中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (10): 145-157.DOI: 10.13304/j.nykjdb.2023.0163
收稿日期:
2023-03-06
接受日期:
2023-08-01
出版日期:
2024-10-15
发布日期:
2024-10-18
通讯作者:
陈洋
作者简介:
唐天君E-mail: 453389814@qq.com;
基金资助:
Tianjun TANG1(), Yang CHEN1(
), Jun HU2, Haotian JIANG2
Received:
2023-03-06
Accepted:
2023-08-01
Online:
2024-10-15
Published:
2024-10-18
Contact:
Yang CHEN
摘要:
为有效减少杂草对烟草可见光影像识别提取的影响,实现烟草的精准识别,利用四旋翼无人机采集贵州山区烟草种植基地的正射影像(digital orthophoto map,DOM),根据地物的光谱特征差异,构建颜色重组差异植被指数(color recombination difference vegetation index,CRDVI),运用最大类方差(OTSU)确定分割阈值,实现烟草识别和提取,并与常见的可见光差异植被指数(visible-band difference vegetation indx,VDVI)、过绿指数(excess green,ExG)和改进型绿红植被指数(improved green-red vegetation index,MGRVI)对比分析。结果表明:CRDVI可有效去除杂草对于烟草识别和提取的影响;在杂草覆盖度较高的地块,CRDVI对烟草识别效果优于VDVI、ExG和MGRVI;CRDVI在3个实验样区中和验证样区中识别和提取的完整性均在89%以上,提取精度较高。研究结果证实CRDVI可快速准确提取烟草并可有效抑制杂草的影响,可为山区特色作物的识别提取提供参考。
中图分类号:
唐天君, 陈洋, 胡军, 江浩田. 基于无人机影像数据的烟草精准识别方法研究[J]. 中国农业科技导报, 2024, 26(10): 145-157.
Tianjun TANG, Yang CHEN, Jun HU, Haotian JIANG. Research on Tobacco Precise Recognition Method Based on UAV Image Data[J]. Journal of Agricultural Science and Technology, 2024, 26(10): 145-157.
样方 Quadrat | 地物 Surface feature | DNR | DNG | DNB | |||
---|---|---|---|---|---|---|---|
平均Mean | 标准差SD | 平均Mean | 标准差SD | 平均Mean | 标准差SD | ||
1 | 烟草Tobacco | 141.47 | 15.17 | 201.85 | 13.65 | 135.54 | 17.77 |
裸土Soil | 142.04 | 18.75 | 141.77 | 18.64 | 120.92 | 18.13 | |
杂草Weeds | 106.42 | 17.48 | 143.78 | 17.11 | 82.99 | 16.28 | |
2 | 烟草Tobacco | 140.22 | 17.60 | 203.82 | 17.10 | 127.34 | 18.62 |
裸土Soil | 190.36 | 26.42 | 191.03 | 26.75 | 130.91 | 25.46 | |
杂草Weeds | 83.99 | 22.12 | 146.08 | 23.35 | 72.54 | 18.81 | |
3 | 烟草Tobacco | 140.83 | 20.34 | 202.25 | 19.60 | 130.18 | 19.83 |
裸土Soil | 194.22 | 41.62 | 192.49 | 42.83 | 171.92 | 46.33 | |
杂草Weeds | 114.37 | 28.55 | 150.73 | 30.38 | 96.27 | 22.84 | |
4 | 烟草Tobacco | 142.74 | 17.88 | 208.72 | 17.90 | 126.81 | 17.15 |
裸土Soil | 166.65 | 50.38 | 163.45 | 49.52 | 141.90 | 48.21 | |
杂草Weeds | 78.63 | 24.80 | 130.89 | 24.96 | 64.52 | 19.29 |
表1 不同样方主要地物在红、绿、蓝波段的像元特征
Table 1 Pixel characteristics of main ground features in different plots in the red, green, and blue bands
样方 Quadrat | 地物 Surface feature | DNR | DNG | DNB | |||
---|---|---|---|---|---|---|---|
平均Mean | 标准差SD | 平均Mean | 标准差SD | 平均Mean | 标准差SD | ||
