中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (8): 182-191.DOI: 10.13304/j.nykjdb.2021.0271
• 生物制造 资源生态 • 上一篇
魏全全1,2(), 高英3, 芶久兰2, 张萌2, 饶勇1, 杨斌1, 凡迪4, 冯文豪4, 肖华贵1(
)
收稿日期:
2021-03-29
接受日期:
2021-06-01
出版日期:
2022-08-15
发布日期:
2022-08-22
通讯作者:
肖华贵
作者简介:
魏全全 E-mail:weiquan0725@163.com;
基金资助:
Quanquan WEI1,2(), Ying GAO3, Jiulan GOU2, Meng ZHANG2, Yong RAO1, Bin YANG1, Di FAN4, Wenhao FENG4, Huagui XIAO1(
)
Received:
2021-03-29
Accepted:
2021-06-01
Online:
2022-08-15
Published:
2022-08-22
Contact:
Huagui XIAO
摘要:
为探究黄壤土条件下不同播种量及播种方式对冬油菜养分吸收及养分利用及产量的影响,连续2年在贵州省黔西县黄壤田以‘阳光131’为试验材料,采用裂区试验设计,以播种方式为主区,设置撒播(SB)、条播(TB)和穴播(XB)3种方式;以播种量为副区,设置3.0、4.5、6.0、7.5和9.0 kg·hm-2共5个水平,测定不同播种量及播种方式下冬油菜生物量、养分吸收利用、产量及其构成因子。结果表明,相同播种量下,不同播种方式冬油菜的生物量、养分累积量、肥料利用效率和产量均表现为条播优于撒播和穴播;相同播种方式下,冬油菜的生物量、养分累积量、肥料利用效率和产量均表现为随着播种量的增加先升高后降低,以播种量为6.0 kg·hm-2时最高。TB6.0处理2年的生物量分别为9 798和10 351 kg·hm-2,较其他处理提高615~3 196和254~2 714 kg·hm-2;且氮、磷、钾的累积量分别平均为129.8、32.6和213.9 kg·hm-2,均高于其他处理;2年的平均产量为2 657 kg·hm-2,较SB6.0和XB6.0处理分别提高14.6%和7.6%。综上所述,在不间苗、不匀苗的情况下,条播为贵州冬油菜的最优直播方式,播种量以6.0 kg·hm-2为宜,研究结果为贵州黄壤田冬油菜的科学种植提供了理论和科学依据。
中图分类号:
魏全全, 高英, 芶久兰, 张萌, 饶勇, 杨斌, 凡迪, 冯文豪, 肖华贵. 播种量和播种方式对冬油菜养分吸收利用及产量的影响[J]. 中国农业科技导报, 2022, 24(8): 182-191.
Quanquan WEI, Ying GAO, Jiulan GOU, Meng ZHANG, Yong RAO, Bin YANG, Di FAN, Wenhao FENG, Huagui XIAO. Effects of Different Sowing Rates and Sowing Methods on the Nutrient Absorption, Utilization and Yield of Winter Rapeseed in Yellow Soil[J]. Journal of Agricultural Science and Technology, 2022, 24(8): 182-191.
