中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (5): 202-208.DOI: 10.13304/j.nykjdb.2021.0362
• 生物制造 资源生态 • 上一篇
刘辉(), 江解增(
), 张昊, 张永仙, 钱佳宇, 李东昇, 吕艳, 吴桓锐
收稿日期:
2021-04-30
接受日期:
2021-06-01
出版日期:
2022-05-15
发布日期:
2022-06-06
通讯作者:
江解增
作者简介:
刘辉 E-mail:1156286531@qq.com;
基金资助:
Hui LIU(), Jiezeng JIANG(
), Hao ZHANG, Yongxian ZHANG, Jiayu QIAN, Dongsheng LI, Yan LYU, Huanrui WU
Received:
2021-04-30
Accepted:
2021-06-01
Online:
2022-05-15
Published:
2022-06-06
Contact:
Jiezeng JIANG
摘要:
为探究浅水土表覆盖秸秆对土壤盐渍化的缓解效果和对蕹菜生长的影响,在大棚内利用硝态氮含量均在1 200 mg·kg-1以上的重度盐渍化土壤采用塑料栽培箱浅水种植蕹菜,以不覆盖秸秆作对照,设置覆盖切段5 cm的水稻秸秆150 g(7 500 kg·hm-2,R1505)、切段40 cm的小麦秸秆150 g(7 500 kg·hm-2,W15040)、小麦整株秸秆150 g(7 500 kg·hm-2,W150)和切段10 cm小麦秸秆300 g(15 000 kg·hm-2,W30010)共5种处理,测定不同处理下土壤硝态氮、有机碳、全氮、全磷、全钾含量及蕹菜的产量和品质等指标。结果表明,覆盖秸秆处理土壤的硝态氮含量较对照均显著降低,降幅均在50%以上。除W30010处理土壤有机碳含量增加外,其余覆盖秸秆处理土壤的有机碳含量均降低,但降幅小于对照。除W15040处理外,其余处理土壤的速效钾含量均增加。覆盖秸秆处理的蕹菜总产量均高于对照,其中,R1505处理的增产效果最显著。综上所述,浅水土表覆盖秸秆消耗了土壤中富余的硝酸盐,缓解了土壤盐渍化,同时为土壤提供了有机碳,增加了土壤速效钾含量,使蕹菜产量显著提高。
中图分类号:
刘辉, 江解增, 张昊, 张永仙, 钱佳宇, 李东昇, 吕艳, 吴桓锐. 浅水土表覆盖秸秆对缓解土壤盐渍化及水生蔬菜生长的影响[J]. 中国农业科技导报, 2022, 24(5): 202-208.
Hui LIU, Jiezeng JIANG, Hao ZHANG, Yongxian ZHANG, Jiayu QIAN, Dongsheng LI, Yan LYU, Huanrui WU. Effects of Straw Mulching on Shallow Water Soil on Alleviating Soil Salinization and Growth of Aquatic Vegetables[J]. Journal of Agricultural Science and Technology, 2022, 24(5): 202-208.
取样时间 Sample time | 处理 Treatment | 有机碳 Organic carbon/ (g·kg-1) | 全氮 Total nitrogen/(g·kg-1) | 硝态氮 Nitrate/(mg·kg-1) | 全磷 Total phosphorus/ ( g·kg-1) | 速效磷 Available phosphorus/(mg·kg-1) | 全钾 Total potassium/ (g·kg-1) | 速效钾 Available potassium/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
种植前 Before planting | R1505 | 12.34±0.32 d | 1.12±0.23 a | 1 253.73±60.18 b | 3.59±0.12 bc | 78.12±5.57 bcd | 15.31±0.31 a | 62.98±3.40 c |
W15040 | 14.62±0.67 c | 1.12±0.22 ab | 1 506.71±85.68 a | 3.78±0.17 ab | 84.19±5.25 ab | 15.21±0.06 a | 67.48±1.11 bc | |
W150 | 19.58±0.38 a | 0.95±0.15 bc | 1 590.61±24.73 a | 3.85±0.11 ab | 86.15±5.28 ab | 15.12±2.15 a | 59.12±3.40 c | |
W30010 | 18.91±0.35 a | 1.15±0.14 cd | 1 549.94±97.97 a | 4.15±0.08 a | 84.02±2.01 abc | 17.21±0.17 a | 69.41±2.23 bc | |
CK | 19.15±0.13 a | 0.92±0.11 d | 1 226.94±19.85 b | 4.14±0.27 a | 92.87±1.93 a | 16.01±0.57 a | 66.84±3.40 bc | |
种植后 After planting | R1505 | 12.29±0.52 d | 0.73±0.24 a | 593.73±19.35 d | 3.86±0.13 ab | 73.56±0.70 cd | 16.81±0.42 a | 86.53±6.54 a |
W15040 | 12.43±0.69 d | 0.94±0.13 a | 733.95±33.83 d | 3.76±0.07 abc | 71.53±0.91 d | 16.79±0.30 a | 58.87±6.10 c | |
