中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (7): 44-53.DOI: 10.13304/j.nykjdb.2024.0885
赵贵元1,2(), 王永强2, 刘建光2, 耿昭2, 张寒霜2, 吴立强1, 王省芬1(
), 张桂寅1(
)
收稿日期:
2024-10-28
接受日期:
2024-11-27
出版日期:
2025-07-15
发布日期:
2025-07-11
通讯作者:
王省芬,张桂寅
作者简介:
赵贵元 E-mail:zhaogy0302@163.com
基金资助:
Guiyuan ZHAO1,2(), Yongqiang WANG2, Jianguang LIU2, Zhao GENG2, Hanshuang ZHANG2, Liqiang WU1, Xingfen WANG1(
), Guiyin ZHANG1(
)
Received:
2024-10-28
Accepted:
2024-11-27
Online:
2025-07-15
Published:
2025-07-11
Contact:
Xingfen WANG,Guiyin ZHANG
摘要:
外源基因的插入位点能影响受体材料的基因表达及性状表现。为明确外源基因插入位点对抗虫棉Bt蛋白含量的影响,选用29个抗虫棉品系进行Bt蛋白含量测定以及全基因组重测序分析。结果表明,不同品系间的Bt蛋白含量存在显著差异,其中K3品系蛋白含量最高。通过全基因组重测序分析和PCR鉴定发现,Bt基因在29个品系均为单拷贝但插入位点存在差异,其中K3品系的Bt基因位于A02染色体2 791 303~2 791 335 bp(A02型),而其他品系的Bt基因则位于D12染色体(D12型)。为进一步验证插入位点对Bt蛋白含量的影响,利用K3品系与对照新棉33B进行杂交并构建F2群体,进一步分析F2群体的Bt蛋白含量发现,Bt基因插入位点位于A02染色体的F2单株(A02型)Bt蛋白含量极显著高于D12型单株。综上所述,Bt抗虫蛋白含量受插入位点影响,其位于A02染色体更利于Bt基因的高效表达。以上结果可为培育抗虫棉新品种提供种质资源和理论支撑。
中图分类号:
赵贵元, 王永强, 刘建光, 耿昭, 张寒霜, 吴立强, 王省芬, 张桂寅. 外源基因插入位点对抗虫棉Bt蛋白含量的影响[J]. 中国农业科技导报, 2025, 27(7): 44-53.
Guiyuan ZHAO, Yongqiang WANG, Jianguang LIU, Zhao GENG, Hanshuang ZHANG, Liqiang WU, Xingfen WANG, Guiyin ZHANG. Effect of Exogenous Gene Insertion Site on Bt Protein Content in Insect-resistant Cotton[J]. Journal of Agricultural Science and Technology, 2025, 27(7): 44-53.
品系 Line | 亲本 Parent | Bt基因 Bt gene | 品系 Line | 亲本 Parent | Bt基因 Bt gene |
---|---|---|---|---|---|
K1 | ND0901×33B | + | K21 | ND0921×33B | + |
K3 | ND0903×33B | + | K22 | ND0922×33B | + |
K4 | ND0904×33B | + | K23 | ND0923×33B | + |
K5 | ND0905×33B | + | K24 | ND0924×33B | + |
K6 | ND0906×33B | + | K27 | ND0927×33B | + |
K8 | ND0908×33B | + | K28 | ND0928×33B | + |
K9 | ND0909×33B | + | K29 | ND0929×33B | + |
K10 | ND0910×33B | + | K30 | ND0930×33B | + |
K11 | ND0911×33B | + | K31 | ND0931×33B | + |
K12 | ND0912×33B | + | K32 | ND0932×33B | + |
K13 | ND0913×33B | + | K33 | ND0933×33B | + |
K17 | ND0917×33B | + | K34 | ND0934×33B | + |
K18 | ND0918×33B | + | K35 | ND0935×33B | + |
K19 | ND0919×33B | + | K26(33B) | 爱字90×岱字50 Aizi 90×Daizi 50 | + |
K20 | ND0920×33B | + | CCRI12 | 乌干达4号×邢台6871 Wuganda 4×Xingtai 6871 | - |
