中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (10): 158-167.DOI: 10.13304/j.nykjdb.2023.0386
收稿日期:
2023-05-22
接受日期:
2023-12-22
出版日期:
2024-10-15
发布日期:
2024-10-18
通讯作者:
王倡宪
作者简介:
樊娅萍 E-mail:20166858@s.hlju.edu.cn;
基金资助:
Yaping FAN(), Baiquan SONG, Changxian WANG(
)
Received:
2023-05-22
Accepted:
2023-12-22
Online:
2024-10-15
Published:
2024-10-18
Contact:
Changxian WANG
摘要:
设施农业生产中,连作障碍普遍存在且成因复杂,严重危害由土壤、植物及根际微生物组成的生态系统。经济便捷的土壤灭菌技术可有效缓解连作障碍,其中高温闷棚与强还原灭菌能优化土壤环境;同时,丛枝菌根真菌与植物根系建成共生体后有助于根际生态系统的重建。针对我国设施农业生产中的连作障碍问题,阐述了土壤高温灭菌、土壤强还原灭菌及丛枝菌根真菌在缓解设施连作障碍中的作用及相关机制,并展望了该领域待深入探究的内容,以期为设施农业连作障碍的缓解提供必要的理论与技术支撑。
中图分类号:
樊娅萍, 宋柏权, 王倡宪. 土壤灭菌与丛枝菌根真菌在缓解连作障碍中的研究进展[J]. 中国农业科技导报, 2024, 26(10): 158-167.
Yaping FAN, Baiquan SONG, Changxian WANG. Progress of Research on Alleviating Obstacles of Continuous Cropping by Soil Sterilization and Arbuscular Mycorrhizal Fungi[J]. Journal of Agricultural Science and Technology, 2024, 26(10): 158-167.
作物 Crop | 连作年限 Monocropping year | 主要致病菌 Major pathogen | 参考文献 Reference |
---|---|---|---|
黄瓜Cucumis sativus L. | 3 | — | [ |
番茄Solanum lycopersicum L. | 3 | 青枯劳尔氏菌、大丽轮枝菌 Ralstonia solanacearum,Verticillium dahliae | [ |
茄子Solanum melongena L. | 12 | 大丽轮枝菌Verticillium dahliae | [ |
辣椒Capsicum annuum L. | >8 | 辣椒疫霉Phytophthora capsici | [ |
棉花Gossypium herbaceum L. | 15 | 大丽轮枝菌Verticillium dahliae | [ |
花生Arachis hypogaea L. | 4 | 根腐病菌Fusarium spp. | [ |
芸豆Phaseolus vulgaris | 3 | — | [ |
烟草Nicotiana tabacum L. | — | 烟草青枯病菌Ralstonia solanacearum | [ |
地黄Rehmannia glutinosa | — | 根腐病菌、轮纹病原真菌草茎点霉 Fusarium spp.,Phoma herbarum | [ |
三七 Panax notoginseng(Burk.)F. H.Chen | 6 | 尖孢镰刀菌、腐皮镰刀菌 Fusarium oxysporum,Fusarium solani | [ |
人参Panax ginseng C. A. Mey. | 3 | — | [ |
表1 常见作物连作不同年限后土壤中的主要致病菌
Table 1 Main pathogens in soil of common crops different monocropping years later
作物 Crop | 连作年限 Monocropping year | 主要致病菌 Major pathogen | 参考文献 Reference |
---|---|---|---|
黄瓜Cucumis sativus L. | 3 | — | [ |
番茄Solanum lycopersicum L. | 3 | 青枯劳尔氏菌、大丽轮枝菌 Ralstonia solanacearum,Verticillium dahliae | [ |
茄子Solanum melongena L. | 12 | 大丽轮枝菌Verticillium dahliae | [ |
辣椒Capsicum annuum L. | >8 | 辣椒疫霉Phytophthora capsici | [ |
棉花Gossypium herbaceum L. | 15 | 大丽轮枝菌Verticillium dahliae | [ |
花生Arachis hypogaea L. | 4 | 根腐病菌Fusarium spp. | [ |
芸豆Phaseolus vulgaris | 3 | — | [ |
烟草Nicotiana tabacum L. | — | 烟草青枯病菌Ralstonia solanacearum | [ |
地黄Rehmannia glutinosa | — | 根腐病菌、轮纹病原真菌草茎点霉 Fusarium spp.,Phoma herbarum | [ |
三七 Panax notoginseng(Burk.)F. H.Chen | 6 | 尖孢镰刀菌、腐皮镰刀菌 Fusarium oxysporum,Fusarium solani | [ |
人参Panax ginseng C. A. Mey. | 3 | — | [ |
有机物料 Organic material | 碳氮比C/N | 施用量 Applied amount | 作物 Crop | 培养时间Cultivation time/d | 杀菌率 Sterilization rate/% | 增产率 Increasing rate of yield/% | 参考文献 Reference |
---|---|---|---|---|---|---|---|
菜粕 Rapeseed meal(S) | 8.70 | 2.0% | 烟草 Nicotiana tabacum L. | 21 | 81.70 | — | [ |
甘蔗渣 Bagasse(S) | 41.20 | 2.0% | 烟草 Nicotiana tabacum L. | 21 | 63.60 | — | [ |