W150 | 16.50±0.11b | 1.13±0.22 ab | 691.58±96.08 d | 3.52±0.15 ab | 72.02±3.95 d | 16.36±0.21 a | 73.45±7.51 abc | |
W30010 | 19.20±0.24 a | 1.21±0.21 bc | 685.41±45.01 d | 3.41±0.08 c | 84.54±1.49 ab | 15.93±0.93 a | 81.00±9.23 ab | |
CK | 14.71±0.23 c | 1.38±0.12 c | 979.11±88.12 c | 4.11±0.26 a | 92.51±1.55 a | 16.39±0.33 a | 85.02±5.10 a |
表1 不同秸秆覆盖下的土壤养分
Table 1 Soil nutrients under different straw mulching
取样时间 Sample time | 处理 Treatment | 有机碳 Organic carbon/ (g·kg-1) | 全氮 Total nitrogen/(g·kg-1) | 硝态氮 Nitrate/(mg·kg-1) | 全磷 Total phosphorus/ ( g·kg-1) | 速效磷 Available phosphorus/(mg·kg-1) | 全钾 Total potassium/ (g·kg-1) | 速效钾 Available potassium/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
种植前 Before planting | R1505 | 12.34±0.32 d | 1.12±0.23 a | 1 253.73±60.18 b | 3.59±0.12 bc | 78.12±5.57 bcd | 15.31±0.31 a | 62.98±3.40 c |
W15040 | 14.62±0.67 c | 1.12±0.22 ab | 1 506.71±85.68 a | 3.78±0.17 ab | 84.19±5.25 ab | 15.21±0.06 a | 67.48±1.11 bc | |
W150 | 19.58±0.38 a | 0.95±0.15 bc | 1 590.61±24.73 a | 3.85±0.11 ab | 86.15±5.28 ab | 15.12±2.15 a | 59.12±3.40 c | |
W30010 | 18.91±0.35 a | 1.15±0.14 cd | 1 549.94±97.97 a | 4.15±0.08 a | 84.02±2.01 abc | 17.21±0.17 a | 69.41±2.23 bc | |
CK | 19.15±0.13 a | 0.92±0.11 d | 1 226.94±19.85 b | 4.14±0.27 a | 92.87±1.93 a | 16.01±0.57 a | 66.84±3.40 bc | |
种植后 After planting | R1505 | 12.29±0.52 d | 0.73±0.24 a | 593.73±19.35 d | 3.86±0.13 ab | 73.56±0.70 cd | 16.81±0.42 a | 86.53±6.54 a |
W15040 | 12.43±0.69 d | 0.94±0.13 a | 733.95±33.83 d | 3.76±0.07 abc | 71.53±0.91 d | 16.79±0.30 a | 58.87±6.10 c | |
W150 | 16.50±0.11b | 1.13±0.22 ab | 691.58±96.08 d | 3.52±0.15 ab | 72.02±3.95 d | 16.36±0.21 a | 73.45±7.51 abc | |
W30010 | 19.20±0.24 a | 1.21±0.21 bc | 685.41±45.01 d | 3.41±0.08 c | 84.54±1.49 ab | 15.93±0.93 a | 81.00±9.23 ab | |
CK | 14.71±0.23 c | 1.38±0.12 c | 979.11±88.12 c | 4.11±0.26 a | 92.51±1.55 a | 16.39±0.33 a | 85.02±5.10 a |
取样时间 Sample time | 处理 Treatment | 蔗糖酶 Sucrase/(mg·g-1·d-1) | 脲酶 Urease/(µg·g-1·d-1) | 酸性磷酸酶 Acid phosphatase/(µg·g-1·d-1) |
---|---|---|---|---|
种植前 Before planting | R1505 | 494.08±21.77 a | 273.93±4.31 a | 2 529.92±102.42 ab |
W15040 | 419.39±9.76 c | 318.24±8.07 a | 1 899.19±6.37 c | |
W150 | 505.35±3.35 a | 269.24±9.53 a | 2 586.42±155.27 ab | |
W30010 | 444.67±8.08 b | 257.69±7.71 a | 2 784.63±135.94 a | |
CK | 393.61±5.73 d | 321.95±17.97 a | 2 443.93±68.03 b | |
种植后 After planting | R1505 | 16.52±0.12 g | 217.64±19.42 a | 2 502.92±73.28 ab |
W15040 | 47.34±3.14 f | 222.44±7.68 a | 2 405.33±74.04 b | |