处理 Treatment | 播种方式 Sowing method | 播种量Sowing rate/(kg·hm-2) |
---|---|---|
SB3.0 | 撒播 Sow broadcast | 3.0 |
SB4.5 | 4.5 | |
SB6.0 | 6.0 | |
SB7.5 | 7.5 | |
SB9.0 | 9.0 | |
TB3.0 | 条播 Sowing in drill | 3.0 |
TB4.5 | 4.5 | |
TB6.0 | 6.0 | |
TB7.5 | 7.5 | |
TB9.0 | 9.0 | |
XB3.0 | 穴播 Sowing in hole | 3.0 |
XB4.5 | 4.5 | |
XB6.0 | 6.0 | |
XB7.5 | 7.5 | |
XB9.0 | 9.0 |
表1 不同处理的播种方式及播种量
Table 1 Sowing method and sowing rate of different treatments
处理 Treatment | 播种方式 Sowing method | 播种量Sowing rate/(kg·hm-2) |
---|---|---|
SB3.0 | 撒播 Sow broadcast | 3.0 |
SB4.5 | 4.5 | |
SB6.0 | 6.0 | |
SB7.5 | 7.5 | |
SB9.0 | 9.0 | |
TB3.0 | 条播 Sowing in drill | 3.0 |
TB4.5 | 4.5 | |
TB6.0 | 6.0 | |
TB7.5 | 7.5 | |
TB9.0 | 9.0 | |
XB3.0 | 穴播 Sowing in hole | 3.0 |
XB4.5 | 4.5 | |
XB6.0 | 6.0 | |
XB7.5 | 7.5 | |
XB9.0 | 9.0 |
图1 不同处理冬油菜的生物量注:不同小写字母表示不同处理间差异在P<0.05水平显著。
Fig. 1 Biomass of different treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图2 不同处理冬油菜的养分累积注:不同小写字母表示不同处理间差异在P<0.05水平显著。
Fig. 2 Nutrient accumulation of different treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图3 不同处理的冬油菜养分的利用效率注:不同小写字母表示相同年份不同处理间差异在P<0.05水平显著。
Fig. 3 Nutrient use efficiency of different treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
处理Treatment | 单株角果数Pods per plant | 每角粒数Seeds per pod | 千粒重1 000-seeds weight/g | 收获密度Plant density/(104·hm-2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018—2019 | 2019—2020 | 平均 Mean | 2018—2019 | 2019—2020 | 平均 Mean | 2018—2019 | 2019—2020 | 平均 Mean | 2018—2019 | 2019—2020 | 平均 Mean | |
SB3.0 | 145.7±5.6 ab | 149.4±5.8 ab | 147.6 | 24.6±1.2 a | 24.1±1.1 a | 24.4 | 3.1±0.2 a | 3.1±0.2 a | 3.1 | 30.08±1.47 c | 30.54±1.56 c | 30.31 |
SB4.5 | 144.0±6.7 ab | 150.1±6.4 a | 147.1 | 23.2±0.9 ab | 23.4±0.9 ab | 23.3 | 3.2±0.2 a | 3.3±0.1 a | 3.3 | 32.46±1.15 b | 33.00±1.59 c | 32.73 |
SB6.0 | 140.2±5.4 bc | 143.2±5.2 b | 141.7 | 22.4±1.0 c | 22.8±0.8 b | 22.6 | 3.3±0.1 a | 3.3±0.3 a | 3.3 | 34.35±1.52 ab | 35.98±1.13 ab | 35.16 |
SB7.5 | 127.5±5.6 e | 123.1±5.7 e | 125.3 | 22.3±1.1 c | 22.4±0.9 b | 22.4 | 3.3±0.1 a | 3.3±0.2 a | 3.3 | 34.76±1.37 ab | 37.30±1.23 a | 36.03 |
SB9.0 | 115.2±4.8 e | 120.6±6.1 e | 117.9 | 21.6±1.3 c | 22.1±1.1 b | 21.9 | 3.2±0.1 a | 3.2±0.2 a | 3.2 | 36.13±1.68 a | 37.52±1.29 a | 36.83 |
TB3.0 | 149.6±6.9 a | 155.1±5.7 a | 152.4 | 24.9±1.4 a | 24.6±1.3 a | 24.8 | 3.2±0.2 a | 3.3±0.1 a | 3.3 | 32.63±1.45 b | 34.07±1.37 b | 33.35 |
TB4.5 | 149.2±5.8 a | 152.3±5.9 a | 150.8 | 23.4±1.2 ab | 23.4±1.1 ab | 23.4 | 3.1±0.1 a | 3.3±0.2 a | 3.2 | 32.98±1.26 b | 34.49±1.48 b | 33.74 |
TB6.0 | 138.6±5.1 a | 144.9±4.2 a | 141.8 | 23.1±1.1 ab | 22.8±0.8 b | 23.0 | 3.3±0.2 a | 3.4±0.1 a | 3.4 | 36.87±1.73 a | 38.97±1.34 a | 37.92 |
