0.04 | 0.29 | 0.05 | 0.34 | 0.06 | 0.10 | 0.03 | 0.73 | 0.03 | -1.89 | 17.06 | |
树木Trees | 0.80 | 0.08 | 0.66 | 0.08 | 0.20 | 0.05 | 0.30 | 0.07 | 0.34 | 0.07 | 0.09 | 0.04 | 0.71 | 0.04 | -0.88 | 17.44 | |
裸土Soil | 0.17 | 0.11 | 0.24 | 0.12 | 0.07 | 0.05 | 0.08 | 0.05 | 0.07 | 0.04 | 0.00 | 0.01 | 0.60 | 0.02 | -91.53 | 12.62 | |
建设用地 Construction land | 0.04 | 0.09 | 0.04 | 0.09 | 0.036 | 0.06 | 0.03 | 0.06 | 0.01 | 0.04 | -0.02 | 0.02 | 0.58 | 0.02 | -93.05 | 16.21 |
表2 各地物在不同植被指数上的像元特征
Table 2 Pixel characteristics of various objects on different vegetation indices
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | NDVI | GNDVI | NDRE | LCI | OSAVI | VDVI | EGRBDI | ExG-ExR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值Mean | 标准差 Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | ||
2020-06-05 | 水稻Rice | 0.30 | 0.16 | 0.41 | 0.12 | 0.19 | 0.04 | 0.21 | 0.06 | 0.30 | 0.05 | 0.07 | 0.02 | 0.68 | 0.02 | -35.68 | 16.03 |
杂草Weeds | 0.81 | 0.07 | 0.65 | 0.06 | 0.20 | 0.05 | 0.30 | 0.07 | 0.35 | 0.05 | 0.13 | 0.02 | 0.76 | 0.02 | 15.03 | 15.11 | |
树木Trees | 0.83 | 0.03 | 0.68 | 0.05 | 0.19 | 0.04 | 0.30 | 0.05 | 0.31 | 0.05 | 0.14 | 0.04 | 0.76 | 0.04 | 19.45 | 14.68 | |
裸土Soil | 0.17 | 0.09 | 0.20 | 0.08 | 0.05 | 0.02 | 0.05 | 0.03 | 0.06 | 0.03 | 0.00 | 0.01 | 0.61 | 0.03 | -88.39 | 11.86 | |
建设用地 Construction land | 0.02 | 0.09 | 0.03 | 0.10 | 0.02 | 0.06 | 0.02 | 0.06 | 0.01 | 0.03 | -0.01 | 0.02 | 0.58 | 0.02 | -96.98 | 21.53 | |
2020-07-15 | 水稻Rice | 0.81 | 0.04 | 0.66 | 0.04 | 0.26 | 0.04 | 0.38 | 0.05 | 0.37 | 0.05 | 0.12 | 0.02 | 0.74 | 0.02 | 16.25 | 11.73 |
杂草Weeds | 0.82 | 0.06 | 0.65 | 0.05 | 0.20 | 0.04 | 0.31 | 0.05 | 0.40 | 0.04 | 0.15 | 0.04 | 0.77 | 0.04 | 28.05 | 24.07 | |
树木Trees | 0.83 | 0.04 | 0.68 | 0.06 | 0.21 | 0.04 | 0.32 | 0.05 | 0.37 | 0.04 | 0.18 | 0.04 | 0.79 | 0.04 | 33.06 | 14.54 | |
裸土Soil | 0.29 | 0.15 | 0.29 | 0.12 | 0.07 | 0.05 | 0.09 | 0.06 | 0.13 | 0.06 | 0.02 | 0.02 | 0.63 | 0.03 | -74.14 | 17.46 | |
建设用地 Construction land | 0.06 | 0.13 | 0.04 | 0.10 | 0.04 | 0.07 | 0.04 | 0.07 | 0.02 | 0.05 | 0.00 | 0.01 | 0.60 | 0.02 | -76.37 | 23.05 | |
2020-08-26 | 水稻Rice | 0.58 | 0.14 | 0.52 | 0.08 | 0.16 | 0.04 | 0.22 | 0.07 | 0.25 | 0.07 | 0.07 | 0.02 | 0.69 | 0.03 | -37.36 | 21.95 |
杂草Weeds | 0.75 | 0.09 | 0.62 | 0.06 | 0.20 | 0.04 | 0.29 | 0.05 | 0.34 | 0.06 | 0.10 | 0.03 | 0.73 | 0.03 | -1.89 | 17.06 | |
树木Trees | 0.80 | 0.08 | 0.66 | 0.08 | 0.20 | 0.05 | 0.30 | 0.07 | 0.34 | 0.07 | 0.09 | 0.04 | 0.71 | 0.04 | -0.88 | 17.44 | |
裸土Soil | 0.17 | 0.11 | 0.24 | 0.12 | 0.07 | 0.05 | 0.08 | 0.05 | 0.07 | 0.04 | 0.00 | 0.01 | 0.60 | 0.02 | -91.53 | 12.62 | |
建设用地 Construction land | 0.04 | 0.09 | 0.04 | 0.09 | 0.036 | 0.06 | 0.03 | 0.06 | 0.01 | 0.04 | -0.02 | 0.02 | 0.58 | 0.02 | -93.05 | 16.21 |
图3 基于像元单元的各地物不同时期植被指数变化注:图中每一条线表示一个样本值的变化。
Fig. 3 Vegetation index of each feature in different periods under the pixel unitNote: Each line in the figure represents the change of a sample value.