表1 供试材料信息
Table 1 Information of the tested materials
品系 Line | 亲本 Parent | Bt基因 Bt gene | 品系 Line | 亲本 Parent | Bt基因 Bt gene |
---|---|---|---|---|---|
K1 | ND0901×33B | + | K21 | ND0921×33B | + |
K3 | ND0903×33B | + | K22 | ND0922×33B | + |
K4 | ND0904×33B | + | K23 | ND0923×33B | + |
K5 | ND0905×33B | + | K24 | ND0924×33B | + |
K6 | ND0906×33B | + | K27 | ND0927×33B | + |
K8 | ND0908×33B | + | K28 | ND0928×33B | + |
K9 | ND0909×33B | + | K29 | ND0929×33B | + |
K10 | ND0910×33B | + | K30 | ND0930×33B | + |
K11 | ND0911×33B | + | K31 | ND0931×33B | + |
K12 | ND0912×33B | + | K32 | ND0932×33B | + |
K13 | ND0913×33B | + | K33 | ND0933×33B | + |
K17 | ND0917×33B | + | K34 | ND0934×33B | + |
K18 | ND0918×33B | + | K35 | ND0935×33B | + |
K19 | ND0919×33B | + | K26(33B) | 爱字90×岱字50 Aizi 90×Daizi 50 | + |
K20 | ND0920×33B | + | CCRI12 | 乌干达4号×邢台6871 Wuganda 4×Xingtai 6871 | - |
引物名称 Primer name | 引物序列 Sequence (5’-3’) | 扩增片段长度 Amplified fragment length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
D12-LB-F | CACCAAAGAGAAACCCCAATC | 456 | 59.7 |
D12-LB-R | CGCTGATTGTTCTGTTCCTCC | ||
D12-RB-F | GTCAATACCGCAGGGCACTTA | 639 | 59.0 |
D12-RB-R | AGTCAAAGGAGCTTCATGGGT | ||
A02-LB-F | CACCAAAGAGAAACCCCAATC | 289 | 58.6 |
A02-LB-R | CACGGACAACTCAGGCAAGTA | ||
A02-RB-F | CCCAGGCTTGTCCACATCATC | 692 | 57.1 |
A02-RB-R | TCCCTCCTGAGCTACCATGTC |
表2 插入位点验证所用引物序列
Table 2 Primer sequences used for insertion site validation
引物名称 Primer name | 引物序列 Sequence (5’-3’) | 扩增片段长度 Amplified fragment length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
D12-LB-F | CACCAAAGAGAAACCCCAATC | 456 | 59.7 |
D12-LB-R | CGCTGATTGTTCTGTTCCTCC | ||
D12-RB-F | GTCAATACCGCAGGGCACTTA | 639 | 59.0 |
D12-RB-R | AGTCAAAGGAGCTTCATGGGT | ||
A02-LB-F | CACCAAAGAGAAACCCCAATC | 289 | 58.6 |
A02-LB-R | CACGGACAACTCAGGCAAGTA | ||
A02-RB-F | CCCAGGCTTGTCCACATCATC | 692 | 57.1 |
A02-RB-R | TCCCTCCTGAGCTACCATGTC |
图1 2019—2022年各抗虫棉品系Bt蛋白含量注:*和**分别表示与K26(新棉33B)在P<0.05和P<0.01水平差异显著。
Fig. 1 Bt protein content in different insect-resistant cotton lines from 2019 to 2022Note:* and ** indicate significant differences with K26 (Xinmian 33B) at P<0.05 and P<0.01 levels, respectively.