TB7.5 | 125.3±4.3 ab | 129.7±5.1 ab | 127.5 | 22.4±1.0 c | 22.3±0.9 b | 22.4 | 3.2±0.2 a | 3.3±0.1 a | 3.3 | 36.21±1.35 a | 38.43±1.33 a | 37.32 |
TB9.0 | 115.9±4.1 c | 119.4±5.0 c | 117.7 | 22.1±1.3 c | 22.0±1.2 b | 22.1 | 3.3±0.2 a | 3.4±0.2 a | 3.4 | 36.22±1.76 a | 38.67±2.02 a | 37.45 |
XB3.0 | 138.4±6.0 c | 142.9±6.5 bc | 140.7 | 24.2±1.4 a | 24.1±1.4 a | 24.2 | 3.1±0.3 a | 3.2±0.3 a | 3.2 | 31.18±1.39 c | 32.18±1.16 c | 31.68 |
XB4.5 | 133.9±6.4 cd | 139.7±6.2 c | 136.8 | 23.4±1.2 ab | 23.4±1.3 ab | 23.4 | 3.2±0.1 a | 3.1±0.1 a | 3.2 | 32.38±1.66 b | 34.28±1.21 b | 33.33 |
XB6.0 | 127.7±4.2 d | 134.5±5.9 cd | 131.1 | 22.5±1.1 ab | 22.6±1.1 b | 22.6 | 3.3±0.2 a | 3.4±0.3 a | 3.4 | 34.68±1.84 ab | 36.55±2.05 ab | 35.62 |
XB7.5 | 119.1±4.1 e | 124.6±5.7 e | 121.9 | 21.8±1.8 c | 22.1±1.3 b | 22.0 | 3.3±0.3 a | 3.3±0.2 a | 3.3 | 34.66±1.92 ab | 36.62±0.89 ab | 35.64 |
XB9.0 | 118.5±3.9 e | 113.7±3.6 e | 116.1 | 21.4±1.5 c | 22.7±1.6 b | 22.1 | 3.2±0.2 a | 3.2±0.2 a | 3.2 | 36.00±1.46 a | 36.88±1.87 ab | 36.44 |
表2 不同处理产量构成因子
Table 2 Yield components of different treatments
处理Treatment | 单株角果数Pods per plant | 每角粒数Seeds per pod | 千粒重1 000-seeds weight/g | 收获密度Plant density/(104·hm-2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018—2019 | 2019—2020 | 平均 Mean | 2018—2019 | 2019—2020 | 平均 Mean | 2018—2019 | 2019—2020 | 平均 Mean | 2018—2019 | 2019—2020 | 平均 Mean | |
SB3.0 | 145.7±5.6 ab | 149.4±5.8 ab | 147.6 | 24.6±1.2 a | 24.1±1.1 a | 24.4 | 3.1±0.2 a | 3.1±0.2 a | 3.1 | 30.08±1.47 c | 30.54±1.56 c | 30.31 |
SB4.5 | 144.0±6.7 ab | 150.1±6.4 a | 147.1 | 23.2±0.9 ab | 23.4±0.9 ab | 23.3 | 3.2±0.2 a | 3.3±0.1 a | 3.3 | 32.46±1.15 b | 33.00±1.59 c | 32.73 |
SB6.0 | 140.2±5.4 bc | 143.2±5.2 b | 141.7 | 22.4±1.0 c | 22.8±0.8 b | 22.6 | 3.3±0.1 a | 3.3±0.3 a | 3.3 | 34.35±1.52 ab | 35.98±1.13 ab | 35.16 |
SB7.5 | 127.5±5.6 e | 123.1±5.7 e | 125.3 | 22.3±1.1 c | 22.4±0.9 b | 22.4 | 3.3±0.1 a | 3.3±0.2 a | 3.3 | 34.76±1.37 ab | 37.30±1.23 a | 36.03 |
SB9.0 | 115.2±4.8 e | 120.6±6.1 e | 117.9 | 21.6±1.3 c | 22.1±1.1 b | 21.9 | 3.2±0.1 a | 3.2±0.2 a | 3.2 | 36.13±1.68 a | 37.52±1.29 a | 36.83 |
TB3.0 | 149.6±6.9 a | 155.1±5.7 a | 152.4 | 24.9±1.4 a | 24.6±1.3 a | 24.8 | 3.2±0.2 a | 3.3±0.1 a | 3.3 | 32.63±1.45 b | 34.07±1.37 b | 33.35 |
TB4.5 | 149.2±5.8 a | 152.3±5.9 a | 150.8 | 23.4±1.2 ab | 23.4±1.1 ab | 23.4 | 3.1±0.1 a | 3.3±0.2 a | 3.2 | 32.98±1.26 b | 34.49±1.48 b | 33.74 |
TB6.0 | 138.6±5.1 a | 144.9±4.2 a | 141.8 | 23.1±1.1 ab | 22.8±0.8 b | 23.0 | 3.3±0.2 a | 3.4±0.1 a | 3.4 | 36.87±1.73 a | 38.97±1.34 a | 37.92 |