1 | 烟草Tobacco | 141.47 | 15.17 | 201.85 | 13.65 | 135.54 | 17.77 |
裸土Soil | 142.04 | 18.75 | 141.77 | 18.64 | 120.92 | 18.13 | |
杂草Weeds | 106.42 | 17.48 | 143.78 | 17.11 | 82.99 | 16.28 | |
2 | 烟草Tobacco | 140.22 | 17.60 | 203.82 | 17.10 | 127.34 | 18.62 |
裸土Soil | 190.36 | 26.42 | 191.03 | 26.75 | 130.91 | 25.46 | |
杂草Weeds | 83.99 | 22.12 | 146.08 | 23.35 | 72.54 | 18.81 | |
3 | 烟草Tobacco | 140.83 | 20.34 | 202.25 | 19.60 | 130.18 | 19.83 |
裸土Soil | 194.22 | 41.62 | 192.49 | 42.83 | 171.92 | 46.33 | |
杂草Weeds | 114.37 | 28.55 | 150.73 | 30.38 | 96.27 | 22.84 | |
4 | 烟草Tobacco | 142.74 | 17.88 | 208.72 | 17.90 | 126.81 | 17.15 |
裸土Soil | 166.65 | 50.38 | 163.45 | 49.52 | 141.90 | 48.21 | |
杂草Weeds | 78.63 | 24.80 | 130.89 | 24.96 | 64.52 | 19.29 |
地物 Surface feature | DNR | DNG | DNB | |||
---|---|---|---|---|---|---|
平均Mean | 标准差SD | 平均Mean | 标准差SD | 平均Mean | 标准差SD | |
烟草Tobacco | 134.14 | 18.77 | 200.86 | 18.32 | 144.00 | 18.41 |
杂草Weeds | 71.77 | 14.21 | 136.36 | 19.40 | 81.00 | 20.33 |
表2 烟草与杂草的综合像元特征
Table 2 Comprehensive pixel characteristics of tobacco and weeds
地物 Surface feature | DNR | DNG | DNB | |||
---|---|---|---|---|---|---|
平均Mean | 标准差SD | 平均Mean | 标准差SD | 平均Mean | 标准差SD | |
烟草Tobacco | 134.14 | 18.77 | 200.86 | 18.32 | 144.00 | 18.41 |
杂草Weeds | 71.77 | 14.21 | 136.36 | 19.40 | 81.00 | 20.33 |
样方Quadrat | 颜色指数Colour index | 杂草Weeds | 烟草Tobcco | ||
---|---|---|---|---|---|
平均Mean | 标准差SD | 平均Mean | 标准差SD | ||
1 | CRDVI | 0.62 | 0.13 | 0.93 | 0.04 |
VDVI | 0.42 | 0.08 | 0.41 | 0.05 | |
ExG | 0.55 | 0.07 | 0.75 | 0.06 | |
MGRVI | 0.51 | 0.07 | 0.57 | 0.04 | |
2 | CRDVI | 0.46 | 0.06 | 0.61 | 0.03 |
VDVI | 0.65 | 0.03 | 0.60 | 0.01 | |
ExG | 0.70 | 0.04 | 0.81 | 0.02 | |
MGRVI | 0.75 | 0.04 | 0.67 | 0.02 | |
3 | CRDVI | 0.61 | 0.14 | 0.88 | 0.07 |
VDVI | 0.22 | 0.06 | 0.25 | 0.03 | |
ExG | 0.55 | 0.15 | 0.82 | 0.05 | |
MGRVI | 0.37 | 0.09 | 0.44 | 0.04 | |
4 | CRDVI | 0.55 | 0.11 | 0.91 | 0.06 |
VDVI | 0.31 | 0.06 | 0.21 | 0.02 | |
ExG | 0.64 | 0.06 | 0.79 | 0.06 | |
MGRVI | 0.53 | 0.09 | 0.49 | 0.03 |
表3 不同植被指数下的地物像元特征
Table 3 Surface pixel characteristics under different vegetation indices
样方Quadrat | 颜色指数Colour index | 杂草Weeds | 烟草Tobcco | ||
---|---|---|---|---|---|
平均Mean | 标准差SD | 平均Mean | 标准差SD | ||
1 | CRDVI | 0.62 | 0.13 | 0.93 | 0.04 |
VDVI | 0.42 | 0.08 | 0.41 | 0.05 | |
ExG | 0.55 | 0.07 | 0.75 | 0.06 | |