—(S) | 122.00 | 12.0 t·hm-2 | 芥蓝 Brassica alboglabra Bailey | 25 | 90.60 | 397.00 | [ |
—(L) | 30.00 | 6.0 t·hm-2 | 芥蓝 Brassica alboglabra Bailey | 25 | 63.20 | 268.00 | [ |
紫花苜蓿 Medicago sativa(S) | 27.10 | 7.5 t·hm-2 | 黄瓜 Cucumis sativus L. | 31 | — | 435.00 | [ |
玉米秸秆 Corn straw(S) | 40.00 | 15.0 t·hm-2 | 西瓜 Citrullus lanatus | 15 | — | 18.60 | [ |
紫花苜蓿 Medicago sativa(S) | 27.10 | 19.5 t·hm-2 | 番茄 Solanum lycopersicum L. | 20 | 98.95 | 73.30 | [ |
秸秆 Straw(S) | 46.00 | 1.2% | 香蕉 Musa nana Lour. | 15 | 97.12 | — | [ |
米糠 Rice bran(S) | 81.89 | 2.0% | 番茄 Solanum lycopersicum L. | 21 | 97.27 | 45.31 | [ |
麦麸 Wheat bran(S) | 43.71 | 2.0% | 番茄 Solanum lycopersicum L. | 21 | 99.14 | 56.25 | [ |
表2 有机物料对RSD效果的影响
Table 2 Effects of organic materials on RSD
有机物料 Organic material | 碳氮比C/N | 施用量 Applied amount | 作物 Crop | 培养时间Cultivation time/d | 杀菌率 Sterilization rate/% | 增产率 Increasing rate of yield/% | 参考文献 Reference |
---|---|---|---|---|---|---|---|
菜粕 Rapeseed meal(S) | 8.70 | 2.0% | 烟草 Nicotiana tabacum L. | 21 | 81.70 | — | [ |
甘蔗渣 Bagasse(S) | 41.20 | 2.0% | 烟草 Nicotiana tabacum L. | 21 | 63.60 | — | [ |
—(S) | 122.00 | 12.0 t·hm-2 | 芥蓝 Brassica alboglabra Bailey | 25 | 90.60 | 397.00 | [ |
—(L) | 30.00 | 6.0 t·hm-2 | 芥蓝 Brassica alboglabra Bailey | 25 | 63.20 | 268.00 | [ |
紫花苜蓿 Medicago sativa(S) | 27.10 | 7.5 t·hm-2 | 黄瓜 Cucumis sativus L. | 31 | — | 435.00 | [ |
玉米秸秆 Corn straw(S) | 40.00 | 15.0 t·hm-2 | 西瓜 Citrullus lanatus | 15 | — | 18.60 | [ |
紫花苜蓿 Medicago sativa(S) | 27.10 | 19.5 t·hm-2 | 番茄 Solanum lycopersicum L. | 20 | 98.95 | 73.30 | [ |
秸秆 Straw(S) | 46.00 | 1.2% | 香蕉 Musa nana Lour. | 15 | 97.12 | — | [ |
米糠 Rice bran(S) | 81.89 | 2.0% | 番茄 Solanum lycopersicum L. | 21 | 97.27 | 45.31 | [ |
麦麸 Wheat bran(S) | 43.71 | 2.0% | 番茄 Solanum lycopersicum L. | 21 | 99.14 | 56.25 | [ |
1 | 樊娅萍,宋柏权,陈芳玲,等.设施土壤灭菌与摩西球囊霉对黄瓜幼苗生长及养分吸收的影响[J].南方农业学报,2022,53(6):1704-1712. |
FAN Y P, SONG B Q, CHEN F L, et al.. Effects of greenhouse soil sterilization and Glomus mosseae on growth and nutrients absorption of cucumber (Cucumis sativus L.) seedlings [J]. J. Southern Agric., 2022, 53(6): 1704-1712. | |
2 | ZHU B L, GAO T T, ZHANG D N, et al.. Functions of arbuscular mycorrhizal fungi in horticultural crop [J/OL]. Sci. Hortic-Amsterdam, 2022, 303: 111219 [2023-04-21]. . |
3 | ALI A, GHANI M I, DING H Y, et al.. Arbuscular mycorrhizal inoculum coupled with organic substrate induces synergistic effects for soil quality changes, and rhizosphere microbiome structure in long-term monocropped cucumber planted soil [J/OL]. Rhizosphere, 2021, 20: 100428 [2023-04-21]. . |
4 | 于泓,卢维宏,张乃明.我国设施栽培土壤退化特征及修复技术研究进展[J].蔬菜,2021(11):35-42. |
YU H, LU W H, ZHANG N M. Research progress on degradation characteristics and remediation technologies of protected soils in China [J]. Vegetables, 2021 (11): 35-42. | |
5 | 肖健,谭俊杰,林泽毅,等.木醋液的抑菌活性及其对连作番茄根际土壤微环境生态的影响[J].华中农业大学学报,2024, 43(1): 40-51. |