TB7.5 | 125.3±4.3 ab | 129.7±5.1 ab | 127.5 | 22.4±1.0 c | 22.3±0.9 b | 22.4 | 3.2±0.2 a | 3.3±0.1 a | 3.3 | 36.21±1.35 a | 38.43±1.33 a | 37.32 |
TB9.0 | 115.9±4.1 c | 119.4±5.0 c | 117.7 | 22.1±1.3 c | 22.0±1.2 b | 22.1 | 3.3±0.2 a | 3.4±0.2 a | 3.4 | 36.22±1.76 a | 38.67±2.02 a | 37.45 |
XB3.0 | 138.4±6.0 c | 142.9±6.5 bc | 140.7 | 24.2±1.4 a | 24.1±1.4 a | 24.2 | 3.1±0.3 a | 3.2±0.3 a | 3.2 | 31.18±1.39 c | 32.18±1.16 c | 31.68 |
XB4.5 | 133.9±6.4 cd | 139.7±6.2 c | 136.8 | 23.4±1.2 ab | 23.4±1.3 ab | 23.4 | 3.2±0.1 a | 3.1±0.1 a | 3.2 | 32.38±1.66 b | 34.28±1.21 b | 33.33 |
XB6.0 | 127.7±4.2 d | 134.5±5.9 cd | 131.1 | 22.5±1.1 ab | 22.6±1.1 b | 22.6 | 3.3±0.2 a | 3.4±0.3 a | 3.4 | 34.68±1.84 ab | 36.55±2.05 ab | 35.62 |
XB7.5 | 119.1±4.1 e | 124.6±5.7 e | 121.9 | 21.8±1.8 c | 22.1±1.3 b | 22.0 | 3.3±0.3 a | 3.3±0.2 a | 3.3 | 34.66±1.92 ab | 36.62±0.89 ab | 35.64 |
XB9.0 | 118.5±3.9 e | 113.7±3.6 e | 116.1 | 21.4±1.5 c | 22.7±1.6 b | 22.1 | 3.2±0.2 a | 3.2±0.2 a | 3.2 | 36.00±1.46 a | 36.88±1.87 ab | 36.44 |
处理 Treatment | 产量Yield | 平均Mean | ||
---|---|---|---|---|
2018—2019 | 2019—2020 | |||
SB3.0 | 1 809±94 j | 2 072±97 h | 1 940 | |
SB4.5 | 1 968±99 hi | 2 150±101 gh | 2 059 | |
SB6.0 | 2 130±115 fg | 2 508±106 cde | 2 319 | |
SB7.5 | 2 051±93 gh | 2 439±108 de | 2 245 | |
SB9.0 | 2 018±103 h | 2 412±107 ef | 2 215 | |
TB3.0 | 2 169±88 ef | 2 216±112 gh | 2 192 | |
TB4.5 | 2 393±100 c | 2 417±103 ef | 2 405 | |
TB6.0 | 2 564±94 a | 2 751±111 a | 2 657 | |
TB7.5 | 2 502±106 ab | 2 709±114 ab | 2 606 | |
TB9.0 | 2 435±100 bc | 2 586±109 bcd | 2 510 | |
XB3.0 | 1 895±104 ij | 2 189±104 gh | 2 042 | |
XB4.5 | 2 177±98 ef | 2 501±112 cde | 2 339 | |
XB6.0 | 2 337±110 cd | 2 603±125 abc | 2 470 | |
XB7.5 | 2 270±113 de | 2 525±109 cde | 2 397 | |
XB9.0 | 2 252±101 de | 2 280±105 fg | 2 266 | |
F检验F text | FSM | 119.3** | ||
FSR | 114.8** | |||
FY | 79.9** | |||
FSM×SR | 22.2** | |||
FSM×Y | 11.6** | |||
FSR×Y | 1.8ns | |||
FSM×SR×Y | 2.6* |
表3 不同处理冬油菜产量 (kg·hm-2)
Table 3 Yield of winter rapeseed of different treatments
处理 Treatment | 产量Yield | 平均Mean | ||
---|---|---|---|---|
2018—2019 | 2019—2020 | |||
SB3.0 | 1 809±94 j | 2 072±97 h | 1 940 | |
SB4.5 | 1 968±99 hi | 2 150±101 gh | 2 059 | |
SB6.0 | 2 130±115 fg | 2 508±106 cde | 2 319 | |
SB7.5 | 2 051±93 gh | 2 439±108 de | 2 245 | |
SB9.0 | 2 018±103 h | 2 412±107 ef | 2 215 | |
TB3.0 | 2 169±88 ef | 2 216±112 gh | 2 192 | |
TB4.5 | 2 393±100 c | 2 417±103 ef | 2 405 | |
TB6.0 | 2 564±94 a | 2 751±111 a | 2 657 | |
TB7.5 | 2 502±106 ab | 2 709±114 ab | 2 606 | |
TB9.0 | 2 435±100 bc | 2 586±109 bcd | 2 510 | |
XB3.0 | 1 895±104 ij | 2 189±104 gh | 2 042 | |
