1 |
BODKHE J, DIGHE H, GUPTA A, et al.. Animal identification [C]// 2018 International Conference on Advanced Computation and Telecommunication (ICACAT). India: IEEE, 2018: 1-4..
|
2 |
许贝贝,王文生,郭雷风,等.基于非接触式的牛只身份识别研究进展与展望[J].中国农业科技导报,2020,22(7):79-89.
|
|
XU B B, WANG W S, GUO L F, et al.. A review and future prospects on cattle recognition based on non-contact identification [J]. J. Agric. Sci. Technol., 2020,22(7):79-89.
|
3 |
DUROC Y, TEDJINI S. RFID:a key technology for humanity [J].Comptes Rendus Phys.,2018,19(1/2):64-71.
|
4 |
SILVEIRA M. A review of the history and motivations of animal identification and the different methods of animal identification focusing on radiofrequency identification and how it works for the development of a radiofrequency identification based herd management system on the calpoly dairy [D].California: California Polytechnic State University, 2013.
|
5 |
薛芳芳,王月明,李琦. 基于计算机视觉技术的牲畜行为识别研究进展[J]. 黑龙江畜牧兽医, 2021(11):33-38.
|
|
XUE F F, WANG Y M, LI Q. Research progress of animal behavior recognition based on computer vision technology [J]. Heilongjiang Anim. Sci. Veterinary Med., 2021(11):33-38.
|
6 |
ANDREW W, GREATWOOD C, BURGHARDT T. Aerial animal biometrics: individual friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference [C]// Proceedings of 2019 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). China: IEEE, 2019: 237-243.
|
7 |
THARWAT A, GABER T, HASSANIEN A E, et al.. Cattle identification using muzzle print images based on texture features approach [C]// Proceedings of the Fifth International Conference on Innovations in Bio-inspired Computing and Applications(IBICA 2014): Advances in Intelligent Systems and Computing. Springer, 2014: 217-227.
|
8 |
AHMED S, GABER T, THARWAT A, et al.. Muzzle-based cattle identification using speed up robust feature approach [C]//2015 International Conference on Intelligent Networking and Collaborative Systems. Taipei: IEEE, 2015: 99-104.
|
9 |
赵凯旋,何东健.基于卷积神经网络的奶牛个体身份识别方法[J].农业工程学报,2015,31(5):181-187.
|
|
ZHAO K X, HE D J.Recognition of individual dairy cattle based on convolutional neural networks [J].Trans.Chin.Soc.Agric.Eng.,2015,31(5):181-187.
|
10 |
KUMAR S, PANDEY A, SATWIK KSAI R, et al..Deep learning framework for recognition of cattle using muzzle point image pattern [J]. Measurement, 2018,116:163-195.
|
11 |
SHEN W Z, HU H Q, DAI B S, et al.. Individual identification of dairy cows based on convolutional neural networks [J].Multimed. Tools Appl.,2020,79(21):14711-14724.
|
12 |
QIAO Y L, SU D, KONG H, et al.. Individual cattle identification using a deep learning based framework [J]. Int. Fed. Auto. Ctrl., 2019, 52 (30):318-323.
|
13 |
ZIN T T, PHYO C N, TIN P, et al.. Image technology based cow identification system using deep learning [J]. IMECS, 2018,3(1): 236-247.
|
14 |
HE K, ZHANG X, REN S, et al.. 2016. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
|
15 |
HUANG G, LIU Z, VAN DER MAATEN L, et al.. Densely connected convolutional networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017:4700-4708.
|
16 |
SUN Y, ZHENG L, YANG Y, et al.. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline) [C]// Proceedings of the European Conference on Computer Vision (ECCV). Germany,2018:480-496.
|
17 |
TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks [J]. PMLR, 2019,97: 6105-6114.
|
18 |
SUN K, XIAO B, LIU D, et al.. Deep high-resolution representation learning for human pose estimation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA:IEEE, 2019:5693-5703.
|
19 |
LIU Z, LIN Y, CAO Y, et al.. Swin transformer: Hierarchical vision transformer using shifted windows [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Virtually: IEEE, 2021:10012-10022.
|
20 |
LIU Z, MAO H, WU CY, et al.. A convnet for the 2020s [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, Louisiana: IEEE, 2022:11976-11986.
|
21 |
REDMON J, DIVVALA S, GIRSHICK R,et al.. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 779-788.
|
22 |
SUN Y, CHENG C, ZHANG Y, et al.. Circle Loss: a unified perspective of pair similarity optimization [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE,2020:6397-6406.
|
23 |
WANG Y F, XU X S, WANG Z, et al.. ShuffleNet-Triplet: a lightweight RE-identification network for dairy cows in natural scenes [J/OL]. Comput. Electr. Agric., 2023, 205: 107632 [2023-03-26]. .
|