图4 地块单元下水稻不同时期各植被指数变化注:图中每一条线表示一个样本值的变化。
Fig. 4 Vegetation index of rice in different periods under the plot unitNote: Each line in the figure represents the change of a sample value.
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | NDVI | GNDVI | NDRE | LCI | OSAVI | VDVI | ExG-ExR | EGRBDI |
---|---|---|---|---|---|---|---|---|---|
2020-06-05 | 水稻Rice | [0.114 6,0.650 0] | [0.292 8,0.597 7] | [0.053 7,0.162 1] | [0.070 6,0.241 6] | [0.100 1,0.255 8] | [0.019 8,0.092 5] | [-66.965 8,-3.103 5] | [0.636 1,0.719 2] |
杂草Weed | [0.114 7,0.895 6] | [0.597 8,0.661 9] | [0.162 2,0.174 4] | [0.241 7,0.275 5] | [0.366 4,0.470 9] | [0.098 5,0.209 6] | [-66.965 9,51.109 0] | [0.697 3,0.830 4] | |
树木Tree | [0.716 7,0.922 6] | [0.662 0,0.834 4] | [0.174 5,0.349 5] | [0.275 6,0.491 1] | [0.255 9,0.366 4] | [0.092 6,0.359 2] | [-55.000 1,64.800 0] | [0.719 3,0.934 0] | |
裸土Soil | [-0.073 0,0.114 6] | [0.053 4,0.292 7] | [0.014 6,0.053 6] | [0.016 5,0.070 5] | [0.005 5,0.100 0] | [-0.031 5,0.019 8] | [130.600 0,-55.000 0] | [0.562 1,0.636 0] | |
建设用地Construction land | [-0.127 8,0.070 5] | [-0.123 6,0.053 3] | [-0.068 8,0.014 6] | [-0.087 0,0.016 4] | [-0.047 7,0.005 4] | [-0.105 2,0.007 4] | [206.800 0,-66.965 7] | [0.459 0,0.636 0] | |
2020-07-15 | 水稻Rice | [0.651 5,0.868 6] | [0.518 7,0.735 1] | [0.267 3,0.421 3] | [0.344 2,0.561 2] | [0.245 5,0.517 0] | [0.074 2,0.144 0] | [-15.488 6,34.141 2] | [0.690 8,0.799 5] |
杂草Weed | [0.651 5,0.898 1] | [0.518 7,0.798 4] | [0.151 0,0.267 2] | [0.204 6,0.344 1] | [0.401 2,0.486 0] | [0.071 0,0.280 8] | [-14.521 7,93.200 0] | [0.690 8,0.877 6] | |
树木Tree | [0.651 5,0.921 1] | [0.518 7,0.858 2] | [0.151 0,0.267 2] | [0.204 6,0.344 1] | [0.245 5,0.401 1] | [0.124 5,0.070 9] | [-1.000 0,70.319 2] | [0.710 9,0.949 5] | |
裸土Soil | [0.009 3,0.651 4] | [0.141 4,0.518 6] | [0.053 5,0.150 9] | [0.056 0,0.204 5] | [0.077 4,0.245 4] | [-0.021 0,0.068 7] | [-115.400 0,-20.800 0] | [0.574 0,0.690 7] | |
建设用地Construction land | [-0.308 0,0.129 0] | [-0.330 7,0.141 3] | [-0.198 6,0.053 4] | [-0.177 5,0.055 9] | [-0.139 2,0.077 3] | [-0.032 1,0.070 8] | [-132.800 0,-15.488 7] | [0.558 2,0.690 7] | |
2020-08-26 | 水稻Rice | [0.369 1,0.755 8] | [0.391 6,0.654 2] | [0.018 6,0.204 1] | [0.120 9,0.285 2] | [0.126 4,0.308 1] | [0.048 5,0.097 5] | [-70.505 9,-9.375 3] | [0.621 2,0.729 4] |
杂草Weed | [0.755 9,0.887 4] | [0.654 3,0.667 3] | [0.204 2,0.319 1] | [0.285 3,0.325 1] | [0.368 5,0.574 4] | [0.099 6,0.117 4] | [-8.531 8,34.950 6] | [0.647 8,0.824 6] | |
树木Tree | [0.756 0,0.930 6] | [0.667 4,0.873 3] | [0.204 2,0.410 3] | [0.325 2,0.538 6] | [0.308 2,0.368 5] | [0.016 4,0.260 9] | [-9.266 7,36.000 0] | [0.627 4,0.873 6] | |
裸土Soil | [-0.456 0,0.369 0] | [0.092 0,0.391 5] | [0.025 5,0.108 5] | [0.025 2,0.120 8] | [0. 046 6,0.126 3] | [-0.025 2,0.016 3] | [-122.800 0,-72.564 7] | [0.569 0,0.621 1] | |