XIAO J, TAN J J, LIN Z Y, et al.. Antibacterial activity of wood vinegar and its effect on microecology in rhizospheres of tomatoes under continuous cropping system [J]. J. Huazhong Agric. Univ., 2024, 43(1): 40-51. | |
6 | 李淑敏,郑成彧,张润芝,等.生物熏蒸对大棚连作茄子产量和黄萎病发病率影响[J].东北农业大学学报,2017,48(5):35-41. |
LI S M, ZHENG C Y, ZHANG R Z, et al.. Effect of biofumigation on yield and verticillium wilt incidence of continuous eggplant in greenhouse [J]. J. Northeast Agric. Univ., 2017, 48(5): 35-41. | |
7 | 王光飞,马艳,安霞,等.不同有机物料强还原处理对土壤性状影响与防控辣椒疫病效果[J].中国土壤与肥料,2016(5):124-129. |
WANG G F, MA Y, AN X, et al.. Effect of different intensively reductive treatments by organic materials on soil character and disease control of phytophthora blight of chilli pepper [J]. Soil Fert. Sci. China, 2016(5): 124-129. | |
8 | 李国,易强,许世武,等.微生物菌剂对新疆棉花连作障碍的消减研究[J].中国土壤与肥料,2020(1):202-207. |
LI G, YI Q, XU S W, et al.. Preliminary study on microbial agents alleviating cotton continuous cropping obstacles in Xinjiang [J]. Soil Fert. Sci. China, 2020(1): 202-207. | |
9 | 李孝刚,王兴祥,戴传超,等.不同施肥措施对连作花生土传病害及产量的影响[J].土壤通报,2014,45(4):930-933. |
LI X G, WANG X X, DAI C C, et al.. Effects of fertilization on soil-borne diseases and yield of peanut under continuous cropping [J]. Chin. J. Soil Sci., 2014, 45(4): 930-933. | |
10 | 马瑞瑞,高小丽,崔雯雯,等.芸豆连作田土壤酶活性和养分含量研究[J].华北农学报,2013,28(5):157-162. |
MA R R, GAO X L, CUI W W, et al.. Research on soil nutrient and soil enzyme in kidney bean field with continuous cropping [J]. Acta Agric. Boreali-Sin., 2013, 28(5): 157-162. | |
11 | 刘亚男,贺广生,韦建玉,等.厌氧消毒对植烟土壤质量及细菌群落结构的影响[J].中国烟草科学,2019,40(3):39-46. |
LIU Y N, HE G S, WEI J Y, et al.. Effects of anaerobic soil disinfection on the quality and bacterial community of tobacco-growing soils [J]. Chin. Tob. Sci., 2019, 40(3): 39-46. | |
12 | 王素娟,董诚明,杨林林,等.土壤熏蒸对连作地黄生长、质量及土壤性质的影响[J].时珍国医国药,2022,33(1):193-197. |
WANG S J, DONG C M, YANG L L, et al.. Effects of soil fumigation on growth,quality and soil property of continuous cropping Rehmannia glutinosa Libosch. [J]. Lishizhen Med. Mater. Med. Res., 2022, 33(1): 193-197. | |
13 | 李云龙,王宝英,常亚锋,等.土壤强还原处理对三七连作障碍因子及再植三七生长的影响[J].土壤学报,2019,56(3):703-715. |
LI Y L, WANG B Y, CHANG Y F, et al.. Effects of reductive soil disinfestation on obstacles and growth of replant seedlings in sanqi ginseng mono-cropped soils [J]. Acta Pedol. Sin., 2019, 56(3): 703-715. | |
14 | 闫宁,战宇,苗馨月,等.强还原土壤灭菌处理对人参连作土壤细菌群落结构及土壤酶活的影响[J].中国农业科技导报,2022,24(6):133-144. |
YAN N, ZHAN Y, MIAO X Y, et al.. Effects of reductive soil disinfestation on soil bacterial community structure and soil enzyme activity in continuous cropping of ginseng [J]. J. Agric. Sci. Technol., 2022, 24(6): 133-144. | |
15 | 苏一诺,李孟滕,陈西文,等.作物连作障碍及防控技术研究进展[J].黑龙江畜牧兽医,2019(9):44-48. |
SU Y N, LI M T, CHEN X W, et al.. Study advances on crop continuous cropping obstacles and prevention and control techniques [J]. Heilongjiang Anim. Sci. Veterinary Med., 2019(9): 44-48. | |