品系 Line | 染色体 Chromosome | 插入起点 Insert starting point/bp | 插入终点 Insertion end point/bp | 碱基缺失 Base deletion/bp | 拷贝数 Copies number |
---|---|---|---|---|---|
K1 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K3 | ChrA02 | 2 791 303 | 2 791 335 | 32 | 1 |
K4 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K5 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K6 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K8 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K9 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K10 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K11 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K12 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K13 | ChrD12 | 49 127 433 | 49 127 527 | 94 | 1 |
K17 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K18 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K19 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K20 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K21 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K22 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K23 | ChrD12 | 49 127 447 | 49 127 550 | 103 | 1 |
K24 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K27 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K28 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K29 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K30 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K31 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K32 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K33 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K34 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K35 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K26(33B) | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
表3 Bt 基因拷贝数和插入位点整合信息
Table 3 Copy number and insertion site integrate information of Bt gene
品系 Line | 染色体 Chromosome | 插入起点 Insert starting point/bp | 插入终点 Insertion end point/bp | 碱基缺失 Base deletion/bp | 拷贝数 Copies number |
---|---|---|---|---|---|
K1 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K3 | ChrA02 | 2 791 303 | 2 791 335 | 32 | 1 |
K4 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K5 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K6 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K8 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K9 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K10 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K11 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K12 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K13 | ChrD12 | 49 127 433 | 49 127 527 | 94 | 1 |
K17 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K18 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K19 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K20 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K21 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K22 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K23 | ChrD12 | 49 127 447 | 49 127 550 | 103 | 1 |