建设用地Construction land | [-0.240 2,0.114 8] | [-0.256 4,0.091 9] | [-0.074 9,0.025 4] | [-0.075 0,0.025 2] | [-0. 078 3,0. 046 5] | [-0.108 3,0.016 2] | [-133.597 7,-70.505 8] | [0.473 2,0.621 1] |
表3 各时期相应地物的植被指数分割阈值区间统计
Table 3 Vegetation index segmentation threshold interval statistics of corresponding features in each period
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | NDVI | GNDVI | NDRE | LCI | OSAVI | VDVI | ExG-ExR | EGRBDI |
---|---|---|---|---|---|---|---|---|---|
2020-06-05 | 水稻Rice | [0.114 6,0.650 0] | [0.292 8,0.597 7] | [0.053 7,0.162 1] | [0.070 6,0.241 6] | [0.100 1,0.255 8] | [0.019 8,0.092 5] | [-66.965 8,-3.103 5] | [0.636 1,0.719 2] |
杂草Weed | [0.114 7,0.895 6] | [0.597 8,0.661 9] | [0.162 2,0.174 4] | [0.241 7,0.275 5] | [0.366 4,0.470 9] | [0.098 5,0.209 6] | [-66.965 9,51.109 0] | [0.697 3,0.830 4] | |
树木Tree | [0.716 7,0.922 6] | [0.662 0,0.834 4] | [0.174 5,0.349 5] | [0.275 6,0.491 1] | [0.255 9,0.366 4] | [0.092 6,0.359 2] | [-55.000 1,64.800 0] | [0.719 3,0.934 0] | |
裸土Soil | [-0.073 0,0.114 6] | [0.053 4,0.292 7] | [0.014 6,0.053 6] | [0.016 5,0.070 5] | [0.005 5,0.100 0] | [-0.031 5,0.019 8] | [130.600 0,-55.000 0] | [0.562 1,0.636 0] | |
建设用地Construction land | [-0.127 8,0.070 5] | [-0.123 6,0.053 3] | [-0.068 8,0.014 6] | [-0.087 0,0.016 4] | [-0.047 7,0.005 4] | [-0.105 2,0.007 4] | [206.800 0,-66.965 7] | [0.459 0,0.636 0] | |
2020-07-15 | 水稻Rice | [0.651 5,0.868 6] | [0.518 7,0.735 1] | [0.267 3,0.421 3] | [0.344 2,0.561 2] | [0.245 5,0.517 0] | [0.074 2,0.144 0] | [-15.488 6,34.141 2] | [0.690 8,0.799 5] |
杂草Weed | [0.651 5,0.898 1] | [0.518 7,0.798 4] | [0.151 0,0.267 2] | [0.204 6,0.344 1] | [0.401 2,0.486 0] | [0.071 0,0.280 8] | [-14.521 7,93.200 0] | [0.690 8,0.877 6] | |
树木Tree | [0.651 5,0.921 1] | [0.518 7,0.858 2] | [0.151 0,0.267 2] | [0.204 6,0.344 1] | [0.245 5,0.401 1] | [0.124 5,0.070 9] | [-1.000 0,70.319 2] | [0.710 9,0.949 5] | |
裸土Soil | [0.009 3,0.651 4] | [0.141 4,0.518 6] | [0.053 5,0.150 9] | [0.056 0,0.204 5] | [0.077 4,0.245 4] | [-0.021 0,0.068 7] | [-115.400 0,-20.800 0] | [0.574 0,0.690 7] | |
建设用地Construction land | [-0.308 0,0.129 0] | [-0.330 7,0.141 3] | [-0.198 6,0.053 4] | [-0.177 5,0.055 9] | [-0.139 2,0.077 3] | [-0.032 1,0.070 8] | [-132.800 0,-15.488 7] | [0.558 2,0.690 7] | |
2020-08-26 | 水稻Rice | [0.369 1,0.755 8] | [0.391 6,0.654 2] | [0.018 6,0.204 1] | [0.120 9,0.285 2] | [0.126 4,0.308 1] | [0.048 5,0.097 5] | [-70.505 9,-9.375 3] | [0.621 2,0.729 4] |
杂草Weed | [0.755 9,0.887 4] | [0.654 3,0.667 3] | [0.204 2,0.319 1] | [0.285 3,0.325 1] | [0.368 5,0.574 4] | [0.099 6,0.117 4] | [-8.531 8,34.950 6] | [0.647 8,0.824 6] | |
树木Tree | [0.756 0,0.930 6] | [0.667 4,0.873 3] | [0.204 2,0.410 3] | [0.325 2,0.538 6] | [0.308 2,0.368 5] | [0.016 4,0.260 9] | [-9.266 7,36.000 0] | [0.627 4,0.873 6] | |