16 | 李奉国,马龙传,孔勇,等.连作对大蒜土壤养分、微生物结构和酶活的影响[J].中国农业科技导报,2019,21(1):141-147. |
LI F G, MA L C, KONG Y, et al.. Effect of continuous garlic cropping on soil nutrients, microbial structure and enzyme activity [J]. J. Agric. Sci. Technol., 2019, 21(1): 141-147. | |
17 | 曹坳程,刘晓漫,郭美霞,等.作物土传病害的危害及防治技术[J].植物保护,2017,43(2):6-16. |
CAO A C, LIU X M, GUO M X, et al.. Incidences of soil-borne diseases and control measures [J]. Plant Prot., 2017, 43(2): 6-16. | |
18 | 何伟,罗文芳,于镇华,等.高温闷棚对设施蔬菜根结线虫的防治效果及土壤微生物群落结构的影响[J].新疆农业科学,2022,59(1):179-189. |
HE W, LUO W F, YU Z H, et al.. Effects of high temperature closed greenhouse on the control of protected vegetable root-knot nematode and the structure of soil microbial community [J]. Xinjiang Agric. Sci., 2022, 59(1): 179-189. | |
19 | 胡静荣,史彩华,石琳琳,等.土壤日晒在绿色植保中的应用与展望[J].植物保护,2019,45(3):27-35. |
HU J R, SHI C H, SHI L L, et al.. The application and prospect of soil solarization in the green plant protection [J]. Plant Prot., 2019, 45(3): 27-35. | |
20 | CASTELLO I, DEMILIO A, RAVIV M, et al.. Soil solarization as a sustainable solution to control tomato pseudomonads infections in greenhouses [J/OL]. Agron. Sustain. Dev., 2017, 37(6):59 [2023-04-21]. . |
21 | NARESH P, RATAN V, KUMAR V, et al.. Effect of soil solarization for the control soil born pathogen S. rolfsii causing stem rot of chilli (Capsicum annuum L.) [J]. Int. J. Curr. Microbiol. Appl. Sci., 2017, 6 (10): 4913-4917. |
22 | ABED GATEA AL-SHAMMARY A, KOUZANI A, GYASI-AGYEI Y, et al.. Effects of solarisation on soil thermal-physical properties under different soil treatments: a review [J/OL]. Geoderma, 2020, 363: 114137 [2023-04-21]. . |
23 | IHARA H, KATO N, TAKAHASHI S, et al.. Effect of soil solarization on subsequent nitrification activity at elevated temperatures [J]. Soil Sci. Plant Nutr., 2014, 60(6): 824-831. |
24 | 霍云龙,王飞,李艳军,等.高温闷棚技术防治茄子黄萎病研究[J].福建农业学报,2021,36(5):595-601. |
HUO Y L, WANG F, LI Y J, et al.. High-temperature stuffy chamber for controlling verticillium wilt on eggplants [J]. Fujian J. Agric. Sci., 2021, 36(5):595-601. | |
25 | LUVISI A, PANATTONI A, MATERAZZI A. Heat treatments for sustainable control of soil viruses [J]. Agron. Sustain. Dev., 2015, 35(2):657-666. |
26 | 朱文娟,王小国.强还原土壤灭菌研究进展[J].土壤,2020,52(2):223-233. |
ZHU W J, WANG X G. Advances in method of reductive soil disinfestation [J]. Soils, 2020,52(2): 223-233. | |
27 | 蔡祖聪,张金波,黄新琦,等.强还原土壤灭菌防控作物土传病的应用研究[J].土壤学报,2015,52(3):469-476. |
CAI Z C, ZHANG J B, HUANG X Q, et al.. Application of reductive soil disinfestation to suppress soil-borne pathogens [J]. Acta Pedol. Sin., 2015, 52(3): 469-476. | |
28 | 王宝英,李金泽,黄新琦,等.土壤强还原处理对连作芥蓝产量、微生物数量及活性的影响[J].土壤,2019,51(2):316-323. |
WANG B Y, LI J Z, HUANG X Q, et al.. Effects of reductive soil disinfestation on yield, population and activity of microorganisms in continuously cropped soils of Chinese Kale [J]. Soils, 2019, 51(2): 316-323. | |