K24 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K27 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K28 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K29 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K30 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K31 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K32 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K33 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K34 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K35 | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
K26(33B) | ChrD12 | 49 127 447 | 49 127 527 | 80 | 1 |
图2 D12染色体插入位点的检测A:D12-LB引物检测结果;B:D12-RB检测结果。1—水;2—K3;3—新棉33B;M—DL2000 DNA marker;其余甬道为其他品系
Fig. 2 Detection of ChrD12 insertion siteA: D12-LB primer detection results; B: D12-RB primer detection results. 1—Water; 2—K3; 3—Xinmian 33B; M—DL2000 DNA marker; other lanes are other lines
图3 A02染色体插入位点检测A: A02-LB引物检测结果;B: A02-RB检测结果。1—水;2—K3;3—新棉33B;M—DL2000 DNA marker;其余甬道为其他品系
Fig. 3 Detection of ChrA02 insertion siteA: A02-LB primer detection results; B: A02-RB primer detection results; 1—Water; 2—K3; 3—Xinmian 33B; M—DL2000 DNA marker; other lanes are other lines
图4 2019—2023年K3与新棉33B Bt蛋白含量注:**表示K3和新棉33B间在P<0.01水平差异显著。
Fig. 4 K3 and Xinmian 33B Bt protein contentfrom 2019 to 2023Note:** indicates significant difference between K3 and Xinmian 33B at P<0.01 level.
F1单株 F1 individual line | Bt蛋白含量 Bt protein content/(ng·g-1) | F1单株代号 F1 individual line | Bt蛋白含量 Bt protein content/(ng·g-1) | F1单株 F1 individual line | Bt蛋白含量 Bt protein content/(ng·g-1) |
---|---|---|---|---|---|
1 | 2 620.96 | 35 | 1 900.34 | 69 | 1 959.75 |
2 | 2 343.26 | 36 | 2 620.28 | 70 | 2 282.87 |
3 | 2 080.38 | 37 | 2 003.94 | 71 | 2 375.58 |
4 | 1 719.96 | 38 | 2 708.17 | 72 | 2 582.07 |
5 | 1 901.95 | 39 | 2 509.09 | 73 | 2 681.05 |
6 | 1 567.73 | 40 | 1 739.91 | 74 | 1 778.00 |
7 | 2 710.37 | 41 | 1 986.55 | 75 | 1 979.19 |
8 | 2 160.84 | 42 | 2 003.78 | 76 | 2 425.47 |
9 | 2 458.44 | 43 | 2 452.15 | 77 | 2 592.63 |
10 | 2 206.88 | 44 | 2 689.70 | 78 | 2 749.04 |
11 | 2 030.17 | 45 | 2 006.63 | 79 | 2 552.07 |
12 | 2 616.94 | 46 | 1 740.00 | 80 | 2 032.94 |
13 | 1 804.79 | 47 | 2 092.82 | 81 | 1 752.55 |
14 | 2 380.22 | 48 | 2 293.19 | 82 | 2 506.93 |
15 | 2 519.91 | 49 | 2 493.81 | 83 | 1 766.27 |
16 | 2 521.00 | 50 | 1 569.09 | 84 | 2 384.92 |
17 | 1 839.19 | 51 | 1 937.93 | 85 | 2 458.43 |
18 | 2 658.52 | 52 | 1 600.92 | 86 | 2 156.09 |
19 | 1 980.21 | 53 | 2 034.36 | 87 | 2 629.90 |
20 | 2 159.45 | 54 | 2 320.95 | 88 | 1 717.48 |
21 | 1 589.29 | 55 | 2 641.93 | 89 | 1 983.71 |
22 | 2 728.60 | 56 | 1 710.80 | 90 | 2 697.81 |
23 | 1 904.49 | 57 | 1 846.32 | 91 | 2 124.19 |
24 | 1 786.33 | 58 | 2 500.14 | 92 | 2 477.61 |
25 | 2 058.37 | 59 | 2 240.53 | 93 | 2 530.88 |
26 | 2 744.91 | 60 | 2 588.66 | 94 | 2 214.65 |
27 | 2 762.57 | 61 | 2 657.60 | 95 | 2 265.45 |
28 | 2 133.94 | 62 | 2 463.61 | 96 | 2 119.77 |
29 | 1 591.75 | 63 | 1 885.70 | 97 | 1 962.63 |
30 | 1 710.46 | 64 | 2 138.93 | 98 | 1 747.97 |
31 | 2 150.90 | 65 | 2 274.05 | 99 | 1 857.94 |
32 | 2 238.87 | 66 | 1 957.03 | 100 | 2 001.26 |
33 | 2 691.36 | 67 | 2 034.69 | 101 | 2 410.54 |