裸土Soil | [-0.456 0,0.369 0] | [0.092 0,0.391 5] | [0.025 5,0.108 5] | [0.025 2,0.120 8] | [0. 046 6,0.126 3] | [-0.025 2,0.016 3] | [-122.800 0,-72.564 7] | [0.569 0,0.621 1] | |
建设用地Construction land | [-0.240 2,0.114 8] | [-0.256 4,0.091 9] | [-0.074 9,0.025 4] | [-0.075 0,0.025 2] | [-0. 078 3,0. 046 5] | [-0.108 3,0.016 2] | [-133.597 7,-70.505 8] | [0.473 2,0.621 1] |
采集日期 Collection date (yyyy-mm-dd) | 精度 Accuracy | 类型 Type | 植被像元数 Vegetation pixels | 非植被像元数 Non-vegetation pixels | 总计 Total | 用户精度 User accuracy/% | ||
---|---|---|---|---|---|---|---|---|
总体 Overall/% | Kappa | |||||||
2020-06-05 | 95.55 | 0.89 | 植被像元Vegetation pixels | 9 603 | 21 | 9 624 | 99.78 | |
非植被像元 Non-vegetation pixels | 610 | 3 950 | 4 560 | 86.62 | ||||
总计Total | 10 213 | 3 971 | 14 184 | — | ||||
生产者精度Producer accuracy/% | 94.03 | 99.47 | — | — | ||||
2020-07-15 | 99.67 | 0.99 | 植被像元Vegetation pixels | 8 899 | 32 | 8 931 | 99.64 | |
非植被像元 Non-vegetation pixels | 39 | 12 309 | 12 348 | 99.68 | ||||
总计Total | 8 938 | 12 341 | 21 279 | — | ||||
生产者精度Producer accuracy/% | 99.56 | 99.74 | — | — | ||||
2020-08-26 | 95.95 | 0.91 | 植被像元Vegetation pixels | 8 000 | 40 | 8 040 | 99.50 | |
非植被像元 Non-vegetation pixels | 547 | 5 892 | 6 439 | 91.50 | ||||
总计Total | 8 547 | 5 932 | 14 479 | — | ||||
生产者精度Producer accuracy/% | 93.60 | 99.33 | — | — |
表4 监督分类精度
Table 4 Supervised classification accuracy
采集日期 Collection date (yyyy-mm-dd) | 精度 Accuracy | 类型 Type | 植被像元数 Vegetation pixels | 非植被像元数 Non-vegetation pixels | 总计 Total | 用户精度 User accuracy/% | ||
---|---|---|---|---|---|---|---|---|
总体 Overall/% | Kappa | |||||||
2020-06-05 | 95.55 | 0.89 | 植被像元Vegetation pixels | 9 603 | 21 | 9 624 | 99.78 | |
非植被像元 Non-vegetation pixels | 610 | 3 950 | 4 560 | 86.62 | ||||
总计Total | 10 213 | 3 971 | 14 184 | — | ||||
生产者精度Producer accuracy/% | 94.03 | 99.47 | — | — | ||||
2020-07-15 | 99.67 | 0.99 | 植被像元Vegetation pixels | 8 899 | 32 | 8 931 | 99.64 | |
非植被像元 Non-vegetation pixels | 39 | 12 309 | 12 348 | 99.68 | ||||
总计Total | 8 938 | 12 341 | 21 279 | — | ||||
生产者精度Producer accuracy/% | 99.56 | 99.74 | — | — | ||||
2020-08-26 | 95.95 | 0.91 | 植被像元Vegetation pixels | 8 000 | 40 | 8 040 | 99.50 | |
非植被像元 Non-vegetation pixels | 547 | 5 892 | 6 439 | 91.50 | ||||
总计Total | 8 547 | 5 932 | 14 479 | — | ||||
生产者精度Producer accuracy/% | 93.60 | 99.33 | — | — |
植被指数 Vegetation index | 水稻生长期 Rice growing period | 阈值分割 Threshold segmentation/% | 监督分类 Supervised classification/% | 提取误差 Extraction error/% | 绝对误差 Absolute error/% | R2 | RMSE/% |
---|---|---|---|---|---|---|---|
NDVI | 分蘖期Tillering stage | 92.20 | 92.57 | 0.40 | 0.37 | 0.77 | 9.09 |
抽穗期Heading stage | 98.32 | 97.90 | 0.43 | 0.42 | 0.92 | 2.97 | |
结实期Fruiting stage | 98.27 | 97.48 | 0.81 | 0.79 | 0.98 | 0.38 | |