MGRVI | 0.51 | 0.07 | 0.57 | 0.04 | |
2 | CRDVI | 0.46 | 0.06 | 0.61 | 0.03 |
VDVI | 0.65 | 0.03 | 0.60 | 0.01 | |
ExG | 0.70 | 0.04 | 0.81 | 0.02 | |
MGRVI | 0.75 | 0.04 | 0.67 | 0.02 | |
3 | CRDVI | 0.61 | 0.14 | 0.88 | 0.07 |
VDVI | 0.22 | 0.06 | 0.25 | 0.03 | |
ExG | 0.55 | 0.15 | 0.82 | 0.05 | |
MGRVI | 0.37 | 0.09 | 0.44 | 0.04 | |
4 | CRDVI | 0.55 | 0.11 | 0.91 | 0.06 |
VDVI | 0.31 | 0.06 | 0.21 | 0.02 | |
ExG | 0.64 | 0.06 | 0.79 | 0.06 | |
MGRVI | 0.53 | 0.09 | 0.49 | 0.03 |
指数Index | 样方1 Quadrat 1 | 样方2 Quadrat 2 | 样方3 Quadrat 3 | 样方4 Quadrat 4 |
---|---|---|---|---|
CRDVI | [0.72,1] | [0.55,1] | [0.75,1] | [0.76,1] |
ExG | [0.53,1] | [0.70,1] | [0.38,1] | [0.69,1] |
表4 基于OTSU的植被指数烟草分割阈值区间
Table 4 Tobacco segmentation threshold range of individual vegetation indices based on OTSU
指数Index | 样方1 Quadrat 1 | 样方2 Quadrat 2 | 样方3 Quadrat 3 | 样方4 Quadrat 4 |
---|---|---|---|---|
CRDVI | [0.72,1] | [0.55,1] | [0.75,1] | [0.76,1] |
ExG | [0.53,1] | [0.70,1] | [0.38,1] | [0.69,1] |
样方Quadrat | 方法Method | 真实株数/TN | 漏识别/FN | 错误识别/FP | 正确识别/TP | 分支因子 BF | 检测率 DP/% | 完整性 QP/% |
---|---|---|---|---|---|---|---|---|
1 | CRVDI | 103 | 2 | 9 | 94 | 0.09 | 97.91 | 89.52 |
ExG | 103 | 3 | 11 | 93 | 0.11 | 96.87 | 86.92 | |
2 | CRVDI | 95 | 1 | 2 | 94 | 0.02 | 98.95 | 96.91 |
ExG | 95 | 0 | 14 | 87 | 0.16 | 86.13 | 86.13 | |
3 | CRVDI | 102 | 1 | 10 | 101 | 0.09 | 99.02 | 90.18 |
ExG | 102 | 2 | 13 | 94 | 0.13 | 97.92 | 86.24 | |
4 | CRVDI | 113 | 1 | 2 | 113 | 0.01 | 99.12 | 97.41 |
ExG | 113 | 4 | 3 | 106 | 0.02 | 96.36 | 93.81 |
表5 各植被指数识别精度评价
Table 5 Evaluation of identification accuracy of various vegetation indices
样方Quadrat | 方法Method | 真实株数/TN | 漏识别/FN | 错误识别/FP | 正确识别/TP | 分支因子 BF | 检测率 DP/% | 完整性 QP/% |
---|---|---|---|---|---|---|---|---|
1 | CRVDI | 103 | 2 | 9 | 94 | 0.09 | 97.91 | 89.52 |
ExG | 103 | 3 | 11 | 93 | 0.11 | 96.87 | 86.92 | |
2 | CRVDI | 95 | 1 | 2 | 94 | 0.02 | 98.95 | 96.91 |
ExG | 95 | 0 | 14 | 87 | 0.16 | 86.13 | 86.13 | |
3 | CRVDI | 102 | 1 | 10 | 101 | 0.09 | 99.02 | 90.18 |
ExG | 102 | 2 | 13 | 94 | 0.13 | 97.92 | 86.24 | |
4 | CRVDI | 113 | 1 | 2 | 113 | 0.01 | 99.12 | 97.41 |
ExG | 113 | 4 | 3 | 106 | 0.02 | 96.36 | 93.81 |
图8 CRVDI验证结果注:高亮区域为烟草区域,偏暗部分为其他背景地物。
Fig. 8 CRVDI verification resultNote: Highlight area shows tobacco, darker areas shows other background features.
