中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (12): 59-67.DOI: 10.13304/j.nykjdb.2022.0970
万何平1,2,3(), 张浩1(
), 余忆3, 陈敬东3, 曾长立3, 赵伦1,2, 文静1, 沈金雄1(
), 傅廷栋1(
)
收稿日期:
2022-11-07
接受日期:
2022-11-11
出版日期:
2022-12-15
发布日期:
2023-02-06
通讯作者:
沈金雄,傅廷栋
作者简介:
万何平 E-mail:wanheping@jhun.edu.cn基金资助:
Heping WAN1,2,3(), Hao ZHANG1(
), Yi YU3, Jingdong CHEN3, Changli ZENG3, Lun ZHAO1,2, Jing WEN1, Jinxiong SHEN1(
), Tingdong FU1(
)
Received:
2022-11-07
Accepted:
2022-11-11
Online:
2022-12-15
Published:
2023-02-06
Contact:
Jinxiong SHEN,Tingdong FU
摘要:
土壤盐碱化已成为农业发展的主要限制因素之一。盐碱胁迫对植物的胁迫伤害可分为渗透胁迫、离子毒害、活性氧损伤以及高pH胁迫。盐碱胁迫对油菜的种子萌发、苗期生长发育以及产量品质都会造成不同程度的影响。阐述了盐碱胁迫对油菜不同生育期的影响机制,从渗透调节、活性氧清除、吸收和储存Na+、根系分泌有机酸等方面分析油菜耐盐碱机制,并提出进一步提高油菜耐盐碱性的措施,包括挖掘和利用耐盐碱基因、采用合理的栽培手段和使用外源物质,旨在为应用耐盐碱油菜改良利用盐碱地提供理论依据。
中图分类号:
万何平, 张浩, 余忆, 陈敬东, 曾长立, 赵伦, 文静, 沈金雄, 傅廷栋. 油菜耐盐碱研究与应用[J]. 中国农业科技导报, 2022, 24(12): 59-67.
Heping WAN, Hao ZHANG, Yi YU, Jingdong CHEN, Changli ZENG, Lun ZHAO, Jing WEN, Jinxiong SHEN, Tingdong FU. Study and Application of Salt and Alkali Tolerance in Rapeseed[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 59-67.
1 | 王雷,郭岩,杨淑华. 非生物胁迫与环境适应性育种的现状及对策[J].中国科学:生命科学,2021,51(10):1424-1434. |
WANG L, GUO Y, YANG S H. Designed breeding for adaptation of crops to environmental abiotic stresses [J]. Sci. Sin. Vitae, 2021,51(10):1424-1434. | |
2 | 王汉中. 以新需求为导向的油菜产业发展战略[J]. 中国油料作物学报, 2018, 40(5): 613-617. |
WANG H Z.New-demand oriented oilseed rape industry developing strategy [J]. Chin. J. Oil Crop Sci., 2018, 40(5): 613-617. | |
3 | SHOKRI-GHARELO R, NOPARVAR P M. Molecular response of canola to salt stress: insights on tolerance mechanisms [J/OL]. Peerj, 2018,6:e4822 [2022-10-10]. . |
4 | 汪波,文静,张凤华,等. 耐盐碱油菜品种选育及修复利用盐碱地研究进展[J]. 科技导报, 2021,39(23):59-64. |
WANG B, WEN J, ZHANG F H, et al..Research progress in breeding of saline-alkaline tolerant rapeseed and restoring the salinate land [J]. Sci. Technol. Rev., 2021,39(23):59-64. | |
5 | SHI D C, YIN S J, YANG G H, et al.. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress [J]. Acta Bot. Sin., 2002, 44(5): 537-540. |
6 | YANG J Y, ZHENG W, TIAN Y, et al.. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings [J]. Photosynthetica, 2011, 49(2): 275-284. |
7 | GONG B, WAN X F, LI Y, et al.. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks [J]. Plant Cell Tiss. Ogr. Culture, 2016, 124(2):377-391. |
8 | WANG L X, FANG C, WANG K. Physiological responses of Leymus chinensis to long-term salt, alkali and mixed salt-alkali stresses [J]. J. Plant Nutr., 2015,38(4): 526-540. |
9 | BAHMANI K, SEYED A S, ALI L, et al.. Molecular mechanisms of plant salinity tolerance: a review [J]. Aus. J. Crop Sci., 2015, 9(4): 321-336. |
10 | CHEN W, FENG C, GUO W, et al.. Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis, and osmotic adjustment of cotton plants [J]. Photosynthetica, 2011, 49(3): 417-425. |