GNDVI | 分蘖期Tillering stage | 92.32 | 92.57 | 0.27 | 0.25 | 0.76 | 9.36 |
抽穗期Heading stage | 97.57 | 97.90 | 0.34 | 0.33 | 0.91 | 2.60 | |
结实期Fruiting stage | 97.05 | 97.48 | 0.44 | 0.43 | 0.95 | 1.43 | |
NDRE | 分蘖期Tillering stage | 76.57 | 92.57 | 17.28 | 16.00 | 0.66 | 12.34 |
抽穗期Heading stage | 92.38 | 97.90 | 5.64 | 5.52 | 0.82 | 4.79 | |
结实期Fruiting stage | 95.39 | 97.48 | 2.14 | 2.09 | 0.91 | 3.01 | |
LCI | 分蘖期Tillering stage | 82.22 | 92.57 | 11.18 | 10.35 | 0.68 | 10.58 |
抽穗期Heading stage | 90.49 | 97.90 | 7.57 | 7.41 | 0.82 | 6.19 | |
结实期Fruiting stage | 96.64 | 97.48 | 1.16 | 0.16 | 0.89 | 3.19 | |
OSAVI | 分蘖期Tillering stage | 89.53 | 92.57 | 3.28 | 3.04 | 0.72 | 10.07 |
抽穗期Heading stage | 98.88 | 97.90 | 1.00 | 0.98 | 0.90 | 3.02 | |
结实期Fruiting stage | 98.53 | 97.48 | 1.08 | 1.05 | 0.94 | 2.06 | |
VDVI | 分蘖期Tillering stage | 89.74 | 92.57 | 3.06 | 2.83 | 0.75 | 9.41 |
抽穗期Heading stage | 96.48 | 97.90 | 1.45 | 1.42 | 0.89 | 3.87 | |
结实期Fruiting stage | 99.04 | 97.48 | 1.60 | 1.56 | 0.92 | 1.66 | |
EGRBDI | 分蘖期Tillering stage | 87.67 | 92.57 | 5.29 | 4.90 | 0.65 | 11.29 |
抽穗期Heading stage | 96.01 | 97.90 | 1.93 | 1.89 | 0.81 | 5.43 | |
结实期Fruiting stage | 97.61 | 97.48 | 0.13 | 0.13 | 0.89 | 3.45 | |
ExG-ExR | 分蘖期Tillering stage | 88.59 | 92.57 | 4.30 | 3.98 | 0.53 | 14.62 |
抽穗期Heading stage | 96.57 | 97.90 | 1.36 | 1.33 | 0.77 | 3.70 | |
结实期Fruiting stage | 99.04 | 97.48 | 1.60 | 1.56 | 0.80 | 5.50 |
表5 水稻植被覆盖提取结果及精度统计
Table 5 Extraction results and precision statistics of rice vegetation cover
植被指数 Vegetation index | 水稻生长期 Rice growing period | 阈值分割 Threshold segmentation/% | 监督分类 Supervised classification/% | 提取误差 Extraction error/% | 绝对误差 Absolute error/% | R2 | RMSE/% |
---|---|---|---|---|---|---|---|
NDVI | 分蘖期Tillering stage | 92.20 | 92.57 | 0.40 | 0.37 | 0.77 | 9.09 |
抽穗期Heading stage | 98.32 | 97.90 | 0.43 | 0.42 | 0.92 | 2.97 | |
结实期Fruiting stage | 98.27 | 97.48 | 0.81 | 0.79 | 0.98 | 0.38 | |
GNDVI | 分蘖期Tillering stage | 92.32 | 92.57 | 0.27 | 0.25 | 0.76 | 9.36 |
抽穗期Heading stage | 97.57 | 97.90 | 0.34 | 0.33 | 0.91 | 2.60 | |
结实期Fruiting stage | 97.05 | 97.48 | 0.44 | 0.43 | 0.95 | 1.43 | |
NDRE | 分蘖期Tillering stage | 76.57 | 92.57 | 17.28 | 16.00 | 0.66 | 12.34 |
抽穗期Heading stage | 92.38 | 97.90 | 5.64 | 5.52 | 0.82 | 4.79 | |
结实期Fruiting stage | 95.39 | 97.48 | 2.14 | 2.09 | 0.91 | 3.01 | |
LCI | 分蘖期Tillering stage | 82.22 | 92.57 | 11.18 | 10.35 | 0.68 | 10.58 |
抽穗期Heading stage | 90.49 | 97.90 | 7.57 | 7.41 | 0.82 | 6.19 | |
结实期Fruiting stage | 96.64 | 97.48 | 1.16 | 0.16 | 0.89 | 3.19 | |
OSAVI | 分蘖期Tillering stage | 89.53 | 92.57 | 3.28 | 3.04 | 0.72 | 10.07 |
抽穗期Heading stage | 98.88 | 97.90 | 1.00 | 0.98 | 0.90 | 3.02 | |
结实期Fruiting stage | 98.53 | 97.48 | 1.08 | 1.05 | 0.94 | 2.06 | |
VDVI | 分蘖期Tillering stage | 89.74 | 92.57 | 3.06 | 2.83 | 0.75 | 9.41 |