34 | 1 790.58 | 68 | 2 470.77 | 102 | 2 401.90 |
表4 F1群体单株 Bt蛋白含量
Table 4 Bt protein content of individual lines in F1 population
F1单株 F1 individual line | Bt蛋白含量 Bt protein content/(ng·g-1) | F1单株代号 F1 individual line | Bt蛋白含量 Bt protein content/(ng·g-1) | F1单株 F1 individual line | Bt蛋白含量 Bt protein content/(ng·g-1) |
---|---|---|---|---|---|
1 | 2 620.96 | 35 | 1 900.34 | 69 | 1 959.75 |
2 | 2 343.26 | 36 | 2 620.28 | 70 | 2 282.87 |
3 | 2 080.38 | 37 | 2 003.94 | 71 | 2 375.58 |
4 | 1 719.96 | 38 | 2 708.17 | 72 | 2 582.07 |
5 | 1 901.95 | 39 | 2 509.09 | 73 | 2 681.05 |
6 | 1 567.73 | 40 | 1 739.91 | 74 | 1 778.00 |
7 | 2 710.37 | 41 | 1 986.55 | 75 | 1 979.19 |
8 | 2 160.84 | 42 | 2 003.78 | 76 | 2 425.47 |
9 | 2 458.44 | 43 | 2 452.15 | 77 | 2 592.63 |
10 | 2 206.88 | 44 | 2 689.70 | 78 | 2 749.04 |
11 | 2 030.17 | 45 | 2 006.63 | 79 | 2 552.07 |
12 | 2 616.94 | 46 | 1 740.00 | 80 | 2 032.94 |
13 | 1 804.79 | 47 | 2 092.82 | 81 | 1 752.55 |
14 | 2 380.22 | 48 | 2 293.19 | 82 | 2 506.93 |
15 | 2 519.91 | 49 | 2 493.81 | 83 | 1 766.27 |
16 | 2 521.00 | 50 | 1 569.09 | 84 | 2 384.92 |
17 | 1 839.19 | 51 | 1 937.93 | 85 | 2 458.43 |
18 | 2 658.52 | 52 | 1 600.92 | 86 | 2 156.09 |
19 | 1 980.21 | 53 | 2 034.36 | 87 | 2 629.90 |
20 | 2 159.45 | 54 | 2 320.95 | 88 | 1 717.48 |
21 | 1 589.29 | 55 | 2 641.93 | 89 | 1 983.71 |
22 | 2 728.60 | 56 | 1 710.80 | 90 | 2 697.81 |
23 | 1 904.49 | 57 | 1 846.32 | 91 | 2 124.19 |
24 | 1 786.33 | 58 | 2 500.14 | 92 | 2 477.61 |
25 | 2 058.37 | 59 | 2 240.53 | 93 | 2 530.88 |
26 | 2 744.91 | 60 | 2 588.66 | 94 | 2 214.65 |
27 | 2 762.57 | 61 | 2 657.60 | 95 | 2 265.45 |
28 | 2 133.94 | 62 | 2 463.61 | 96 | 2 119.77 |
29 | 1 591.75 | 63 | 1 885.70 | 97 | 1 962.63 |
30 | 1 710.46 | 64 | 2 138.93 | 98 | 1 747.97 |
31 | 2 150.90 | 65 | 2 274.05 | 99 | 1 857.94 |
32 | 2 238.87 | 66 | 1 957.03 | 100 | 2 001.26 |
33 | 2 691.36 | 67 | 2 034.69 | 101 | 2 410.54 |
34 | 1 790.58 | 68 | 2 470.77 | 102 | 2 401.90 |
图5 两类单株的Bt蛋白含量注:**表示在P<0.01水平差异显著。
Fig. 5 Bt protein content in two types of individual plantsNote:** indicates significant difference at P<0.01 level.
[1] | 夏荟菁.转Cry1C*基因棉花材料的抗虫性鉴定与评价[D].武汉:华中农业大学,2023. |
XIA H J. Insect-resistant identification and evaluation of transgenic Cry1C* cotton [D]. Wuhan: Huazhong Agricultural University, 2023. | |
[2] | 文学,张宝红.转基因抗虫棉研究现状与展望[J].农业生物技术学报,2000, 8(2):194-199. |
WEN X, ZHANG B H. Progress and prospects for insect-resistant transgenic cotton [J]. J. Agric. Biotechnol., 2000, 8(2):194-199. | |
[3] | 张京飞.转Bt基因抗虫棉抗虫性研究与新品系筛选[D].保定:河北农业大学,2014. |
ZHANG J F. Identification of insect resisitance and new variety screening in Bt transgenic cotton [D]. Baoding: Hebei Agricultural University, 2014. | |
[4] | 邹奎.我国转基因抗虫棉品种现状分析[J].中国棉花,2003,30(8):2-4. |
[5] | 徐泽俊,聂以春,张献龙,等.转双价抗虫基因棉花的主要农艺性状的遗传变异[J].植物遗传资源学报,2011,12(1):125-130. |
XU Z J, NIE Y C, ZHANG X L, et al.. Genetic variation of main agronomic traits of transgenic insect resistant lines in cotton [J].J. Plant Genet. Resour., 2011,12(1):125-130. | |
[6] | 李浩辉,刘彩月,张海文,等.2022年度全球转基因作物产业化发展现状及趋势分析[J].中国农业科技导报,2023,25(12):6-16. |