1 | 尹林江. 喀斯特山地作物超低空遥感特征构建与识别研究[D].贵阳:贵州师范大学,2021. |
YIN L J. Study on the construction and recognition of crop ultra lowaltitude remote sensing features in karst mountain area—take pitaya as an example [D]. Guiyang: Guizhou Normal University,2021. | |
2 | 邱小雷,张羽,张小虎,等.从植保无人机经验探析我国精确农业发展路径[J].江苏农业科学, 2019, 47(16):30-33. |
QIU X L, ZHANG Y, ZHANG X H, et al.. Exploring the development path of precision ariculture in China from the experience of plant protection drones [J]. Jiangsu Agric. Sci., 2019, 47(16):30-33. | |
3 | 我国农业精准作业实用化技术和创新性产品取得重要突破[J].中国农业科技导报, 2016,18(5):216. |
4 | 李淑芳.中国精准农业推广对策研究[J].科学管理研究, 2019, 37(4):125-130. |
LI S F. Research on China’s precision agriculture ppromotion ccountermeasures [J]. Sci. Manage. Res., 2019, 37(4):125-130. | |
5 | STAFFORD J V. Implementing precision agriculture in the 21st century [J]. J. Agric. Eng. Res., 2000, 76(3):267-275. |
6 | 张超,刘佳佳,苏伟,等.基于小波包变换的农作物分类无人机遥感影像适宜尺度筛选[J].农业工程学报, 2016, 32(21): 95-101. |
ZHANG C, LIU J J, SU W, et al.. Optimal scale of crop classification using unmanned aerial vehicle remotesensing imagery based on wavelet packet transform [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(21): 95-101. | |
7 | 宋坤良,王新兴,蓝凯.基于改进YOLOv4模型的无人机影像烟草株数统计[J].测绘技术装备,2022,24(4):78-82. |
SONG K L, WANG X X, LAN K. Tobacco plants number statistics of UAV images based on improved YOLOv4 model [J]. Geomatics Technol. Equip., 2022,24(4):78-82. | |
8 | 付必环,黄亮.基于深度语义分割的无人机影像烟草种植面积提取[J].通信技术,2022,55(2):181 -186. |
FU B H, HUANG L. Extraction of tobacco planting area from UAVimages based on deep semantic segmentation [J]. Commun. Technol., 2022,55(2):181 -186. | |
9 | 罗贞宝,陆妍如,高知灵,等.基于GF-1/2影像数据的烟草种植区信息遥感监测[J].中国烟草科学,2022,43(4):87-95, 103. |
LUO Z B, LU Y R, GAO Z L, et al.. Remote sensing monitoring of tobacco growing areas based on GF-1/2lmage data [J]. Chin. Tobacco Sci., 2022,43(4):87-95, 103. | |
10 | 薛宇飞,张军,张萍,等.基于Sentinel-2遥感影像的烟草种植信息精准提取[J].中国烟草科学,2022,43(1):96-106. |
XUE Y F, ZHANG J, ZHANG P, et al.. Object-oriented accurate extraction of tobacco information based on Sentinel-2 remote sensing images [J]. Chin. Tob. Sci., 2022,43(1):96-106. | |
11 | 吕小艳,竞霞,薛琳,等.遥感技术在烟草长势监测及估产中的应用进展[J].中国农学通报,2020,36(25):137-141. |
LYU X Y, JING X, XUE L, et al.. Remote sensing technology applied in growth monitoring and yield estimation of tobacco: a review [J]. Chin. Agric. Sci. Bull., 2020,36(25): 137-141. | |
12 | 尹林江,周忠发,黄登红,等.基于无人机影像匹配点云数据的喀斯特峡谷区火龙果单株提取研究[J].浙江农业学报,2020,32(6):1092-1102. |
YIN L J, ZHOU Z F, HUANG D H, et al.. Extraction of individual plant of pitaya in Karst canyon area based on point cloud data of UAV image matching [J]. Acta Agric. Zhejiangensis,2020,32(6):1092-1102. | |