11 | SHABALA S, CUIN T A. Potassium transport and plant salt tolerance [J]. Physiol. Plantarum, 2008, 133(4): 651-669. |
12 | SWANSON S, GILROY S. ROS in plant development [J]. Physiol. Plant, 2010, 138(4): 384-392. |
13 | 魏嘉,蔡勤安,李源, 等. 植物对盐碱胁迫响应机制的研究进展[J]. 山东农业科学, 2022, 54(4): 156-164. |
WEI J, CAI Q A, LI Y, et al.. Research progress on response mechanism of the plant to saline-alkali stress [J]. Shandong Agric. Sci., 2022, 54(4): 156-164. | |
14 | HASEGAWA P M, BRESSAN R A, ZHU J K, et al.. Plant cellular and molecular responses to high salinity [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000,51: 463-499. |
15 | QIN Y, BAI J, WANG Y, et al.. Comparative effects of salt and alkali stress on photosynthesis and root physiology of oat at anthesis [J]. Arch. Biol. Sci., 2018,70 (2):329-338. |
16 | 戴睿. 盐碱胁迫对植物生长的影响及应对措施[J]. 现代农业科技, 2019(23): 58. |
17 | ZHANG G F, ZHOU J Z, PENG Y, et al.. Genome-wide association studies of salt tolerance at seed germination and seedling stages in Brassica napus [J/OL]. Front. Plant Sci., 2022,12:772708 [2022-10-10].. |
18 | 万何平,戴希刚,陈敬东,等. 甘蓝型油菜对盐胁迫的响应及耐盐相关性状QTL研究进展[J]. 中国油料作物学报, 2020, 42(4): 536-544. |
WAN H P, DAI X G, CHEN J D, et al.. Research progress on salt stress effect on Brassica napus and QTL reaserch of salt tolerance related traits [J]. Chin. J. Oil Crop Sci., 2020, 42(4): 536-544. | |
19 | 范惠玲,白生文,朱雪峰,等. 油菜及其近缘种种子萌发期耐盐碱性差异[J]. 作物杂志, 2019 (3): 178-184. |
FAN H L, BAI S W, ZHU X F, et al..Difference of salt-alkaline tolerance of three rape and its two relatives at germination stage [J]. Crops, 2019 (3): 178-184. | |
20 | 李萍,燕佳琦,张鹤,等. 146份甘蓝型油菜种质芽期耐盐性筛选及评价[J]. 西北农业学报, 2021, 30(6): 848-859. |
LI P, YAN J Q, ZHANG H, et al.. Screening and evaluation of salt tolerance for 146 Brassican napus germplasms at germination stage [J]. Acta Agric.Bor-Occid. Sin., 2021, 30(6): 848-859. | |
21 | 张瑀茜,高山,张锐,等. 盐胁迫对不同油菜种子萌发的影响[J]. 种子, 2021, 40(1):94-98. |
ZHANG Y X, GAO S, ZHANG R, et al.. Effects of salt stress on seed germination and morphology of different rape seeds [J]. Seed, 2021, 40(1):94-98. | |
22 | CHEN J, ZHANG H, TONG J, et al.. Genome-wide association analysis of root length traits in Brassica napus at germination stage under sodium carbonate stress [J/OL]. Euphytica, 2021, 217(10): 197 [2022-10-10].. |
23 | 丁富功,卢奕霏,康珍,等. 混合盐碱胁迫对油菜种子萌发和幼苗生长的影响[J]. 长江大学学报(自然科学版), 2020, 17(3): 73-80, 90. |
DING F G, LU Y F, KANG Z, et al.. Effects of mixed saline-alkali stress on seed germination and seedling growth of different rape varieties [J]. J. Yangtze Univ. (Nat. Sci.), 2020, 17(3): 73-80, 90. | |
24 | 柴雁飞.盐碱混合胁迫对油菜种子萌发的胁迫效应[J]. 甘肃联合大学学报, 2012,26(11): 1-5. |
CHAI Y F. Stress effect of saline-alkaline on the germination of seeds germination of Brassica campestris L.seedlings [J]. J. Gansu Lianhe Univ. (Nat. Sci.),2012,26(11): 1-5. | |