抽穗期Heading stage | 96.48 | 97.90 | 1.45 | 1.42 | 0.89 | 3.87 | |
结实期Fruiting stage | 99.04 | 97.48 | 1.60 | 1.56 | 0.92 | 1.66 | |
EGRBDI | 分蘖期Tillering stage | 87.67 | 92.57 | 5.29 | 4.90 | 0.65 | 11.29 |
抽穗期Heading stage | 96.01 | 97.90 | 1.93 | 1.89 | 0.81 | 5.43 | |
结实期Fruiting stage | 97.61 | 97.48 | 0.13 | 0.13 | 0.89 | 3.45 | |
ExG-ExR | 分蘖期Tillering stage | 88.59 | 92.57 | 4.30 | 3.98 | 0.53 | 14.62 |
抽穗期Heading stage | 96.57 | 97.90 | 1.36 | 1.33 | 0.77 | 3.70 | |
结实期Fruiting stage | 99.04 | 97.48 | 1.60 | 1.56 | 0.80 | 5.50 |
1 | 顾峰. 基于Sentinel-2数据的典型绿洲植被参数动态监测[D].乌鲁木齐:新疆大学,2019. |
GU F. Dynamic monitoring of vegetation participants in lypical oasis based on sentinel-2 data [D]. Urumqi: Xinjiang University, 2019. | |
2 | 赵静,杨焕波,兰玉彬,等.基于无人机可见光图像的夏季玉米植被覆盖度提取方法[J].农业机械学报,2019,50(5):232-240. |
ZHAO J, YANG H B, LAN Y B, et al.. Extraction method of summer corn vegetation coverage based on visible light image of unmanned aerial vehicle [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50(5): 232-240. | |
3 | 王猛,隋学艳,梁守真,等.利用无人机遥感技术提取农作物植被覆盖度方法研究[J].作物杂志,2020(3):177-183. |
WANG M, SUI X Y, LIANG S Z, et al.. Research on the method of extracting crop vegetation coverage using UAV remote sensing technology [J]. Crops, 2020(3):177-183. | |
4 | SONG W, MU X, RUAN G, et al.. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method [J]. Int. J. Appl. Earth Obs.,2017,58:168-176. |
5 | 李登科,范建忠,王娟. 陕西省植被覆盖度变化特征及其成因[J]. 应用生态学报,2010,21(11):2896-2903. |
LI D K, FAN J Z, WANG J. Change characteristics and their causes of fractional vegetation coverage (FVC) in Shaanxi province [J]. Chin. J. Appl. Ecol., 2010,21(11):2896-2903. | |
6 | 孙中平,刘素红,姜俊,等.中高分辨率遥感协同反演冬小麦覆盖度[J].农业工程学报,2017,33(16):161-167. |
SUN Z P, LIU S H, JIANG J, et al.. Coordination inversion methods for vegetation cover of winter wheat by multi-source satellite images [J]. Trans. Chin. Soc. Agric. Eng., 2017,33(16):161-167. | |
7 | 张喜旺,吴炳方.基于中高分辨率遥感的植被覆盖度时相变换方法[J].生态学报,2015,35(4):1155-1164. |
ZHANG X W, WU B F. A temporal transformation method of fractional vegetation cover derived from high and moderate resolution remote sensing data [J]. Acta Ecol. Sin.,2015,35(4):1155-1164. | |
8 | 张勇峰. 基于多源遥感数据的冬小麦植被覆盖度估算研究[D].南昌:东华理工大学,2016. |
ZHANG Y F. The study on the estimation of the crop coverage ofwinter wheat based on multi-source remote sensing data [D]. Nanchang: East China University of Technology, 2016. | |
9 | 张伟, 宜树华, 秦彧, 等.基于无人机的高寒草甸地表温度监测及影响因素研究[J].草业学报,2021,30(3):15-27. |
ZHANG W, YI S H, QIN Y, et al.. Analysis of features and influencing factors of alpine meadow surface temperature based on UAV thermal thermography [J]. Acta Pratac. Sin.,2021,30(3):15-27. | |
10 | 牛亚晓,张立元,韩文霆.基于Lab颜色空间的棉花覆盖度提取方法研究[J].农业机械学报,2018,49(10):240-249. |
NIU Y X, ZHANG L Y, HAN W T. Extraction methods of cotton coverage based on lab color space [J].Trans. Chin. Soc. Agric. Mach.,2018,49(10):240-249. | |