13 | 高姻燕,孙义,李葆春.基于无人机RGB影像估测田间小麦穗数[J].中国农业科技导报,2022,24(3):103-110. |
GAO Y Y, SUN Y, LI B C. Estimating of wheat ears number in field based on RGB images using unmanned aerial vehicle [J]. J. Agric. Sci. Technol., 2022,24(3):103-110. | |
14 | 胡宜娜,安如,艾泽天,等.基于无人机高光谱影像的三江源草种精细识别研究[J].遥感技术与应用,2021,36(4):926-935. |
HU Y N, AN R, AI Z T, et al.. Researches on grass species fine identification based on UAV hyperspectral lmages in Three-River source region [J]. Remote Sensing Technol. Appl., 2021,36(4):926-935. | |
15 | 杨龙,孙中宇,唐光良,等.基于微型无人机遥感的亚热带林冠物种识别[J].热带地理, 2016, 36(5): 833-839. |
YANG L, SUN Z Y, TANG G L, et al.. Identifying canopy species of subtropical forest by lightweight unmanned aerial vehicle remote sensing [J]. Tropical Geography, 2016, 36 ( 5 ): 833-839. | |
16 | 胡馨月.基于融合分水岭算法的无人机图像树木株数提取研究[D]. 哈尔滨市:东北林业大学,2021. |
HU X Y. Research on tree counts extraction from UAV imagery based on fusion watershed algorithm [D]. Harbin: Northeast Forestry University, 2021. | |
17 | 刘帅兵,杨贵军,周成全,等.基于无人机遥感影像的玉米苗期株数信息提取[J].农业工程学报,2018,34(22):69-77. |
LIU S B, YANG G J, ZHOU C Q, et al.. Extraction of maize seedling number information based on UAV imagery [J]. Trans. Chin. Soc. Agric. Eng., 2018, 34(22):69-77. | |
18 | 李金阳,张伟,康烨,等.基于无人机遥感技术的大豆苗数估算研究[J].中国农机化学报,2022,43(4):83-89. |
LI J Y, ZHANG W, KANG Y, et al.. Rcscarch on soybcan sccdling numbcr cstimation bascd on UAV rcmotc scnsing tcchnolog [J]. J. Chin. Agric. Mechan., 2022,43(4) :83-89. | |
19 | 董梅,苏建东,刘广玉,等.面向对象的无人机遥感影像烟草种植面提取和监测[J].测绘科学,2014,39(9):87-90. |
DONG M, SU J D, LIU G Y, et al.. Extraction of tobacco planting areas from UAV remote sensing imagery byobject-oriented classification method [J]. Sci. Surveying Mapping,2014,39(9):87-90. | |
20 | 何永秋,邓平,詹良,等.烟草病虫害无人机防控实施模式探析——以常宁市烟区无人机植保服务为例[J].现代农业科技,2022(13):72-75. |
HE Y Q, DENG P, ZHAN L, et al.. Exploration on the implementation mode of UAV for tobacco diseases and pests control:taking UAV plant protection service in changning tobacco area as an example [J]. Modern Agric. Sci. Technol., 2022(13):72-75. | |
21 | 赖佳政,叶协锋,张凯,等.基于无人机高光谱的烟田涝灾早期识别[J].中国烟草学报,2022,28(1):50-57. |
LAI J Z, YE X F, ZHANG K, et al.. Early identification of tobacco field waterlogging disaster based on UAV hyperspectral lmages [J]. Acta Tabacaria Sin., 2022,28(1):50-57. | |
22 | 王帅. 基于无人机多光谱遥感数据的烟草估产模型研究—以广东省始兴县为例[D]. 太原:山西农业大学,2021. |
WANG S. Tobacco yield estimation based on UAV multi-spectral remote sensing image—taking shixing county of guangdong province as an example [D]. Taiyu: Shanxi Agricultural University, 2021. | |