25 | 吴鹏博,李立军,张艳丽.油菜苗期耐盐碱性综合评价与根际土壤有机酸含量比较[J].作物杂志,2022(1): 110-115. |
WU P B, LI L J, ZHANG Y L, et al.. Comprehensive evaluation of saline-alkali tolerance and comparison of rhizosphere soil organic acid content at rapeseed seedling stage [J]. Crops, 2022(1): 110-115. | |
26 | 李班,吕莹,杨明煊,等.盐碱胁迫对甘蓝型油菜生理及分子机制的影响[J].华北农学报,2022,37(3):86-93. |
LI B,LYU Y, YANG M X, et al.. Effects of saline-alkali stress on physiology and molecular mechanism of Brassica napus L.[J]. Acta Agric. Boreali-Sin., 2022,37(3):86-93. | |
27 | 杨洋,王亚娟,阴法庭,等.盐碱胁迫对油菜苗期生理及光合特性的影响[J].北方园艺,2020(15): 1-8. |
YANG Y, WANG Y J, YIN F T, et al.. Effects of saline-alkali stress on physiology and photosynthetic characteristics of rape seedlings [J]. Northern Hortic., 2020(15): 1-8. | |
28 | 孙鲁鹏,杨洋,王卫超,等.油菜苗期对盐碱胁迫的离子响应机制[J/OL].中国农业科技导报, 2022 [2022-10-10].. |
SUN L P, YANG Y, WANG W C, et al.. Ion response mechanism of canola seedlings to saline-alkali stress [J/OL]. J. Agric. Sci. Technol., 2022 [2022-10-10].. | |
29 | AHMAD B. Effects of salinity on yield and component characters in canola (Brassica napus L.) cultivars [J]. Not. Sci. Biol., 2010,2(1):81-83. |
30 | ZHANG G F, PENG Y, ZHOU J, et al.. Genome-wide association studies of salt-alkali tolerance at seedling and mature stages in Brassica napus [J/OL]. Front. Plant Sci., 2022,13:857149 [2022-10-10]. . |
31 | NADERI R, TOORCHI M. Path analysis of the relationships between yield and some related traits in canola (Brassica napus L.) under salinity stress conditions [J]. Annals Biol. Res., 2012, 3(4):1731-1734. |
32 | ZAMANI S, BYBORDI A, KHORSHIDI M B, et al.. Effects of NaCl salinity levels on lipids and proteins of canola (Brassica napus L.) cultivars [J]. Adv. Environ. Biol., 2010, 28(28):197-206. |
33 | 龙卫华,胡茂龙,陈松,等.盐地种植对甘蓝型油菜产量和品质性状的影响[J].江苏农业科学,2015,43(3):85-87. |
34 | SIVAKUMAR J, PRASHANTH P J E, NAMBI R, et al.. Effect of time-course salt stress on chlorophyll, proline and catalase activity in Solanum lycopersicum L. [J]. Res. J. Biotechnol., 2020, 14(9):108-116. |
35 | 丁娟, 黄镇, 张学贤, 等. 甘蓝型油菜苗期生长阶段对NaCl胁迫的生理响应[J]. 西北植物学报, 2014, 34(11):2270-2276. |
DING J, HUANG Z, ZHANG X X, et al.. Physiological effects on Brassican napus seedling under NaCl stress [J]. Acta Bot. Bor-Occid. Sin., 2014, 34(11):2270-2276. | |
36 | WAN H P, QIAN J L, ZHANG H, et al.. Combined transcriptomics and metabolomics analysis reveals the molecular mechanism of salt tolerance of Huayouza 62, an elite cultivar in rapeseed (Brassica napus L.) [J/OL]. J. Int. Plant Biol., 2022,23(3):1279[2022-10-10]. . |
37 | KUMAR P P. Regulation of biotic and abiotic stress responses by plant hormones [J/OL]. Plant Cell Rep., 2013, 32(7): 943[2022-10-10]. . |