11 | 何海清,严椰丽,凌梦云,等.结合三维密集点云的无人机影像大豆覆盖度提取[J].农业工程学报,2022,38(2):201-209. |
HE H Q, YAN Y L, LING M Y, et al.. Extraction of soybean coverage from UAV images combined with 3D dense point cloud [J]. Trans. Chin. Soc. Agric. Eng., 2022,38(2):201-209. | |
12 | 邓尚奇,赵钰,白雪源,等.基于无人机图像分割的冬小麦叶绿素与叶面积指数反演[J].农业工程学报,2022,38(3):136-145. |
DENG S Q, ZHAO Y, BAI X Y, et al.. Inversion of chlorophyll and leaf area index for winter wheat based on UAV image segmentation [J]. Trans. Chin. Soc. Agric. Eng., 2022,38(3):136-145. | |
13 | 刘涛,张寰,王志业,等.利用无人机多光谱估算小麦叶面积指数和叶绿素含量[J].农业工程学报,2021,37(19):65-72. |
LIU T, ZHANG H, WANG Z Y, et al.. Estimation of the leaf area index and chlorophyll content of wheat using UAV multi-spectrum images [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(19):65-72. | |
14 | 王嘉盼,武红旗,王德俊,等.基于无人机可见光影像与生理指标的小麦估产模型研究[J].麦类作物学报,2021,41(10):1307-1315. |
WANG J P, WU H Q, WANG D J, et al.. Research on wheat yield estimation model based on UAV visible light lmage and physiological index [J]. J. Triticeae Crops,2021,41(10):1307-1315. | |
15 | 王靖,彭漪,刘小娟,等.基于无人机多光谱数据的水稻LAI反演与应用[J].中国农业大学学报,2021,26(12):145-156. |
WANG J, PENG Y, LIU X J, et al.. Inversion and application of rice LAl based on UAV multispectral data [J]. J. China Agric. Univ., 2021,26(12):145-156. | |
16 | 刘雅婷, 龚龑, 段博, 等. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测[J].武汉大学学报(信息科学版), 2020, 45(2): 265-272. |
LIU Y T, GONG Y, DUAN B, et al.. Combining multi-temporal NDVl and abundance from UAV remote sensing data for oilseed rape growth monitoring [J]. Geomatics Inf. Sci. Wuhan Univ., 2020, 45(2): 265-272. | |
17 | 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152-157. |
WANG X Q, WANG M M, WANG S Q, et al.. Extraction of vegetation information from visible unmanned aerial vehicle images [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(5): 152-158. | |
18 | 高永刚, 林悦欢, 温小乐, 等. 基于无人机影像的可见光波段植被信息识别[J]. 农业工程学报, 2020, 36(3):178-189. |
GAO Y G, LIN Y H, WEN X L, et al.. Vegetation information recognition in visible band based on UAV images [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(3):178-189. | |
19 | WOEBBECKE D M, MEYER G E, BARGEN K V, et al.. Color indices for weed identification under various soil, residue, and lighting conditions [J]. Trans. Asae, 1995, 38(1): 259-269. |
20 | 李淑贞,徐大伟,范凯凯,等.基于无人机与卫星遥感的草原地上生物量反演研究[J].遥感技术与应用,2022,37(1):272-278. |
LI S Z, XU D W, FAN K K, et al.. Research of grassland aboveground biomass inversion based on UAV and satellite remoting sensing [J]. Remote Sensing Technol. Appl., 2022,37(1):272-278. | |
21 | GOWARD S N, XUE Y K, CZAJKOWSKI K P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements an exploration with the simplified simple biosphere model [J]. Remote Sensing Environ., 2002, 79(2/3): 225-242. |