29 | 刘亮亮,黄新琦,朱睿,等.强还原土壤对尖孢镰刀菌的抑制及微生物区系的影响[J].土壤,2016,48(1):88-94. |
LIU L L, HUANG X Q, ZHU R, et al.. Influences of reductive soil disinfestation on Fusarium oxysporum and soil microbiome [J]. Soils, 2016, 48(1): 88-94. | |
30 | MCCARTY D G, INWOOD S E E, OWNLEY B H, et al.. Field evaluation of carbon sources for anaerobic soil disinfestation in tomato and bell pepper production in Tennessee [J]. Hortic. Sci., 2014, 49(3): 272-280. |
31 | 朱同彬,孟天竹,张金波,等.强还原方法对退化设施蔬菜地土壤的修复[J].应用生态学报,2013,24(9):2619-2624. |
ZHU T B, MENG T Z, ZHANG J B, et al.. Effects of strong reductive approach on remediation of degraded facility vegetable soil [J]. Chin. J. Appl. Ecol., 2013, 24(9): 2619-2624. | |
32 | 石磊,赵洪海,李明亮,等.土壤强还原处理对根结线虫数量、番茄生长及土壤性质的影响[J].生态学杂志,2018,37(6):1865-1870. |
SHI L, ZHAO H H, LI M L, et al.. Effects of strong reductive approach on root-knot nematodes,the growth of tomato and soil physicochemical properties [J]. Chin. J. Ecol., 2018, 37(6): 1865-1870. | |
33 | ZHU W J, WANG W P, HONG C L, et al.. Influence of reductive soil disinfestation on the chemical and microbial characteristics of a greenhouse soil infested with Fusarium oxysporum [J/OL]. Physiol. Mol. Plant P., 2022, 118: e10180 [2023-04-21]. . |
34 | 陶禹,李雪峰,张竹青,等.土壤灭菌方式对不同深度土壤养分和微生物群落结构的影响[J].农业环境科学学报,2022,41(3):575-584. |
TAO Y, LI X F, ZHANG Z Q, et al.. Effects of soil disinfestation methods on nutrients and microbial community structure in different soil depths [J]. J. Agro-Environ. Sci., 2022, 41(3): 575-584. | |
35 | 陈士勇,杨艳菊,黄帅,等.强还原处理对西瓜连作土壤性质及西瓜产量的影响[J].扬州大学学报(农业与生命科学版),2019,40(5):103-109. |
CHEN S Y, YANG Y J, HUANG S, et al.. Effects of reductive soil disinfestation (RSD) on continuous cropping soil properties and watermelon yield [J]. J. Yangzhou Univ. (Agric. Life Sci.), 2019, 40(5): 103-109. | |
36 | 曹明,张雪彬,陶凯,等.强还原条件下秸秆还田量对南繁水稻土土壤肥力和微生物数量的影响[J].热带农业科学,2019,39(10):95-99. |
CAO M, ZHANG X B, TAO K, et al.. Effect of amount of paddy straw forced incorporated into paddy field on soil fertility and number of microorganisms in paddy soil in winter [J]. Chin. J. Trop. Agric., 2019, 39(10): 95-99. | |
37 | 夏青,罗晨,曾粮斌,等.强还原土壤处理对再植龙牙百合生长不利因子的消减作用[J].土壤学报,2022,59(1):183-193. |
XIA Q, LUO C, ZENG L B, et al.. Effect of reductive soil disinfestation mitigating adverse factors for growth of replanted Longya lily (Lilium brownii var. viridulum) [J]. Acta Pedol. Sin., 2022, 59(1): 183-193. | |
38 | 吉春阳,何云华,孙小飞,等.强还原与生物炭对土壤酶活性和温室气体排放的影响[J].中国环境科学,2021,41(2):974-982. |
JI C Y, HE Y H, SUN X F, et al.. Effects of reductive soil disinfestation and biochar on soil enzyme activities and greenhouse gas emissions [J]. Chin. Environ. Sci., 2021, 41(2): 974-982. | |
39 | CHEN Y L, ZHANG Y H, LI C, et al.. Linking soil organic carbon dynamics to microbial community and enzyme activities in degraded soil remediation by reductive soil disinfestation [J/OL]. Appl. Soil Ecol., 2023, 189: e104931 [2023-04-21]. . |