38 | ZHANG M, SMITH J, HARBERD N, et al.. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses [J]. Plant Mol. Biol., 2016,91(6): 651-659. |
39 | WAADT R, SELLER C, HSU P, et al.. Plant hormone regulation of abiotic stress responses [J]. Nat. Rev. Mol. Cell Biol., 2022, 23(10):680-694. |
40 | EL-BADRI A M, BATOOL M, MOHAMED I A, et al.. Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage [J/OL]. Antioxidants, 2021,10(8):1227 [2022-10-10]. . |
41 | 陈凤莲,刘志斌,王建美,等.油菜BnRCH基因提高转基因拟南芥的耐盐性研究[J].四川大学学报(自然科学版), 2013, 50(3): 643-648. |
CHEN F L, LIU Z B, WANG J M, et al.. The studies of gene BnRCH from Brassica napus enhances the tolerance to salt stress in transgenic Arabidopsis [J]. J. Sichuan Univ. (Nat. Sci.), 2013, 50(3): 643-648. | |
42 | YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses [J]. New Phytol., 2018,217(2): 523-539. |
43 | 郭洋,陈波浪,盛建东,等.几种一年生盐生植物的吸盐能力[J]. 植物营养与肥料学报, 2015,21(1): 289-279. |
GUO Y, CHEN B L, SHENG J D, et al.. Salt absorption capacities of several annul halophytes [J]. J. Plant Nutr. Fert., 2015,21(1): 289-279. | |
44 | YONG H Y, WANG C, BANCROFT I, et al.. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.) [J]. Planta, 2015,242(1): 313-326. |
45 | 王旺年,葛均筑,杨海昌,等.大田作物在不同盐碱地的饲料价值评价[J].作物学报,2022,48(6):1451-1462. |
WANG W N, GE J Z, YANG H C,et al.. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agron. Sin., 2022,48(6):1451-1462. | |
46 | FLOWERS T, COLMER T D. Salinity tolerance in halophytes [J]. New Phytol., 2008, 179(4): 945-963. |
47 | BAIS H P, WEIR T L, PERRY L G, et al.. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annu. Rev. Plant Biol., 2006,57: 233-266. |
48 | CHEN W C, CUI P J, SUN H Y, et al.. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.) [J]. Ind. Crop Prod., 2009, 30(3):351-358. |
49 | 冷春旭,郑福余,赵北平,等.水稻耐碱性研究进展[J]. 生物技术通报, 2020, 36(11): 103-111. |
LENG C X, ZHENG F Y, ZHAO B P, et al.. Advances on alkaline tolerance of rice [J]. Biotechnol. Bull., 2020, 36(11): 103-111. | |
50 | 邹春雷.甜菜适应碱性盐胁迫的生理机制及其转录组分析[D].哈尔滨:东北农业大学, 2019. |
ZOU C L. Physiological mechanism and non-coding RNA analysis of sugar beet (Beta vulgaris L.) in adaption to alkali stress [D]. Harbin:Northeast Agricultural University,2019. | |
51 | 刘东洋,徐接亮,张凤华. 不同油菜品种对盐碱土壤理化性质与微生物多样性的影响[J]. 新疆农业科学, 2019, 56(2): 246-257. |
LIU D Y, XU J L, ZHANG F H. Effects of rape varietieson soil physicochemical properties and microbial diversity in saline-alkali land in Xinjiang [J]. Xinjiang Agric. Sci., 2019, 56(2): 246-257. | |
52 | HOLLISTER E B, ENGLEDOW A S, HAMMETT A J M, et al.. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments [J]. ISME J., 2010, 4(6): 829-838. |
53 | 孔涛,张德胜,徐慧,等. 盐碱地及其改良过程中土壤微生物生态特征研究进展[J]. 土壤, 2014, 46(4): 581-588. |
KONG T, ZHANG D S, XU H, et al.. Microbial ecological characteristics of alkaline-saline lands and its amelioration process: a review [J]. Soils, 2014, 46(4): 581-588. | |