23 | 夏炎,黄亮,陈朋弟.模糊超像素分割算法的无人机影像烟株精细提取[J].国土资源遥感,2021,33(1):115-122. |
XIA Y, HUANG L, CHEN P D. Tobacco fine extraction from UAV mage based on fuzzy -superpixel segmentation algorithm [J]. Remote Sensing Land Resour. ,2021,33(1):115-122. | |
24 | 夏炎,黄亮,王枭轩,等.基于无人机影像的烟草精细提取[J].遥感技术与应用,2020,35(5):1158-1166. |
XIA Y, HUANG L, WANG X X, et al.. Fine extraction of tobacco based on UAV images [J]. Remote Sensing Technol. Appl., 2020,35(5):1158-1166. | |
25 | 李晓鹏,胡鹏程,徐照丽,等.基于四旋翼无人机快速获取大田植株图像的方法及其应用[J].中国农业大学学报,2017,22(12):131-137. |
LI X P, HU P C, XU Z L, et al.. Method for rapidly acquiring images of field-grown crops usinga quad-rotor UAV and its application [J]. J. China Agric. Univ., 2017,22(12):131-137. | |
26 | 饶雄飞,周龙宇,杨春雷,等.基于无人机多光谱影像和关键点检测的雪茄烟株数提取[J].农业机械学报,2023,54(3):266-273. |
RAO X F, ZHOU L Y, YANG C L, et al.. Counting cigar tobacco plants from UAV multispectral images via key points detection approach [J]. Trans. Chin. Soc. Agric. Mach., 2023,54(3):266-273. | |
27 | 王东胜,刘贯山,李章海. 烟草栽培学[M].北京:中国科学技术大学出版社, 2002. |
WANG D S, LIU G S, LI Z H. Tobacco Cultivation [M]. Beijing: University of Science and Technology of China Press, 2002. | |
28 | 周忠发,李坡,万能,等.合成孔径雷达山地农业应用——烟草种植监测[M].北京:科学出版社,2017:35-37. |
29 | 胡灵炆,周忠发,尹林江,等.基于无人机RGB影像的苗期油菜识别[J].中国农业科技导报,2022,24(9):116-128. |
HU L W, ZHOU Z F, YIN L J, et al.. Rape identification at seedling stage based on UAV RGB image [J]. J. Agric. Sci. Technol., 2022,24(9):116-128. | |
30 | 张引.基于空间分布的最大类间方差牌照图像二值化算法[J].浙江大学学报(工学版),2001(3):42-45, 50. |
ZHANG Y. Preprocessing methods for computer imagesof particle saltation [J]. J. Zhejiang Univ. (Eng. Sci.) ,2001(3):42-45, 50. | |
31 | GONZALEZ R C, WOODS R E. Digital Image Processing [M]. 3rd ed n. Beijing: Publishing House of Electronics Industry, 2017: 479-483. |
32 | 尹林江,周忠发,李韶慧,等.基于无人机可见光影像对喀斯特地区植被信息提取与覆盖度研究[J].草地学报,2020,28(6):1664-1672. |
YIN L J, ZHOU Z F, LI S H, et al.. Research on vegetation extraction and fractional vegetation cover of karst area based on visible light image of UAV [J]. Acta Agrestia Sin.,2020,28(6):1664-1672. | |
33 | BENDIG J, KANG Y, AASEN H, et al.. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley [J]. Int. J. Appl,. Earth Observation Geoinform., 2015, 39(7): 79-87. |
34 | SHUFELT J A. Performance evaluation and analysis of monocular building extraction from aerial imagery [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1999,21(4): 311-326. |
35 | 李青,李玉,王玉,等.利用格式塔的高分辨率遥感影像建筑物提取[J].中国图象图形学报,2017, 22(8): 1162-1174. |
LI Q, LI Y, WANG Y, et al.. Building extraction from high resolution remotesensing image by using gestalt [J]. J. Image Graphics, 2017, 22(8): 1162-1174. | |
