1 |
赵玉信,杨惠敏.作物格局、土壤耕作和水肥管理对农田杂草发生的影响及其调控机制[J].草业学报,2015,24(8):199-210.
|
|
ZHAO Y X, YANG H M. Effects of crop pattern, tillage practice and water and fertilizer management on weeds and their control mechanisms [J]. Acta Prataculturae Sin., 2015, 24(8):199-210.
|
2 |
SYED AB RAHMAN S F, SINGH E, PIETERSE C M J, et al.. Emerging microbial biocontrol strategies for plant pathogens [J]. Plant Sci., 2018, 267:102-111.
|
3 |
潘俊峰,万开元,陶勇,等.基于农田养分管理的杂草生态防控策略[J].植物保护,2014,40(3):5-9, 36.
|
|
PAN J F, WAN K Y, TAO Y, et al.. Ecological weed control strategy based on farmland nutrient management [J]. Plant Prot., 2014, 40(3):5-9, 36.
|
4 |
NIKITA G, RAYMOND A, ZEYNEP G, et al.. Deep learning-based early weed segmentation using motion blurred UAV images of sorghum fields [J/OL]. Comput. Electron. Agric., 2022,202:107388 [2024-08-08]. .
|
5 |
UTSTUMO T, URDAL F, BREVIK A, et al.. Robotic in-row weed control in vegetables [J]. Comput. Electron. Agric., 2018,154:36-45.
|
6 |
FERREIRA S D A, FREITAS M D, SILVA D G G, et al.. Weed detection in soybean crops using ConvNets [J]. Comput. Electron. Agric., 2017,143:314-324.
|
7 |
傅雷扬,李绍稳,张乐,等.田间除草机器人研究进展综述[J].机器人,2021,43(6):751-768.
|
|
FU L Y, LI S W, ZHANG L, et al.. Research progress on field weeding robots:a review [J]. Robot, 2021,43(6):751-768.
|
8 |
SALEEM M H, POTGIETER J, ARIF K M. Automation in agriculture by machine and deep learning techniques:a review of recent developments [J]. Precis. Agric., 2021,22(6):2053-2091.
|
9 |
XU K, SHU L, XIE Q, et al.. Precision weed detection in wheat fields for agriculture 4.0:a survey of enabling technologies, methods, and research challenges [J/OL]. Comput.Electron.Agric., 2023,212:108106 [2024-08-08]. .
|
10 |
JANNEH L L, ZHANG Y J, CUI Z W, et al.. Multi-level feature re-weighted fusion for the semantic segmentation of crops and weeds [J/OL]. J. King Saud University-Comput. Inf. Sci., 2023,35(6):101545 [2024-08-08]. .
|
11 |
纪守领,杜天宇,邓水光,等.深度学习模型鲁棒性研究综述[J].计算机学报,2022,45(1):190-206.
|
|
JI S L, DU T Y, DENG S G, et al.. Robustness certification research on deep learning models:a survey [J]. Chin. J. Comput., 2022,45(1):190-206.
|
12 |
JIANG H H, ZHANG C Y, QIAO Y L, et al.. CNN feature based graph convolutional network for weed and crop recognition in smart farming [J/OL]. Comput. Electron. Agric., 2020,174:105450 [2024-08-08]. .
|
13 |
CHEN J Q, WANG H B, ZHANG H D, et al.. Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion [J/OL]. Comput. Electron. Agric., 2022,202:107412 [2024-08-08]. .
|
14 |
JIN X J, SUN Y X, CHE J, et al.. A novel deep learning-based method for detection of weeds in vegetables [J]. Pest Manage. Sci., 2022,78(5):1861-1869.
|
15 |
TANG J L, WANG D, ZHANG Z G, et al.. Weed identification based on K-means feature learning combined with convolutional neural network [J]. Comput. Electron. Agric., 2017,135:63-70.
|
16 |
WANG Y C, ZHANG S Q, DAI B S, et al.. Fine-grained weed recognition using Swin Transformer and two-stage transfer learning [J/OL]. Front. Plant Sci., 2023,14:1134932 [2024-08-08]. .
|
17 |
赵辉,曹宇航,岳有军,等.基于改进DenseNet的田间杂草识别[J].农业工程学报,2021,37(18):136-142.
|
|
ZHAO H, CAO Y H, YUE Y J, et al.. Field weed recognition based on improved DenseNet [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(18):136-142.
|
18 |
WANG P, TANG Y, LUO F, et al.. Weed25: a deep learning dataset for weed identification [J/OL]. Front. Plant Sci., 2022,13:1053329 [2024-08-08]. .
|
19 |
ABDALLA A, CEN H Y, WAN L, et al.. Fine-tuning convolutional neural network with transfer learning for semantic segmentation of ground-level oilseed rape images in a field with high weed pressure [J/OL].Comput.Electron.Agric.,2019,167:105091 [2024-08-08]. .
|
20 |
ESPEJO-GARCIA B, MYLONAS N, ATHANASAKOS L, et al.. Towards weeds identification assistance through transfer learning [J/OL]. Comput. Electron. Agric., 2020,171:105306 [2024-08-08]. .
|
21 |
REIS D, KUPEC J, HONG J, et al.. Real-Time flying object detection with YOLOv8 [EB/OL]. (2023-05-17) [2024-08-08]. .
|
22 |
YANG W J, WU J C, ZHANG J L, et al.. Deformable convolution and coordinate attention for fast cattle detection [J/OL]. Comput. Electron. Agric., 2023,211:108006 [2024-08-08]. .
|
23 |
TAN M X, LE Q V. Efficientnetv2: smaller models and faster training [EB/OL]. (2021-04-01) [2024-08-08]. .
|
24 |
REDMON J, DIVVALA S, GIRSHICK R, et al.. You only look once: Unified, realtime object detection. Paper presented at: CVPR 2016 [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, 2016:779-788.
|
25 |
WANG Q F, CHENG M, HUANG S, et al.. A deep learning approach incorporating YOLOv5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings [J/OL]. Comput. Electron. Agric., 2022,199:107194 [2024-08-08]. .
|
26 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [J/OL]. (2022-07-06) [2024-08-08]. .
|
27 |
LI S N, LI T F, SUN C, et al.. Multilayer Grad-CAM: An effective tool towards explainable deep neural networks for intelligent fault diagnosis [J]. J. Manuf. Syst., 2023,69:20-30.
|
28 |
ADADI A, BERRADA M. Peeking inside the Black-Box: a survey on explainable artificial intelligence (XAI) [J/OL]. IEEE Access, 2018,6:2870052 [2024-08-08]. .
|
29 |
张伟康,孙浩,陈鑫凯,等.基于改进YOLOv5的智能除草机器人蔬菜苗田杂草检测研究[J].图学学报,2023,44(2):346-356.
|
|
ZHANG W K, SUN H, CHEN X K, et al.. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. J. Graph., 2023,44(2):346-356.
|