54 | 丁兆军,白洋. 根系发育和微生物组研究现状及未来发展趋势[J]. 中国科学:生命科学, 2021, 51(10):1447-1456. |
DING Z J, BAI Y. The current and future studies on plant root development and root microbiota [J]. Sci. Sin. Vitae, 2021, 51(10):1447-1456. | |
55 | 赛牙热木·哈力甫,邓勋,宋小双,等.外生菌根真菌对植物促生抗逆作用机制研究进展[J].世界林业研究, 2021,34(1):19-24. |
Halifu Saiyaremu, DENG X, SONG X S, et al.. Research progress in the working mechanism of ectomycorrhizal fungi for plant growth promotion and stress resistance [J]. World For. Res., 2021,34(1):19-24. | |
56 | 李新.不同盐碱程度盐碱土壤微生物多样性研究[D]. 呼和浩特:内蒙古师范大学, 2015. |
LI X. Studies on soil microbial community structure diversity in different degrees of saline-alkaline soil [D]. Hohhot: Inner Mongolia Normal University, 2015. | |
57 | 吴鹏博.碱性盐胁迫对油菜苗期生长及根际土壤环境的影响[D].呼和浩特:内蒙古农业大学, 2021. |
WU P B. Effects of alkaline salt stress on seedling growth and rhizosphere soil environment of rapeseed [D]. Hohhot:Inner Mongolia Agricultural University,2021. | |
58 | SONG J M, GUAN Z L, HU J L, et al.. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus [J]. Nat. Plants, 2020, 6(1): 34-45. |
59 | XUE X, LIU A, HUA X. Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus [J]. BMB Rep., 2009,42(1): 28-34. |
60 | WANG J, ZUO K J, WU W A, et al.. Molecular cloning and characterization of a new Na+/H+ antiporter gene from Brassica napus [J]. DNA Seq., 2003, 14(5): 351-358. |
61 | ZHAO B Y, HU Y F, LI J J, et al.. BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis [J/OL]. Bot. Stud., 2016,57(1): 12 [2022-10-10]. . |
62 | 郭聚领,石笑蕊,辛强,等. 分子标记辅助选育甘蓝型油菜高油酸pol TCMS不育两用系及其恢复系[J]. 中国油料作物学报, 2021, 43(3): 418-425. |
GUO J L, SHI X R, XIN Q, et al.. Breeding for thermo-sensitive pol cytoplasmic male sterile line and its restorer with high oleic acid through molecular marker-assisted selection in Brassica napus [J]. Chin. J. Oil Crop Sci., 2021, 43(3): 418-425. | |
63 | YANG Y, ZHU K Y, LI H I, et al.. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development [J]. Plant Biotech. J., 2018, 16(7): 1322-1335. |
64 | 贺长征,胡晋,朱志玉,等. 混合盐引发对水稻种子在逆境条件下发芽及幼苗生理特性的影响[J]. 浙江大学学报(农业与生命科学版), 2002,28(2):175-178. |
HE C Z, HU J, ZHU Z Y, et al..Effect of seed priming with mixed-salt solution on germination and physiological characteristics of seedling in rice (Oryza sativa L. ) under stress conditions [J]. J. Zhejiang Univ.(Agric. Life Sci.), 2002, 28( 2): 175-178 | |
65 | 王宝山,蔡蕾,李平华,等. 盐碱地耐盐小麦覆膜栽培高产机理的研究[J]. 西北植物学报, 2000,20(5):746-753. |
WANG B S, CAI L, LI P H, et al..Study on mechanism of high yield of salt-tolerant wheat with the plastic film mulching cultivation in saline soils [J]. Acta Bot. Bor-Occid. Sin., 2000,20(5):746-753. | |
66 | 樊润威,董进亚. 盐碱地覆膜栽培玉米的效果[J]. 土壤, 1996, 28(4): 205-207. |
67 | 张凤华,阴法庭. 一种盐碱地饲用油菜栽培方法:CN109169048A [P]. 2019-01-11. |
68 | 张培通,张萼,郭文琦,等. 油菜宁杂21号在江苏沿海滩涂盐碱地的种植表现及高产栽培技术要点[J]. 江苏农业科学, 2014, 42(6): 84-85. |