LI H H, LIU C Y, ZHANG H W,et al..Global genetically modified crop industrialization trends in 2022 [J]. J. Agric. Sci.Technol., 2023, 25(12):6-16. | |
[7] | 谷淇深,李志坤,王省芬,等. Bt抗虫棉新品系毒蛋白表达差异分析[J].棉花学报,2016,29(2):128-137. |
GU Q S, LI Z K, WANG X F, et al.. Differential expression analysis of Bt protein in new Bt cotton lines [J]. Cott. Sci., 2016, 29(2):128-137. | |
[8] | 周冬生,吴振延,王学林,等.转Bt基因棉的抗棉铃虫性及其生理作用研究进展[J].安徽农业科学,2000,28(1):65-68. |
ZHOU D S, WU Z Y, WANG X L, et al.. Progress and prospects of the resistance to cotton boll worm and physiological action of Bt transgenic cotton [J]. J. Anhui Agric. Sci., 2000, 28(1):65-68. | |
[9] | 陈源,顾超,王桂霞,等.蕾期低温及湿度胁迫对Bt棉杀虫蛋白表达量的影响[J].作物学报,2013,39(1):184-189. |
CHEN Y, GU C, WANG G X, et al.. Effect on stresses of 18 ℃ and different relative humidities on Bt protein ex-pression at squaring stage in Bt cotton [J].Acta Agron. Sin., 2013,39(1):184-189. | |
[10] | JIANG L J, DUAN L S, TIAN X L, et al.. NaCl salinity stress decreased Bacillus thuringiensis (Bt) protein content of transgenic Bt cotton (Gossypium hirsutum L.) seedlings [J]. Environ. Exp. Bot., 2006, 55(3):315-320. |
[11] | 赵红霞,王士杰,朱继杰,等.不同遗传背景转基因抗虫棉Bt蛋白表达与氮代谢关系研究[J].棉花学报,2018,30(6):498-504. |
ZHAO H X, WANG S J, ZHU J J, et al.. Relationship between Bt protein expression and nitrogen metabolism in insect-resistant transgenic cotton lines with different genetic backgrounds [J]. Cott. Sci., 2018, 30(6):498-504. | |
[12] | HIMANEN S J, NERG A M, NISSINEN A, et al.. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent [J]. Environ. Pollut., 2009, 157(1):181-185. |
[13] | 王家宝,王留明,沈法富,等.环境因素对转Bt基因棉Bt杀虫蛋白表达量的影响[J].山东农业科学,2000,32(6):4-6. |
WANG J B, WANG L M, SHEN F F, et al.. Effect of environment elements on Bt-protein content in transgenic Bt cotton [J]. Shandong Agric. Sci., 2000, 32(6):4-6. | |
[14] | LI R, QUAN S, YAN X F, et al.. Molecular characterization of genetically-modified crops:challenges and strategies [J]. Biotechnol. Adv., 2017, 35(2):302-309. |
[15] | 王翠云,刘艳,刘允军.外源基因在转基因玉米中的整合位点分析[J].生物技术通报,2019,35(3):1-5. |
WANG C Y, LIU Y, LIU Y J. Analysis of the integration site of exogenous gene in transgenic maize [J]. Biotechnol. Bull., 2019, 35(3):1-5. | |
[16] | 郭旺珍,孙敬,郭玉芳,等.转基因抗虫棉Bt基因不同剂量的聚合与抗虫性表现[J].遗传学报,2001,28(7):668-676. |
GUO W Z, SUN J, GUO Y F, et al.. Investigation of different dosages of inserted Bt genes and their insect-resistance in transgenic Bt cotton [J]. J. Genet. Genom., 2001, 28(7):668-676. | |
[17] | 赵梅香.转基因大麦的gfp基因遗传表达及整合位点结构[D].扬州:扬州大学,2007. |
ZHAO M X. Integration loci structure and genetic expression of green fluorescent protein gfp gene in transgenic barley (Horsdeum vulgare L.) [D]. Yangzhou:Yangzhou University, 2007. | |
[18] | 夏兰芹,王远,郭三堆.外源基因在转基因植物中的表达与稳定性[J].生物技术通报,2000(3):8-12. |
XIA L Q, WANG Y, GUO S D. The stability of the expression of foreign genes in transgenic plants [J]. Biotechnol. Bull., 2000(3):8-12. | |
[19] | 董美. NGS在生物技术作物分子特征解析中的应用[D]. 北京:中国农业科学院, 2018. |
DONG M. Application of NGS for molecular characterization of biotech crops [D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. | |