XB4.5 | 2 177±98 ef | 2 501±112 cde | 2 339 | |
XB6.0 | 2 337±110 cd | 2 603±125 abc | 2 470 | |
XB7.5 | 2 270±113 de | 2 525±109 cde | 2 397 | |
XB9.0 | 2 252±101 de | 2 280±105 fg | 2 266 | |
F检验F text | FSM | 119.3** | ||
FSR | 114.8** | |||
FY | 79.9** | |||
FSM×SR | 22.2** | |||
FSM×Y | 11.6** | |||
FSR×Y | 1.8ns | |||
FSM×SR×Y | 2.6* |
图4 不同播种方式下冬油菜产量对播种量的响应注:**和*分别表示P<0.01和P<0.05水平影响显著,虚线所示为适宜播种量。Note: ** and * indicate significant effect at P<0.01和P<0.05 levels, respectively, and dotted line indicates suitable sowing rate.
Fig. 4 Winter rapeseed yield responses to sowing rates under different sowing methods
1 | 王汉中.我国油菜产业发展的历史回顾与展望[J].中国油料作物学报,2010,32(2):300-302. |
WANG H Z. Review and future development of rapeseed industry in China [J]. Chin. J. Oil Crop Sci., 2010, 32(2):300-302. | |
2 | 王寅,汪洋,鲁剑巍,等.直播和移栽冬油菜生长和产量形成对氮磷钾肥的响应差异[J].植物营养与肥料学报,2016,22(1):132-142. |
WANG Y, WANG Y, LU J W, et al.. Response differences in growth and yield formation of direct-sown and transplanted winter oilseed rape to N, P and K fertilization [J]. Plant Nutr. Fert. Sci., 2016, 22(1):132-142. | |
3 | 冯文豪,冯泽蔚,魏琨.贵州油菜产业发展的现状、问题及对策[J].贵州农业科学,2015,43(9):231-235. |
FENG W H, FENG Z W, WEI K. Current status, problems and countermeasures of rapeseed industrial development in Guizhou [J]. Guizhou Agric. Sci., 2015, 43(9):231-235. | |
4 | 王寅,鲁剑巍.中国冬油菜栽培方式变迁与相应的养分管理策略[J].中国农业科学,2015,48(15):2952-2966. |
WANG Y, LU J W. The Transitional cultivation patterns of winter oilseed rape in China and the corresponding nutrient management strategies [J]. Sci. Agric. Sin., 2015, 48(15):2952-2966. | |
5 | 冯文豪,冯泽蔚.贵州油菜轻简栽培技术研究应用现状及发展策略初探[J].耕作与栽培,2016(2):48-50. |
FENG W H, FENG Z W. The Preliminary Discussion of research and application status of light and simple cultivation technology of rape in Guizhou and its development strategy [J]. Tillage Cultivation, 2016(2):48-50. | |
6 | 王寅,鲁剑巍,李小坤,等.移栽和直播油菜的氮肥施用效果及适宜施氮量研究[J].中国农业科学,2011,44(21):4406-4414. |
WANG Y, LU J W, LI X K, et al.. Study on nitrogen fertilizer effect and optimum fertilizer rate for transplanting and direct-seeding rapeseed [J]. Sci. Agric. Sin., 2011, 44(21):4406-4414. | |
7 | 刘晓伟,鲁剑巍,李小坤,等.直播冬油菜干物质积累及氮磷钾养分的吸收利用[J].中国农业科学,2011,44(23):4823-4832. |
LIU X W, LU J W, LI X K, et al.. Dry matter accumulation and N, P, K absorbtion and utilization in direct seeding winter oilseed (Brassica napus L.) [J]. Sci. Agric. Sin., 2011, 44(23):4823-4832. | |
8 | 王寅,李雅颖,鲁剑巍,等.栽培模式对直播油菜生长、产量和养分吸收利用的影响[J].植物营养与肥料学报,2013,19(3):597-607. |
WANG Y, LI Y Y, LU J W, et al.. Effects of cultivation pattern on growth,seed yield,nutrient uptake and utilization of direct-sowing oilseed rape (Brassica napus L.) [J]. J. Plant Nutr. Fert., 2013, 19(3):597-607. | |