69 | 孙鲁鹏,杨洋,王亚娟,等.有机液体肥对盐碱胁迫下油菜幼苗生理及光合特性的影响[J]. 北方园艺, 2022(8): 1-8. |
SUN L P, YANG Y, WANG Y J, et al.. Effects of organic liquid fertilizer on physiological and photosynthetic characteristics of canola at seedling stage under saline-alkali stress [J]. Northern Hortic., 2022(8): 1-8. | |
70 | 任延靖,柳红. 外源物质干预对逆境胁迫下植物生长代谢的影响研究进展[J]. 青海农技推广, 2021(3): 15-23. |
71 | 潘镭文,向春阳,丁建文,等.外源水杨酸处理油菜幼苗对盐胁迫的生理响应[J].天津农学院学报, 2022, 29(2): 22-26. |
PAN L W, XIANG C Y, DING J W, et al.. Physiological response of salicylic acid on physiological characteristics of rape seeding under salt stress [J]. J. Tianjin Agric. Univ., 2022, 29(2): 22-26. | |
72 | ZENG L, CAI J S, LI J J, et al.. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings [J]. J. Integr. Agric., 2018, 17(2): 328-335. |
73 | LIU Y, DING X, LYU Y, et al.. Exogenous serotonin improves salt tolerance in rapeseed (Brassica napus L.) seedlings [J/OL]. Agronomy, 2021, 11(2): 400 [2022-10-10].. |
74 | ZHAO G, ZHAO Y Y, LOU W, et al.. Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity [J]. Nanoscale, 2019,11(21):10511-10523. |
75 | KHAN M N, LI Y H, KHAN Z, et al.. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and alpha-amylase activities [J/OL]. J. Nanobiotechnol., 2021, 19(1): 276 [2022-10-10]. . |
[1] | 胡灵炆, 周忠发, 尹林江, 朱孟, 黄登红. 基于无人机RGB影像的苗期油菜识别[J]. 中国农业科技导报, 2022, 24(9): 116-128. |
[2] | 魏全全, 高英, 芶久兰, 张萌, 饶勇, 杨斌, 凡迪, 冯文豪, 肖华贵. 播种量和播种方式对冬油菜养分吸收利用及产量的影响[J]. 中国农业科技导报, 2022, 24(8): 182-191. |
[3] | 张繁, 谷悦, 曹琛, 刘保华. 油菜秸秆纤维对水泥胶砂孔隙特征的影响[J]. 中国农业科技导报, 2022, 24(6): 189-195. |
[4] | 吴志勇, 顾红, 程大伟, 李兰, 何莎莎, 李明, 陈锦永. 油菜素内酯调控植物根系发育机制研究进展[J]. 中国农业科技导报, 2022, 24(2): 68-76. |
[5] | 孙梦遥, 徐岚俊, 李小龙, 李传友, 陈华, 张传帅, 刘婞韬. 不同节水方式对油菜水分利用、分配及产量的影响[J]. 中国农业科技导报, 2021, 23(9): 138-143. |
[6] | 殷艳, 尹亮, 张学昆, 郭静利, 王积军. 我国油菜产业高质量发展现状和对策[J]. 中国农业科技导报, 2021, 23(8): 1-7. |
[7] | 骆丽莎, 廖桂平, 刘凡, 官春云. 基于冠层光谱特征参数的油菜品种识别[J]. 中国农业科技导报, 2021, 23(7): 93-106. |
[8] | 李媛媛1,陈博2,姚立蓉2,翟雪婷1,司二静2,汪军成2,马小乐2,孟亚雄2,王化俊2,李葆春1*,杨亮1. 283份小麦品种(系)萌发期耐盐碱性评价及种质筛选[J]. 中国农业科技导报, 2021, 23(3): 25-33. |
[9] | 全伟, 吴明亮, 官春云, 罗海峰. 油菜钵苗移栽机成穴器外形优化试验研究[J]. 中国农业科技导报, 2021, 23(10): 97-106. |
[10] | 杨婧,廖桂平*,刘凡,官春云. 基于高光谱成像技术的油菜叶片叶绿素含量预测[J]. 中国农业科技导报, 2020, 22(5): 86-96. |
[11] | 金姣姣1,侯献飞2,李强2,贾东海2,顾元国2,王轩1,曾瑞1,蒲媛媛1,武军艳1,方彦1,李学才1,马骊1,刘丽君1,孙万仓1*. 影响北方白菜型冬油菜主要农艺性状变异的气象因子分析[J]. 中国农业科技导报, 2020, 22(3): 140-151. |
[12] | 王丹1,田效琴1,李卓1*,庄文化1,2,刘永红1,敬树忠1,3,李浩杰1. 覆膜时期对油菜生长与产量的影响[J]. 中国农业科技导报, 2020, 22(2): 149-157. |
[13] | 李宝军1,任奕林1*,李猛1,陈佃贞1,欧阳家乐1,蒯婕2,周广生2. 基于茎秆生物力学特性的油菜抗倒调控机制研究[J]. 中国农业科技导报, 2020, 22(12): 68-76. |
[14] | 王瑞霞,李小玉,田宏先*. 晋北区芥菜型油菜抗旱性鉴定及综合抗旱指标筛选[J]. 中国农业科技导报, 2020, 22(11): 42-51. |
[15] | 肖瑶1,2,吴明亮1,2*,张锐1,Mangeh III Fondzenyuy Cedric1. 油菜旋风式烘干机干燥筒内气力流场特性仿真分析[J]. 中国农业科技导报, 2019, 21(9): 77-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||