40 | LOPES E A, CANEDO E J, GOMES V A, et al.. Anaerobic soil disinfestation for the management of soilborne pathogens: a review [J/OL]. Appl. Soil Ecol., 2022, 174: e104408 [2023-04-21]. . |
41 | LIU L L, YAN Y Y, ALI A, et al.. Deciphering the fusarium-wilt control effect and succession driver of microbial communities managed under low-temperature conditions [J/OL]. Appl. Soil Ecol., 2021, 171: e104334 [2023-04-21]. . |
42 | 饶德安,刘潘洋,邹路易,等.长期连作及强还原土壤灭菌处理对烤烟根际土壤真菌群落的影响[J].中国土壤与肥料,2022(4):47-56. |
RAO D A, LIU P Y, ZOU L Y, et al.. Effects of long-term continuous cropping and reductive soil disinfestation on fungal community in flue-cured tobacco rhizosphere [J]. Soil Fert. Sci. China, 2022 (4): 47-56. | |
43 | 黄新琦,温腾,孟磊,等.土壤强还原过程产生的有机酸对土传病原菌的抑制作用[J].植物保护,2015,41(6):38-43. |
HUANG X Q, WEN T, MENG L, et al.. Inhibitory effects of organic acids produced in reductive soil disinfestation on soil-borne plant pathogens [J]. Plant Prot., 2015, 41(6): 38-43. | |
44 | 郭晨曦,周桂芳,陈碧华,等.强还原土壤灭菌法(RSD)对大棚连续三茬蔬菜生长、产量和病虫害的影响[J].河南农业科学,2020,49(11):98-109. |
GUO C X, ZHOU G F, CHEN B H, et al.. Effect of reductive soil disinfestation on growth,yield,diseases and insect pests of three continuous cultivation vegetables in plastic greenhouse [J]. J. Henan Agric. Sci., 2020, 49(11): 98-109. | |
45 | 黄新琦,温腾,孟磊,等.土壤快速强烈还原对于尖孢镰刀菌的抑制作用[J].生态学报,2014,34(16):4526-4534. |
HUANG X Q, WEN T, MENG L, et al.. The inhibitory effect of quickly and intensively reductive soil on Fusarium oxysporum [J]. Acta Ecol. Sin., 2014, 34(16): 4526-4534. | |
46 | 伍朝荣,黄飞,高阳,等.土壤生物消毒对土壤改良、青枯菌抑菌及番茄生长的影响[J].中国生态农业学报,2017,25(8):1173-1180. |
WU C R, HUANG F, GAO Y, et al.. Effect of biological disinfestation on soil improvement, Ralstonia solanacearum suppression and tomato growth [J]. Chin. J. Eco-Agric., 2017, 25(8): 1173-1180. | |
47 | MIAO J H, HAO J R, CHE R J, et al.. A double-edged sword: reductive soil disinfestation changes the fates of trace metal elements in soil [J/OL]. Sci. Total Environ., 2023, 872: e162307 [2023-04-21]. . |
48 | MENG T Z, WEI Q, YANG Y J, et al.. The influences of soil sulfate content on the transformations of nitrate and sulfate during the reductive soil disinfestation (RSD) process [J/OL]. Sci. Total Environ., 2021, 818: e151766 [2023-04-21]. . |
49 | REDECKER D, KODNER R, GRAHAM L E. Glomalean fungi from the ordovician [J]. Science, 2000, 289(5486): 1920-1921. |
50 | SMITH S E, READ D J. Mycorrhizal Symbiosis [M]. 3rd Ed. London: Academic Press, 2008: 1-42. |
51 | LUGINBUEH L H, MENARD G N, KURUP S, et al.. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant [J]. Science, 2017, 356(6343): 1175-1178. |
52 | RAVNSKOV S, CABRAL C, LARSEN J. Mycorrhiza induced tolerance in Cucumis sativus against root rot caused by Pythium ultimum depends on fungal species in the arbuscular mycorrhizal symbiosis [J/OL]. Biol. Control, 2020, 141: 104133 [2023-04-21]. . |
53 | BOUTAJ H, MEDDICH A, ROCHE J, et al.. The effects of mycorrhizal fungi on vascular wilt diseases [J/OL]. Crop Prot., 2022, 155: e105938 [2023-04-21]. . |