W150 | 56.99±1.36 ef | 282.91±23.72 b | 2 667.94±143.31 ab | |
W30010 | 48.38±2.47 ef | 259.43±15.18 b | 2 431.66±74.33 b | |
CK | 71.93±4.33 e | 264.70±21.59 b | 2 400.60±51.49 b |
表2 不同秸秆覆盖下的土壤酶活性
Table 2 Soil enzyme activities under different straw mulching
取样时间 Sample time | 处理 Treatment | 蔗糖酶 Sucrase/(mg·g-1·d-1) | 脲酶 Urease/(µg·g-1·d-1) | 酸性磷酸酶 Acid phosphatase/(µg·g-1·d-1) |
---|---|---|---|---|
种植前 Before planting | R1505 | 494.08±21.77 a | 273.93±4.31 a | 2 529.92±102.42 ab |
W15040 | 419.39±9.76 c | 318.24±8.07 a | 1 899.19±6.37 c | |
W150 | 505.35±3.35 a | 269.24±9.53 a | 2 586.42±155.27 ab | |
W30010 | 444.67±8.08 b | 257.69±7.71 a | 2 784.63±135.94 a | |
CK | 393.61±5.73 d | 321.95±17.97 a | 2 443.93±68.03 b | |
种植后 After planting | R1505 | 16.52±0.12 g | 217.64±19.42 a | 2 502.92±73.28 ab |
W15040 | 47.34±3.14 f | 222.44±7.68 a | 2 405.33±74.04 b | |
W150 | 56.99±1.36 ef | 282.91±23.72 b | 2 667.94±143.31 ab | |
W30010 | 48.38±2.47 ef | 259.43±15.18 b | 2 431.66±74.33 b | |
CK | 71.93±4.33 e | 264.70±21.59 b | 2 400.60±51.49 b |
图1 不同秸秆覆盖的蕹菜产量注:不同小写字母表示不同处理间差异在P<0.05水平显著。
Fig. 1 Yield of water spinach covered with different strawsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
采收次数 Harvest times | 处理 Treatment | 全氮 Total nitrogen/(g N·kg-1) | 全磷 Total phosphorus/(g P2O5·kg-1) | 全钾 Total potassium/(g K2O·kg-1) |
---|---|---|---|---|
第1次 First | R1505 | 2.42±0.16 bcdef | 0.44±0.03 g | 4.02±0.13 bc |
W15040 | 2.55±0.21 abcde | 0.57±0.01 cdef | 3.83±0.20 c | |
W150 | 2.7±0.06 abc | 0.57±0.04 def | 4.73±0.26 a | |
W30010 | 2.62±0.12 abcd | 0.54±0.01 ef | 4.52±0.12 ab | |
CK | 2.09±0.53 cdefg | 0.49±0.02 fg | 2.16±0.26 ef | |
第4次 Fourth | R1505 | 2.45±0.12 bcdef | 0.66±0.01 bc | 2.72±0.10 de |
W15040 | 2.02±0.26 defg | 0.76±0.01 a | 2.28±0.06 ef | |
W150 | 2.87±0.10 ab | 0.65±0.05 bcd | 2.28±0.06 ef | |
W30010 | 2.41±0.10 bcdef | 0.68±0.03 b | 3.02±0.06 d | |
CK | 3.12±0.14 a | 0.67±0.03 b | 1.53±0.26 g |
表3 不同秸秆覆盖下蕹菜的养分含量
Table 3 Nutrient content of water spinach under different straw mulching
采收次数 Harvest times | 处理 Treatment | 全氮 Total nitrogen/(g N·kg-1) | 全磷 Total phosphorus/(g P2O5·kg-1) | 全钾 Total potassium/(g K2O·kg-1) |
---|---|---|---|---|
第1次 First | R1505 | 2.42±0.16 bcdef | 0.44±0.03 g | 4.02±0.13 bc |
W15040 | 2.55±0.21 abcde | 0.57±0.01 cdef | 3.83±0.20 c | |
W150 | 2.7±0.06 abc | 0.57±0.04 def | 4.73±0.26 a | |
W30010 | 2.62±0.12 abcd | 0.54±0.01 ef | 4.52±0.12 ab | |
CK | 2.09±0.53 cdefg | 0.49±0.02 fg | 2.16±0.26 ef | |