9 | 张萌,王寅,任涛,等.施肥对贵州直播油菜产量和养分吸收的影响[J].中国油料作物学报,2014,36(3):369-373. |
ZHANG M, WANG Y, REN T, et al.. Effects of fertilization on yield and nutrient uptake of direct-sowing oilseed rape in Guizhou Province [J]. Chin. J. Oil Crop Sci., 2014, 36(3):369-373. | |
10 | 章卓梁,朱满庭,华丰,等.播种量与播种方式对免耕直播油菜产量和抗性的影响[J].浙江农业科学,2016,57(1):20-21. |
ZHANG Z L, ZHU M T, HUA F, et al.. Effects of sowing rate and sowing method on yield and resistance of no tillage direct seeding winter rapeseed [J]. Zhejiang Agric. Sci., 2016, 57(1):20-21. | |
11 | 曾家玉,熊楚国,肖华贵,等.品种与播种量对直播油菜产量及农艺性状的影响[J].贵州农业科学,2016,44(7):26-29. |
ZENG J Y, XIONG C G, XIAO H G, et al.. Effect of varieties and sowing rate on yield and agronomic characters of direct seeding rape [J]. Guizhou Agric. Sci., 2016, 44(7):26-29. | |
12 | 刘波,鲁剑巍,李小坤,等.不同栽培模式及施氮方式对油菜产量和氮肥利用率的影响[J].中国农业科学,2016,49(18):3551-3560. |
LIU B, LU J W, LI X K, et al.. Effects of different cultivations and nitrogen application methods on seed yield and nitrogen use efficiency of oilseed rape (Brassica napus L.) [J]. Sci. Agric. Sin., 2016, 49(18):3551-3560. | |
13 | 鲍士旦.土壤农化分析 [M].北京:中国农业出版社,2000:1-495. |
BAO S D. Soil and Agricultural Chemistry Analysis [M]. Beijing: China Agriculture Press, 2000:1-495. | |
14 | 彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103. |
PENG S B, HUANG J L, ZHONG X H, et al.. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China [J]. Sci. Agric. Sin., 2002, 35(9):1095-1103. | |
15 | FAGERIA N K, BALIGAR V C. Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency [J]. Plant Nutr., 2003, 26:1315-1333. |
16 | TAKAHASHI S, ANWAR M K. Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an andosol [J]. Field Crops Res., 2007, 101:160-171. |
17 | 李月梅.氮磷钾肥施用对甘蓝型春油菜产量及肥料利用效率的影响[J].中国油料作物学报,2012,34(2):174-180. |
LI Y M. Effect of nitrogen,phosphorus and potassium fertilizers on yield and chemical fertilizers utilization of spring hybrid oilseed rape in Qinghai [J]. Chin. J. Oil Crop Sci., 2012, 34(2):174-180. | |
18 | 尚花,李月梅,塔林葛娃,等.氮磷钾肥施用对春油菜青杂12号产量及养分利用效率的影响[J].青海大学学报,2019,37(6):35-40. |
SHANG H, LI Y M, TALIN G W, et al.. Effects of application of NPK fertilizers on yield and nutrient use efficiency of spring rapeseed Qingza No. 12 [J]. J. Qinghai Univ., 2019, 37(6):35-40. | |
19 | 李银水,余常兵,胡小加,等.直播油菜密度对植株农艺性状和产量的影响[J].湖南农业科学,2012(15):22-25. |
LI Y S, YU C B, HU X J, et al.. Effects of planting density on agronomic characters and yield of direct seeding rape [J]. Hunan Agric. Sci., 2012(15):22-25. | |
20 | 明日.直播冬油菜适宜密度与氮肥用量配合增产的协调机制研究[D].武汉:华中农业大学,2016. |