54 | DEY M, GHOSH S. Arbuscular mycorrhizae in plant immunity and crop pathogen control [J/OL]. Rhizosphere, 2022, 22: e100524 [2023-04-21]. . |
55 | SALLAKU G, SANDÉN H, BABAJ I, et al.. Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity [J]. Sci. Hortic-Amsterdam, 2019, 243: 177-188. |
56 | MALHI G S, KAUR M, KAUSHIK P, et al.. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: an eco-friendly approach [J]. Saudi J. Biol. Sci., 2021, 28(2): 1465-1476. |
57 | HAWKINS H, CARGILL R I M, VAN NULAND M E, et al.. Mycorrhizal mycelium as a global carbon pool [J]. Curr. Biol., 2023, 33(11): R560-R573. |
58 | LIU Z H, YU Z H, SONG B, et al.. Elevated CO2 and temperature increase arbuscular mycorrhizal fungal diversity, but decrease root colonization, in maize and wheat [J/OL]. Sci. Total Environ., 2023, 873: e162321 [2023-04-21]. . |
59 | 索炎炎,张翔,司贤宗,等.丛枝菌根真菌和根瘤菌对连作花生养分吸收及土壤微生物特性的影响[J].中国土壤与肥料,2023(2):106-112. |
SUO Y Y, ZHANG X, SI X Z, et al.. Effects of arbuscular mycorrhizal fungi and rhizobia on nutrient uptake and soil microbial characteristics of continuous cropping peanut [J]. Soil Fert. Sci. China, 2023 (2): 106-112. | |
60 | TRAN C T K, WATTS-WILLIAMS S J, SMERNIK R J, et al.. Arbuscular mycorrhizas increased tomato biomass and nutrition but did not affect local soil P availability or 16S bacterial community in the field [J/OL]. Sci. Total Environ., 2021, 819: e152620 [2023-04-21]. . |
61 | 李芳,徐丽娇,谢伟,等.菌根化育苗对玉米生长和养分吸收的影响[J].植物营养与肥料学报,2020,26(1):42-50. |
LI F, XU L J, XIE W, et al.. Effects of seedling mycorrhization on the growth and nutrient uptake of maize [J]. Plant Nutr. Fert. Sci. 2020, 26(1):42-50. | |
62 | MA Q X, CHADWICK D R, WU L H, et al.. Arbuscular mycorrhiza fungi colonisation stimulates uptake of inorganic nitrogen and sulphur but reduces utilisation of organic forms in tomato [J/OL]. Soil Biol. Biochem., 2022, 172: e108719 [2023-04-21]. . |
63 | 崔利,郭峰,张佳蕾,等.摩西斗管囊霉改善连作花生根际土壤的微环境[J].植物生态学报,2019,43(8):718-728. |
CUI L, GUO F, ZHANG J L, et al.. Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae [J]. Chin. J. Plant Ecol., 2019, 43(8): 718-728. | |
64 | 张华,郭冬琴,周浓,等.丛枝菌根化滇重楼幼苗根际土壤微环境的研究[J].西南农业学报,2019,32(8):1845-1851. |
ZHANG H, GUO D Q, ZHOU N, et al.. Rhizospheric soil microenvironment of Paris polyphylla var. yunnanensis seedlings colonized by arbuscular mycorrhizal fungi [J]. Southwest China J. Agric. Sci., 2019, 32(8): 1845-1851. | |
65 | CHENG X F, XIE M M, LI Y, et al.. Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of newhall navel orange [J/OL]. Appl. Soil Ecol., 2021, 170: e104308 [2023-04-21]. . |
66 | 杨海燕,王周平,妙晓莉.高温闷棚改良技术在蔬菜日光温室中应用[J].中国瓜菜,2019,32(12):100-101. |
YANG H Y, WANG Z P, MIAO X L. Application of high-temperature stuffy chamber technology to vegetables greenhouse [J]. China Cucurbits Veget., 2019, 32(12): 100-101. | |