第4次 Fourth | R1505 | 2.45±0.12 bcdef | 0.66±0.01 bc | 2.72±0.10 de |
W15040 | 2.02±0.26 defg | 0.76±0.01 a | 2.28±0.06 ef | |
W150 | 2.87±0.10 ab | 0.65±0.05 bcd | 2.28±0.06 ef | |
W30010 | 2.41±0.10 bcdef | 0.68±0.03 b | 3.02±0.06 d | |
CK | 3.12±0.14 a | 0.67±0.03 b | 1.53±0.26 g |
采收次数 Harvest times | 处理 Treatment | 粗纤维 Crude fiber/ (mg·g-1 FW) | 可溶性糖 Soluble sugar/ (mg·g-1 FW) | 黄酮 Flavonoid/ (mg·g-1 FW) | 总酚 Total phenols/ (mg·g-1 FW) | DPPH自由基清除率DPPH free radical scavenging rate/% |
---|---|---|---|---|---|---|
第1次 First | R1505 | 0.88±0.03 bcd | 5.88±0.81 e | 1.74±0.12 defg | 8.80±0.47 d | 83.22±1.36 b |
W15040 | 0.90±0.06 abc | 8.39±0.99 cde | 2.08±0.08 bcde | 10.21±0.14 bcd | 69.65±3.26 d | |
W150 | 0.78±0.01 cdef | 8.19±0.39 cde | 1.98±0.23 cdef | 10.53±0.92 bcd | 81.46±1.75 bc | |
W30010 | 0.92±0.02 abc | 5.50±1.39 e | 1.56±0.34 efgh | 8.94±0.25 d | 83.44±2.15 b | |
CK | 0.92±0.02 abc | 8.05±0.63 cde | 2.04±0.20 cdef | 11.49±0.48 bc | 75.39±3.05 cd | |
第4次 Fourth | R1505 | 0.97±0.02 ab | 17.29±0.59 a | 2.19±0.13 abcd | 16.33±1.31 a | 83.77±1.38 b |
W15040 | 1.03±0.01 a | 11.05±2.68 bcd | 2.49±0.04 abc | 15.74±0.74 a | 79.91±1.55 bc | |
W150 | 0.93±0.10 abc | 11.9±2.84 bc | 2.65±0.15 a | 16.13±1.52 a | 79.58±2.42 bc | |
W30010 | 0.96±0.01 ab | 15.51±1.60 ab | 2.58±0.22 ab | 14.96±0.71 a | 84.77±0.19 ab | |
CK | 0.90±0.11 abc | 17.72±3.65 a | 2.26±0.31 abcd | 14.87±1.19 a | 84.88±3.73 ab |
表4 不同秸秆覆盖下蕹菜的品质
Table 4 Quality of water spinach under different straw mulching
采收次数 Harvest times | 处理 Treatment | 粗纤维 Crude fiber/ (mg·g-1 FW) | 可溶性糖 Soluble sugar/ (mg·g-1 FW) | 黄酮 Flavonoid/ (mg·g-1 FW) | 总酚 Total phenols/ (mg·g-1 FW) | DPPH自由基清除率DPPH free radical scavenging rate/% |
---|---|---|---|---|---|---|
第1次 First | R1505 | 0.88±0.03 bcd | 5.88±0.81 e | 1.74±0.12 defg | 8.80±0.47 d | 83.22±1.36 b |
W15040 | 0.90±0.06 abc | 8.39±0.99 cde | 2.08±0.08 bcde | 10.21±0.14 bcd | 69.65±3.26 d | |
W150 | 0.78±0.01 cdef | 8.19±0.39 cde | 1.98±0.23 cdef | 10.53±0.92 bcd | 81.46±1.75 bc | |
W30010 | 0.92±0.02 abc | 5.50±1.39 e | 1.56±0.34 efgh | 8.94±0.25 d | 83.44±2.15 b | |
CK | 0.92±0.02 abc | 8.05±0.63 cde | 2.04±0.20 cdef | 11.49±0.48 bc | 75.39±3.05 cd | |
第4次 Fourth | R1505 | 0.97±0.02 ab | 17.29±0.59 a | 2.19±0.13 abcd | 16.33±1.31 a | 83.77±1.38 b |
W15040 | 1.03±0.01 a | 11.05±2.68 bcd | 2.49±0.04 abc | 15.74±0.74 a | 79.91±1.55 bc | |
W150 | 0.93±0.10 abc | 11.9±2.84 bc | 2.65±0.15 a | 16.13±1.52 a | 79.58±2.42 bc | |
W30010 | 0.96±0.01 ab | 15.51±1.60 ab | 2.58±0.22 ab | 14.96±0.71 a | 84.77±0.19 ab | |