MING R. Study on the coordination mechanism of increasing yield under combined application of optimal density and nitrogen fertilizer on direct- seeding rapeseed [D]. Wuhan: Huazhong Agricultural University, 2016. | |
21 | ZHANG S J, LIAO X, ZHANG C L, et al.. Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.) [J]. Ind. Crops Prod., 2012(40):27-32. |
22 | 潘晓华,邓强辉.作物收获指数的研究进展[J].江西农业大学学报,2007,29(1):1-5. |
PAN X H, DENG Q H. Review on crop harvest index [J]. J. Jiangxi Agric. Univ., 2007, 29(1):1-5. | |
23 | 张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924. |
ZHANG F S, WANG J Q, ZHANG W F, et al.. Nutrient use efficiencies of major cereal crops in China and measures for improvement [J]. Acta Pedol. Sin., 2008, 45(5):915-924. | |
24 | 邹娟,鲁剑巍,陈防,等.长江流域油菜氮磷钾肥料利用率现状研究[J].作物学报,2011,37(4):729-734. |
ZOU J, LU J W, CHEN F, et al.. Status of nutrient use efficiencies of rapeseed in the Yangtze River Basin [J]. Acta Agron. Sin., 2011, 37(4): 729- 734. | |
25 | QIU S J, HE P, ZHAO S C, et al.. Impact of nitrogen rate on maize yield and nitrogen use efficiencies in Northeast China [J]. Agron. J., 2014, 107(1): 305. |
26 | DOBERMANN A. Nutrient use efficiency, measurement and management [C]// Proceedings of IFA international workshop on fertilizer best management practices. Brussels, Belgium. International Fertilizer Industry Association, 2007. |
27 | REN T, ZOU J, WANG Y, et al.. Estimating nutrient requirements for winter oilseed rape based on QUEFTS analysis [J]. J. Agric. Sci., 2016, 154(3):425-437. |
28 | 鲁剑巍,任涛,丛日环,等.我国油菜施肥状况及施肥技术研究展望[J].中国油料作物学报,2018,40(5):712-720. |
LU J W, REN T, CONG R H, et al.. Prospects of research on fertilization status and technology of rapeseed in China [J]. Chin. J. Oil Crop Sci., 2018, 40(5):712-720. | |
29 | 朱芸,徐华丽,张洋洋,等.长江流域农民习惯施肥与推荐施肥的冬油菜产量与养分效率差异分析-基于大样本田间试验[J].中国农业科学,2018,51(15):128-137. |
ZHU Y, XU H L, ZHANG Y Y, et al.. Yield and nutrient efficiency differences of winter oilseed rape between farmer's practice and recommended fertilization in Yangtze River Basin: based on large-number of field experiments [J]. Sci. Agric. Sin., 2018, 51(15):128-137. | |
30 | 鲁明星,贺立源,吴礼树.我国耕地地力评价研究进展[J].生态环境学报,2006,15(4):866-871. |
LU M X, HE L Y, WU L S. Fertility evaluation of cultivated land in China: A review [J]. Ecol. Environ. Sci., 2006, 15(4):866-871. | |
31 | 苏伟,鲁剑巍,周广生,等.稻草还田对油菜生长、土壤温度及湿度的影响[J].植物营养与肥料学报,2011,17(2):366-373. |
SU W, LU J W, ZHOU G S, et al.. Influence of straw-returning on rapeseed (Brassica napus L.) growth, soiltemperature and moisture [J]. J. Plant Nutr. Fert., 2011, 17(2):366-373. | |
32 | 王昆昆,刘秋霞,朱芸,等.稻草覆盖还田对直播冬油菜生长及养分积累的影响[J].植物营养与肥料学报,2019,25(6):1047-1055. |