67 | DU T Y, HU Q F, HE H Y, et al.. Long-term organic fertilizer and biofertilizer application strengthens the associations between soil quality index, network complexity, and walnut yield [J/OL]. Eur. J. Soil Biol., 2023, 116: e103492 [2023-04-23]. . |
68 | 张庆华,曾祥国,韩永超,等.土壤熏蒸剂棉隆和生物菌肥对草莓连作土壤真菌多样性的影响[J].微生物学通报,2018,45(5):1048-1060. |
ZHANG Q H, ZENG X G, HAN Y C, et al.. Effects of dazomet fumigation and biological fertilizer on strawberry soil fungal diversity under replant conditions [J]. Mocrobiol. China, 2018, 45(5): 1048-1060. | |
69 | HOU S, ZHANG Y, LI M, et al.. Concomitant biocontrol of pepper phytophthora blight by soil indigenous arbuscular mycorrhizal fungi via upfront film-mulching with reductive fertilizer and tobacco waste [J]. J. Soil Sediment, 2020, 20(1): 452-460 |
70 | 于双.外源添加物改良土壤强还原灭菌法效果的研究[D].沈阳:沈阳农业大学,2020. |
YU S. Research of reductive soil disinfestation improvement effect by exogenous additives [D]. Shenyang: Shenyang Agricultural University, 2020. | |
71 | DABIRE A P, HIEN V, KISA M, et al.. Responses of soil microbial catabolic diversity to arbuscular mycorrhizal inoculation and soil disinfection [J]. Mycorrhiza, 2007, 17(6): 537-545. |
72 | MIRANSARI M, BAHRAMI H A, REJALI F, et al.. Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake [J]. Soil Till. Res., 2009, 104: 48-55. |
73 | ZAYED M S, HASSANEIN M K K, ESA N H, et al.. Productivity of pepper crop (Capsicum annuum L.) as affected by organic fertilizer, soil solarization, and endomycorrhizae [J]. Ann. Agric. Sci., 2013, 58(2): 131-137. |
[1] | 张继东, 张亚雄, 程伟, 蒲莉, 柳路行, 王亚明. 生物质炭和有机肥配施对苹果重茬育苗地土壤理化性质和微生物群落特征的影响[J]. 中国农业科技导报, 2024, 26(8): 213-222. |
[2] | 周喜新, 袁世林, 杨柳, 夏滔, 张毅, 范伟. 连作烟草根系分泌物鉴定及潜在化感物质的筛选研究[J]. 中国农业科技导报, 2024, 26(7): 136-146. |
[3] | 谢勇俊, 潘小卓, 陈福慧, 尹凯波, 金嘉悦, 王一兵. 人参酚酸类自毒物质降解菌的筛选鉴定及生防研究[J]. 中国农业科技导报, 2024, 26(7): 147-155. |
[4] | 蒲子天, 王红, 赵斌, 王鑫鑫. 不同土壤改良物料对连作黄芩生长及土壤酶活性的影响[J]. 中国农业科技导报, 2024, 26(7): 189-198. |
[5] | 时晓宇, 焦连庆, 于敏, 田义新, 焦安妮, 栾依琳. 多维度评价及优化黄芪瞬时高温灭菌工艺[J]. 中国农业科技导报, 2024, 26(7): 223-233. |
[6] | 李小玲, 周武先, 蒋小刚, 李大荣, 黄大野, 张美德. 微生物菌肥对川党参连作障碍及紫纹羽病的防控效果[J]. 中国农业科技导报, 2023, 25(3): 119-131. |
[7] | 刘融融, 焦连庆, 张婷, 于敏, 田义新. 基于CRITIC法优化大叶冬青瞬时高温灭菌工艺[J]. 中国农业科技导报, 2023, 25(12): 205-215. |
[8] | 杨莉, 于俐, 孙卓, 张桐毓, 张阳, 杨利民. 人参根系分泌物中有机酸及皂苷对人参病原菌与生防菌的化感差异研究[J]. 中国农业科技导报, 2022, 24(6): 145-155. |
[9] | 陈福慧, 申乃坤, 姜明国, 王一兵. 作物重茬连作障碍中自毒物质的研究进展[J]. 中国农业科技导报, 2022, 24(10): 125-132. |
[10] | 李浩成1,2,左应梅2,杨绍兵2,杨天梅2,李纪潮2,杨维泽2,张金渝2*. 三七根系分泌物在连作障碍中的生态效应及缓解方法[J]. 中国农业科技导报, 2020, 22(8): 159-167. |
[11] | 李庆凯1,2,3,刘苹2,3*,赵海军3,宋效宗2,林海涛2,沈玉文2,李林1,万书波1,3*. 玉米根系分泌物对连作花生土壤酚酸类物质化感作用的影响[J]. 中国农业科技导报, 2020, 22(3): 119-130. |
[12] | 单皓,张虎,崔爱民,王云峰,张久刚*. 外源生长调节物质对盐胁迫下玉米种子萌发的影响[J]. 中国农业科技导报, 2018, 20(8): 82-90. |
[13] | 张翠绵1,李洪涛1,李晓芝2,贾楠1,胡栋1,王占武1. 链霉菌S506对设施黄瓜根际生态和生产性状的影响[J]. , 2010, 12(5): 98-102. |
[14] | 张子龙,王文全. 药用植物连作障碍的形成机理及其防治[J]. , 2009, 11(6): 19-23. |
[15] | 薛泉宏,同延安. 土壤生物退化及其修复技术研究进展[J]. , 2008, 10(4): 28-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||