CK | 0.90±0.11 abc | 17.72±3.65 a | 2.26±0.31 abcd | 14.87±1.19 a | 84.88±3.73 ab |
1 | 喻景权,周杰.“十二五”我国设施蔬菜生产和科技进展及其展望[J].中国蔬菜,2016(9):18-30. |
YU J Q, ZHOU J. Progress in protected vegetable production and research during China's 12th five-year plan [J]. China Veget., 2016(9):18-30. | |
2 | 缪其松,张聪,广建芳,等.设施土壤连作障碍防控技术研究进展[J].北方园艺,2017(16):180-185. |
MU Q S, ZHANG C, GUANG J F, et al.. Research progress on prevention and control techniques of continuous cropping obstacle in facility soil [J]. Northern Hortic., 2017(16):180-185. | |
3 | CHANG J, WU X, LIU A Q, et al.. Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China [J]. Ecol. Econ., 2010, 70(4):740-748. |
4 | SONG X L, SUN R J, CHEN W F, et al.. Effects of surface straw mulching and buried straw layer on soil water content and salinity dynamics in saline soils [J]. Can. J. Soil Sci., 2019, 100(1):58-68 |
5 | 王永生.宁夏黄灌区农田有机质对土壤硝态氮淋失量的影响研究[D].北京:中国农业科学院,2011. |
WANG Y S. Study on soil organic matter effect on soil nitrate nitrogen leaching losses in ningxia yellow river irrigation area [D]. Beijing: Chinese Academy Agricultural Science, 2011. | |
6 | LI H, DAI M W, DAI S L, et al.. Current status and environment impact of direct straw return in China's cropland-a review [J]. Ecotoxicol. Environ. Saf., 2018, 159:293-300. |
7 | ZHANG Y S, ZHENG X Z, GUO B L, et al.. Mechanisms behind the inhibition of autotrophic nitrification following rice-straw incorporation in a subtropical acid soil [J/OL]. Soil Till. Res., 2020, 196:104436 [2021-03-10].. |
8 | 董林林,王海侯,陆长婴,等.秸秆还田量和类型对土壤氮及氮组分构成的影响[J].应用生态学报,2019,30(4):1143-1150. |
DONG L L, WANG H H, LU C Y, et al.. Effects of straw returning amount and type on soil nitrogen and its composition [J]. Chin. J. Appl. Ecol., 2019, 30(4):1143-1150. | |
9 | YAN C, YAN S S, JIA T Y, et al.. Decomposition characteristics of rice straw returned to the soil in northeast China [J]. Nutr. Cycling Agroecosyst., 2019, 114(3):211-224. |
10 | ZHAO Y C, WANG M Y, HU S J, et al.. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands [J]. Proc. Natl. Acad. Sci. USA, 2018, 115(16):4045-4050. |
11 | SU Y, LYU J L, YU M, et al.. Long-term decomposed straw return positively affects the soil microbial community [J]. Appl. Microbiol., 2020, 128(1):138-150. |
12 | 朱丽丽,钱佳宇,江解增,等.切段水稻秸秆土表覆盖对设施水生蔬菜生长及土壤性质的影响[J].河南农业科学,2019,48(7):95-103. |
ZHU L L, QIAN J Y, JIANG J Z, et al.. Effects of soil cover of cut rice straw on the growth of aquatic vegetables in facilities and soil properties [J]. J. Henan Agric. Sci., 2019, 48(7):95-103. | |