36 | 汪小钦,王苗苗,王绍强,等.基于可见光波段无人机遥感的植被信息提取[J].农业工程学报,2015, 31(5): 152-159. |
WANG X Q, WANG M M, WANG S Q, et al.. Extraction of vegetation information from visible unmanned aerialvehicle images [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(5): 152-159. | |
37 | 王猛,隋学艳,梁守真,等.利用无人机遥感技术提取农作物植被覆盖度方法研究[J].作物杂志, 2020(3): 177-183. |
WANG M, SUI X Y, LIANG S Z, et al.. Research on the method of extracting crop vegetation coverage using UAV remote sensing technology [J]. Crops, 2020(3): 177-183. | |
38 | 黄登红,周忠发,吴跃,等.基于无人机可见光影像的高原丘陵盆地区山药植株识别[J].热带地理,2019,39(4):571-582. |
HUANG D H, ZHOU Z F, WU Y, et al.. Identification of yam plants in karst plateau hill basin based on visible light images of an unmanned aerial vehicle [J]. Tropical Geography, 39 (4): 571-582. | |
39 | 赵晓伟,黄杨,汪永强,等.基于无人机多光谱数据的玉米苗株估算[J].自然资源遥感,2022,34(1):106-114. |
ZHAO X W, HUANG Y, WANG Y Q, et al.. Estimation of maize seedling number based on UAV multispectral data [J]. Remote Sensing for Nat. Resour., 2022,34(1) :106 -114. |
[1] | 金慧萍, 牟海雯, 刘腾, 于佳琳, 金小俊. 基于深度卷积神经网络的青菜和杂草识别[J]. 中国农业科技导报, 2024, 26(8): 122-130. |
[2] | 周喜新, 袁世林, 杨柳, 夏滔, 张毅, 范伟. 连作烟草根系分泌物鉴定及潜在化感物质的筛选研究[J]. 中国农业科技导报, 2024, 26(7): 136-146. |
[3] | 赵娅红, 胡骞予, 夏融, 王志江, 谢永辉, 叶贤文, 余磊, 齐颖, 羊绍武, 薛至勤, 吴治兴, 黄飞燕, 韩天华. 生物炭肥对易感根结线虫病烤烟根际菌群和理化性质的影响[J]. 中国农业科技导报, 2024, 26(4): 206-214. |
[4] | 王薇, 付虹雨, 卢建宁, 岳云开, 杨瑞芳, 崔国贤, 佘玮. 基于无人机航拍的苎麻倒伏信息解译研究[J]. 中国农业科技导报, 2024, 26(3): 91-97. |
[5] | 常峻嘉, 盖佳鑫, 陶刚, 莫转龙海. 哈茨木霉菌对烟草的促生及其黑胫病的诱导抗性评价[J]. 中国农业科技导报, 2024, 26(10): 168-176. |
[6] | 彭明康, 崔钰, 薛淇元, 殷允振, 尹哲, 张吴平, 李富忠. 基于天气数据增强和微调的苗期作物杂草识别定位模型[J]. 中国农业科技导报, 2024, 26(10): 125-134. |
[7] | 王潇然, 李笑语, 孙慧, 于海东, 石永春. 硼胁迫下烟草叶片转录组分析[J]. 中国农业科技导报, 2023, 25(8): 53-64. |
[8] | 尹兴盛, 包玲凤, 濮永瑜, 孙加利, 张庆, 李海平, 杨明英, 林跃平, 王怀鑫, 何永宏, 杨佩文. 减氮配施生物有机肥对植烟土壤特性及烟草青枯病的防效研究[J]. 中国农业科技导报, 2023, 25(7): 122-131. |
[9] | 王建华, 温晓蕾, 栗佳宁, 郭思柔, 赵春明, 母时风, 赵德轩, 齐慧霞. 不同施药方式对板栗红蜘蛛田间防效和效益分析[J]. 中国农业科技导报, 2023, 25(5): 139-146. |
[10] | 刘云飞, 韦凤杰, 夏茂林, 于兆锦, 夏昊, 衣春宇, 常剑波, 姬小明. 新型复合水凝胶对镉胁迫烟草幼苗的缓解效应[J]. 中国农业科技导报, 2023, 25(3): 188-197. |
[11] | 赵曾强, 张国丽, 马盼盼, 李有忠, 王志军, 谢宗铭, 孙国清. 海岛棉类受体胞质激酶基因GbRLCK10在抗病中的作用[J]. 中国农业科技导报, 2023, 25(3): 57-65. |
[12] | 尹林江, 李威, 赵卫权, 赵祖伦, 吕思思, 孙小琼. 水稻多时相植被指数特征及覆盖度提取研究[J]. 中国农业科技导报, 2023, 25(2): 83-98. |
[13] | 郭倩, 魏嘉豪, 张健, 叶章熙, 张厚喜, 赖正清, 邓辉. 基于无人机多光谱影像和随机森林的蔬菜识别[J]. 中国农业科技导报, 2023, 25(2): 99-110. |
[14] | 张豫丹, 王卫民, 倪博, 马晓寒, 李俊领, 许自成, 贾玮, 史久长. 烟草秸秆绿原酸提取工艺优化及其抑菌效果研究[J]. 中国农业科技导报, 2023, 25(1): 119-127. |
[15] | 卢闯, 胡海棠, 覃苑, 淮贺举, 李存军. 基于无人机多光谱影像的春玉米田管理分区研究[J]. 中国农业科技导报, 2022, 24(9): 106-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||