22 | 李冰, 刘镕源, 刘素红, 等. 基于低空无人机遥感的冬小麦覆盖度变化监测[J]. 农业工程学报, 2012, 28(13): 160-165. |
LI B, LIU R Y, LIU S H, et al.. Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system [J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(13): 160-165. | |
23 | 田振坤, 傅莺莺, 刘素红, 等. 基于无人机低空遥感的农作物快速分类方法[J]. 农业工程学报, 2013, 29(7): 109-116. |
TIAN Z K, FU Y Y, LIU S H, et al.. Rapid crops classification based on UAV low-altitude remote sensing [J]. Trans. Chin. Soc. Agric. Eng., 2013, 29(7): 109-116. | |
24 | 刘道芳,王景山,李胜阳.高分六号卫星红边波段及红边植被指数对水稻分类精度的影响[J].河南科学,2021,39(9):1417-1423. |
LIU D F, WANG J S, LI S Y. The lmpact of red-edge waveband and red-edge vegetation index of GF6 satellite on rice planting area classification accuracy [J]. Henan Sci.,2021,39(9):1417-1423. | |
25 | 田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998(4):10-16. |
TIAN Q J, MIN X J. Advances in study on vegetation indices [J]. Adv. Earth Sci.,1998(4):10-16. | |
26 | 李明, 黄愉淇, 李绪孟, 等. 基于无人机遥感影像的水稻种植信息提取[J]. 农业工程学报, 2018, 34(4): 108-114. |
LI M, HUANG Y Q, LI X M, et al.. Extraction of rice planting information based on remote sensing image from UAV [J]. Trans. Chin. Soc. Agric. Eng., 2018, 34(4): 108-114. | |
27 | 吴方明,张淼,吴炳方.无人机影像的面向对象水稻种植面积快速提取[J].地球信息科学学报,2019,21(5):789-798. |
WU F M, ZHANG M, WU B F. Object-oriented rapid estimation of rice acreage from UAV lmagery [J]. J. Geo-Inf. Sci., 2019,21(5):789-798. |
[1] | 侯志雄, 井长青, 王公鑫, 郭文章, 赵苇康. 1998—2018年北疆天然草地植被覆盖度时空变化及其与气象因子的关系[J]. 中国农业科技导报, 2023, 25(2): 140-151. |
[2] | 曲宗普尺, 毛光锋, 吴敏, 吴洪恺. 水稻种子浸泡液电导率与种子活力的关系[J]. 中国农业科技导报, 2023, 25(1): 35-41. |
[3] | 王巍, 谢莉娟, 肖东芽, 陈根生, 谢靓, 吴自明, 石绪根, 李辉婕. 江西省双季稻病虫害绿色防控技术模式探究[J]. 中国农业科技导报, 2022, 24(9): 129-138. |
[4] | 金辉, 王伟, 颜尘栋, 王薇, 李熙英. 水稻纹枯病生防木霉菌分离鉴定及适应性研究[J]. 中国农业科技导报, 2022, 24(9): 139-148. |
[5] | 文双雅, 石楠, 陈崇怡, 胡海燕, 高志强. 基于涡度相关法的水稻光能利用率研究[J]. 中国农业科技导报, 2022, 24(7): 159-166. |
[6] | 李琼华, 张琳, 韩昕儒, 宋莉莉. 我国双季稻全要素生产率的时空分析及对策建议[J]. 中国农业科技导报, 2022, 24(5): 15-23. |
[7] | 唐楠锐, 周勇, 张国忠, 梁方, 柯烩彬. 搅种型孔式水稻穴播排种器的性能模拟与试验[J]. 中国农业科技导报, 2022, 24(4): 107-115. |
[8] | 杨涛, 马小倩, 张全, 张洪亮. 组蛋白修饰在水稻中的研究进展[J]. 中国农业科技导报, 2022, 24(4): 11-20. |
[9] | 何振嘉, 范王涛, 杜宜春, 王启龙. 基于土体有机重构的水肥耦合对土壤理化性质和水稻产量的影响[J]. 中国农业科技导报, 2022, 24(3): 176-185. |
[10] | 徐君, 李婷, 胡敏骏, 蒋玉根, 闫慧莉, 许文秀, 虞轶俊, 何振艳. 水稻籽粒镉积累KASP分子标记LCd-38的开发与利用[J]. 中国农业科技导报, 2022, 24(3): 40-47. |
[11] | 马小倩, 杨涛, 张全, 张洪亮. 水稻新型育种技术研究现状与展望[J]. 中国农业科技导报, 2022, 24(1): 24-30. |
[12] | 樊鸿叶, , 李姚姚, 卢宪菊, 顾生浩, 郭新宇, 刘玉华. 基于无人机多光谱遥感的春玉米叶面积指数和地上部生物量估算模型比较研究[J]. 中国农业科技导报, 2021, 23(9): 112-120. |
[13] | 习敏, 许有尊, 孙雪原, 吴文革, 周永进. 氮素穗肥对水稻垩白籽粒灌浆影响及与加工品质的关系[J]. 中国农业科技导报, 2021, 23(9): 144-151. |
[14] | 吴子帅, 李虎, 黄秋要, 陈传华, 罗群昌, 周新明, 吴佳桔, 刘广林. 施氮量和栽插密度对桂育11号产量和稻米品质的影响[J]. 中国农业科技导报, 2021, 23(8): 154-162. |
[15] | 罗友谊, 王慰亲, 郑华斌, 刘功义, 巢英, 徐彩, 郑志刚, 李雪倩, 韦银兰, 唐启源. 不同机械有序种植方式对水稻生长特性及产量的影响[J]. 中国农业科技导报, 2021, 23(7): 162-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||