13 | 王琳.凯氏法测定土壤全氮的方法改进[J].环境监控与预警,2013,5(3):33-37. |
WANG L. Method improvement of Kjeldahl method for determination of total nitrogen in soil [J]. Environ. Monit. Forewarn., 2013, 5(3):33-37. | |
14 | GE N N, YUN S, YANG X L, et al.. Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China [J]. J. Appl. Ecol., 2017, 28(5):1626-1632. |
15 | TAN D S, JIN J Y, HUANG S W, et al.. Effect of long-term application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems [J]. Agric. Sci. China, 2007, 6(2):200-207. |
16 | 曹晓倩,吕新.Mehlich 3 法测定新疆土壤速效磷和速效钾的可行性研究[J].石河子大学学报(自然科学版),2011,29(2):140-144. |
CAO X Q, LYU X. The feasibility of Mehlich 3 method on testing soil available P and K in Xinjiang [J]. J. Shihezi Univ. (Nat. Sci.), 2011, 29(2):140-144. | |
17 | 宋歌,孙波,教剑英.测定土壤硝态氮的紫外分光光度法与其他方法的比较[J].土壤学报,2007,44(2):288-293. |
SONG G, SUN B, JIAO J Y. Comparison between ultraviolet spectrophotometry and other methods in determination of soil nitrate-N [J]. Acta Pedol. Sin., 2007, 44(2):288-293. | |
18 | FRANKEBERGER W T, JOHANSON J B. Method of measuring invertase activity in soils [J]. Plant Soil, 1983, 74: 301-311. |
19 | ELSAS J D V. Methods of soil analysis [J]. Sci. Hortic., 1994, 63:131-133. |
20 | 陈亮,王克勤.芹菜中总黄酮测定方法的探讨[J].四川食品与发酵,2006,42(6):47-49. |
CHEN L, WANG K Q. Discussion on the method for determination of flavonids in celery extract [J]. Sichuan Food Ferment., 2006, 42(6):47-49. | |
21 | 卫生部食品卫生监督检验所. 植物类食品中粗纤维的测定: [S].北京:中国标准出版社,2003. |
22 | 康琪,朱若华.苯酚-硫酸法测定可溶性膳食纤维-聚葡萄糖含量的研究[J].首都师范大学学报(自然科学版),2007,28(6):38-41. |
KANG Q, ZHU R H. Determination of water soluble dietary fiber polydextrose by phenol-sulphate acid spectroscopy [J]. J. Cap. Norm. Univ. (Nat. Sci.), 2007, 28(6):38-41. | |
23 | LI R F, RUAN X H, BAI Y, et al.. Effect of wheat-maize straw return on the fate of nitrate in groundwater in the Huaihe River Basin, China [J]. Sci. Total Environ., 2017, 592:78-85. |
24 | ZHANG J, HUA K, LI K J, et al.. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model [J]. Soil Till. Res., 2017, 165:302-314. |
25 | 杨钊,尚建明,陈玉梁.长期秸秆还田对土壤理化特性及微生物数量的影响[J].甘肃农业科技,2019(1):13-20. |
YANG D, SHANG J M, CHEN Y L. Effects of long-term straw return on soil physical and chemical characteristics and microbial quantity [J]. Gansu Agric. Sci. Tech., 2019(1):13-20. | |
26 | 康鑫,孙堂旭,于新敏.秸秆还田的应用及其对环境的影响研究[J].再生资源与循环经济,2020,13(4):27-30. |
KANG X, SUN T X, YU X M. Application of straw returning and its impact on the environment [J]. Recycling Res., 2020, 13(4):27-30. | |
27 | 周杏.秸秆还田对土壤有机碳和温室气体排放影响研究[D].武汉:华中农业大学,2018. |