WANG K K, LIU Q X, ZHU Y, et al.. Effects of straw mulching on growth and nutrients accumulation of direct-sown winter oilseed rape [J]. J. Plant Nutr. Fert., 2019, 25(6):1047-1055. | |
33 | 蒋倩红,陆志峰,赵海燕,等.长江中下游冬油菜产区有机无机肥配施下减氮增效潜力分析[J].中国农业科学,2020,53(14):2907-2918. |
JIANG Q H, LU Z F, ZHAO H Y, et al.. Potential analysis of reducing chemical nitrogen inputs while increasing efficiency by organic-inorganic fertilization in winter rapeseed producing areas of the middle and lower reaches of the Yangtze River [J]. Sci. Agric. Sin., 2020, 53(14):2907-2918. | |
34 | 徐绮雯,马淑敏,朱波,等.生物炭与化肥配施对紫色土肥力与微生物特征及油菜产量品质的影响[J].草业学报,2020,29(5):121-131. |
XU Q W, MA S M, ZHU B, et al.. Effect of the combined application of biochar and chemical fertilizer on fertility and microbial characteristic of purple soil and yield and quality of oilseed rape [J]. Pratac. Sin., 2020, 29(5):121-131. | |
35 | 陈鹏.油菜长效专用配方肥施用效果研究[D].武汉:华中农业大学,2016. |
CHEN P. Effect of exogenous selenium on the activity of antioxidant enzymes and quality of millet [D]. Wuhan: Huazhong Agricultural University, 2016. |
[1] | 陈元伟, 郑华斌, 王慰亲, 旷娜, 罗友谊, 邹丹, 唐启源. 刈割处理对再生稻头季全株生物量、青贮品质和再生季产量的影响[J]. 中国农业科技导报, 2022, 24(8): 161-171. |
[2] | 刘雪静, 鲍晓远, 候晓阳, 甄文超. 海河平原春季限水灌溉下冬小麦农田水分动态及产量形成特征[J]. 中国农业科技导报, 2022, 24(7): 167-176. |
[3] | 彭增莹, 申莹莹, 段松江, 吴一帆, 李宗润, 郭仁松, 张巨松. 化学调控对不同施氮量棉花冠层结构及产量的影响[J]. 中国农业科技导报, 2022, 24(7): 177-186. |
[4] | 白思琦, 邹晓荣, 丁鹏, 林铭. 基于环境因子的东南太平洋智利竹筴鱼剩余产量模型建立[J]. 中国农业科技导报, 2022, 24(7): 197-204. |
[5] | 党翼, 张建军, 赵刚, 樊廷录, 王磊, 李尚中, 周刚. 控释尿素和普通尿素配施对旱地玉米产量和水氮利用效率的影响[J]. 中国农业科技导报, 2022, 24(6): 156-165. |
[6] | 高桐梅, 李丰, 苏小雨, 王东勇, 田媛, 张鹏钰, 李同科, 杨自豪, 卫双玲. 减施氮肥对芝麻农艺性状、光合特性及产量的影响[J]. 中国农业科技导报, 2022, 24(6): 176-188. |
[7] | 赵晨光, 牛司耘, 陈勋, 方丽, 李海涛, 王佩星, 沈镔镔, 石元值. 复合肥料对茶叶产量、品质及茶园土壤肥力的影响[J]. 中国农业科技导报, 2022, 24(6): 206-217. |
[8] | 王鑫, 张玉霞, 陈卫东, 林聪颖, 候文慧, 斯日古楞, 丛百明. 追施氮肥对不同饲用燕麦品种产量及光合荧光特性的影响[J]. 中国农业科技导报, 2022, 24(5): 170-179. |
[9] | 刘辉, 江解增, 张昊, 张永仙, 钱佳宇, 李东昇, 吕艳, 吴桓锐. 浅水土表覆盖秸秆对缓解土壤盐渍化及水生蔬菜生长的影响[J]. 中国农业科技导报, 2022, 24(5): 202-208. |
[10] | 易媛, 张会云, 刘立伟, 王静, 朱雪成, 赵娜, 冯国华. 活性腐殖酸缓释肥替代尿素对徐麦新品种产量和群体质量的影响[J]. 中国农业科技导报, 2022, 24(4): 144-153. |
[11] | 齐天明, 李志坚, 秦培友, 任贵兴, 周帮伟. 藜麦栽培技术研究与应用展望[J]. 中国农业科技导报, 2022, 24(3): 157-165. |
[12] | 董林林, 查金芳, 沈明星, 王海候, 施林林, 陶玥玥, 周新伟, 陆长婴. 长期秸秆还田对稻麦轮作区土壤有机碳组分构成的影响[J]. 中国农业科技导报, 2022, 24(3): 166-175. |
[13] | 何振嘉, 范王涛, 杜宜春, 王启龙. 基于土体有机重构的水肥耦合对土壤理化性质和水稻产量的影响[J]. 中国农业科技导报, 2022, 24(3): 176-185. |
[14] | 钟鹏, 苗丽丽, 刘杰, 王建丽, 陆海燕, 于洪久, 张楠. 种植密度和方式对油莎豆群体结构和产量的影响[J]. 中国农业科技导报, 2022, 24(3): 186-196. |
[15] | 董云萍, 龙宇宙, 林兴军, 莫丽珍, 朱华康, 赵青云, 孙燕. 不同施肥量对小粒咖啡产量、品质及经济效益的影响[J]. 中国农业科技导报, 2022, 24(3): 197-203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||