ZHOU X. Effects of sraw return on soil organic carbon and greenhouse gas emission [D]. Wuhan: Huazhong Agricultural University, 2018. | |
28 | 信彩云,马惠,王瑜,等.水旱轮作条件下稻麦秸秆腐解规律研究[J].山东农业科学,2019,51(8):75-78. |
XIN C Y, MA H, WANG Y, et al.. Study on decomposition law of rice and wheat straw in paddy-cereal rotation mode [J]. Shandong Agric. Sci., 2019, 51(8):75-78. | |
29 | SINGH V K, DWIVEDI B S, YADVINDER-SINGH, et al.. Effect of tillage and crop establishment, residue management and K fertilization on yield, K use efficiency and apparent K balance under rice-maize system in north-western India [J]. Field Crops Res., 2018, 224:1-12. |
30 | YADAV S K, BENBI D K, TOOR A S. Effect of long-term application of rice straw, farmyard manure and inorganic fertilizer on potassium dynamics in soil [J]. Arch. Agron. Soil Sci., 2019, 65(3):374-384. |
31 | YANG H S, YANG B, DAI Y J, et al.. Soil nitrogen retention is increased by ditch-buried straw return in a rice-wheat rotation system [J]. Eur. J. Agron., 2015, 69:52-58. |
[1] | 王鑫, 张玉霞, 陈卫东, 林聪颖, 候文慧, 斯日古楞, 丛百明. 追施氮肥对不同饲用燕麦品种产量及光合荧光特性的影响[J]. 中国农业科技导报, 2022, 24(5): 170-179. |
[2] | 易媛, 张会云, 刘立伟, 王静, 朱雪成, 赵娜, 冯国华. 活性腐殖酸缓释肥替代尿素对徐麦新品种产量和群体质量的影响[J]. 中国农业科技导报, 2022, 24(4): 144-153. |
[3] | 齐天明, 李志坚, 秦培友, 任贵兴, 周帮伟. 藜麦栽培技术研究与应用展望[J]. 中国农业科技导报, 2022, 24(3): 157-165. |
[4] | 董林林, 查金芳, 沈明星, 王海候, 施林林, 陶玥玥, 周新伟, 陆长婴. 长期秸秆还田对稻麦轮作区土壤有机碳组分构成的影响[J]. 中国农业科技导报, 2022, 24(3): 166-175. |
[5] | 何振嘉, 范王涛, 杜宜春, 王启龙. 基于土体有机重构的水肥耦合对土壤理化性质和水稻产量的影响[J]. 中国农业科技导报, 2022, 24(3): 176-185. |
[6] | 钟鹏, 苗丽丽, 刘杰, 王建丽, 陆海燕, 于洪久, 张楠. 种植密度和方式对油莎豆群体结构和产量的影响[J]. 中国农业科技导报, 2022, 24(3): 186-196. |
[7] | 董云萍, 龙宇宙, 林兴军, 莫丽珍, 朱华康, 赵青云, 孙燕. 不同施肥量对小粒咖啡产量、品质及经济效益的影响[J]. 中国农业科技导报, 2022, 24(3): 197-203. |
[8] | 包奇军, 潘永东, 张华瑜, 柳小宁, 张东佳, 赵锋, 牛小霞, 陈军. 甘肃与欧洲、北美啤酒大麦品种农艺及品质性状比较分析[J]. 中国农业科技导报, 2022, 24(3): 57-66. |
[9] | 许鑫, 马兆务, 熊淑萍, 马新明, 程涛, 李海洋, 赵锦鹏. 基于气候年型的河南省冬小麦产量预测[J]. 中国农业科技导报, 2022, 24(2): 136-144. |
[10] | 李宝石, 刘文科, 王奇, 邵明杰. 起垄内嵌基质栽培对日光温室夏季黄瓜根区温度、生长和产量的影响[J]. 中国农业科技导报, 2022, 24(2): 177-183. |
[11] | 周旋, 杨嫔玲, 彭建伟, 柴慧清, 钟雪梅, 康兴蓉, 龙俊佑, 张慧茹. 功能菌型复合肥减施对结球甘蓝产量、品质及经济效益的影响[J]. 中国农业科技导报, 2022, 24(2): 184-192. |
[12] | 陈昌婕, 马琳, 苗玉焕, 郭兰萍, 刘大会. 施用钾肥对蕲春蕲艾产量、出绒率及品质的影响[J]. 中国农业科技导报, 2022, 24(2): 201-209. |
[13] | 王健, 许爱玲, 卫晓东, 席吉龙, 杨娜, 王珂, 席天元, 张建诚. 运城盆地不同播期小麦春季冻害风险评价[J]. 中国农业科技导报, 2022, 24(1): 137-147. |
[14] | 王志丹, 刘吉利, 吴娜. 粉垄耕作对甜高粱光合生理特性及产量的影响[J]. 中国农业科技导报, 2022, 24(1): 148-156. |
[15] | 黄渝岚§, 龙盛风§, 叶兴枝, 李艳英, 申章佑, 周佳, 周灵芝, 劳承英, 韦本辉. 木薯在湖北恩施的农艺性状及产量品质研究[J]. 中国农业科技导报, 2021, 23(9): 46-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||