[20] | 陈天子,凌溪铁,杨郁文,等.转GbVe1基因在棉花基因组中的整合与定位分析[J].棉花学报,2019,31(1):1-11. |
CHEN T Z, LING X T, YANG Y W, et al.. The integration and insertion site of GbVe1 gene in the genome of transgenic cotton(Gossypium hirsutum) [J]. Cott. Sci., 2019, 31(1):1-11. | |
[21] | 金永梅,马瑞,于志晶,等.转cry1C基因抗虫水稻吉生粳3号外源基因整合分析与品系特异性检测[J].生物技术通报,2019,35(3):6-12. |
JIN Y M, MA R, YU Z J, et al.. Integration analysis of exogenous gene and line-specific detection in the insect-resistant cry1C-transgenic rice Jishengjing3 [J]. Biotechnol. Bull., 2019, 35(3):6-12. | |
[22] | PEDERSEN C, ZIMNY J, BECKER D, et al.. Localization of introduced genes on the chromosomes of transgenic barley,wheat and Triticale by fluorescence in situ hybridization [J].Theor. Appl. Genet., 1997, 94(6):749-757. |
[23] | 李亚丽,刘中来,周洁,等.转mCherry基因水稻的遗传分析及T-DNA整合位点的研究[J].分子植物育种,2012,10(2):121-130. |
LI Y L, LIU Z L, ZHOU J, et al.. Genetic analysis of mCherry transgenic rice and molecular characterization of T-DNA integration sites in the rice genome [J]. Mol. Plant Breed., 2012, 10(2):121-130. | |
[24] | PATERSON A H, BRUBAKER C L, WENDEL J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis [J]. Plant Mol. Biol. Rep., 1993, 11(2):122-127. |
[25] | MA Z Y, HE S P, WANG X F, et al.. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield [J]. Nat. Genet., 2018, 50(6): 803-813. |
[26] | KERSTEN B, LEITE MONTALVÃO A P, HOENICKA H, et al.. Sequencing of two transgenic early-flowering poplar lines confirmed vector-free single-locus T-DNA integration [J].Transgenic Res., 2020, 29(3):321-337. |
[27] | 魏嘉,王秀东,卜显峰,等.基于重测序鉴定耐盐转基因大豆事件外源T-DNA整合位点及特异性检测[J].南京农业大学学报,2023, 46(4):710-717. |
WEI J, WANG X D, BU X F, et al.. Identification of T-DNA insertion and specific detection of transgenic soybean event based on re-sequencing technology [J]. J. Nanjing Agric. Univ., 2023, 46(4):710-717. | |
[28] | 张伟.玉米超表达突变体生成系统的完善与突变体筛选鉴定[D].武汉:华中农业大学, 2023. |
ZHANG W. Improvement of maize overexpression mutant generation system and identification of mutants [D]. Wuhan: Huazhong Agricultural University, 2023. | |
[29] | 周星鲁.转双Bt基因107杨T-DNA整合及对基因表达的影响[D].保定:河北农业大学, 2021. |
ZHOU X L.T-DNA integration information of double Bt gene populus×euramericana “Neva” and its response to Bt gene [D]. Baoding: Hebei Agricultural University, 2021. | |
[30] | 程俊凌,赵亮,徐剑文,等.基于重测序鉴定GbTMEM214基因在陆地棉基因组的插入位点[J].棉花学报,2024,36(4):285-295. |
CHENG J L, ZHAO L, XU J W. Identification of GbTMEM214 insertion site in Gossypium hirsutum genome based on resequencing [J]. Cott. Sci., 2024, 36(4):285-295. | |
[31] | 张美冬,孙玲,熊秋芳.转基因作物的安全性及其评价[J].湖北农业科学,2015,54(5):1025-1030. |
ZHANG M D, SUN L, XIONG Q F. Safety and evaluation of transgenic crops [J]. Hubei Agric. Sci., 2015, 54(5):1025-1030. | |
[32] | CADE R, BURGIN K, SCHILLING K, et al.. Evaluation of whole genome sequencing and an insertion site characterization method for molecular characterization of GM maize [J]. J. Regul. Sci., 2018, 6(1):1-14. |
[33] | PARK D, PARK S H, BAN Y W, et al.. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data [J/OL]. BMC Biotechnol., 2017,17(1):67 [2024-09-20]. . |
[34] | SCHOUTEN H J, VANDE GEEST H, PAPADIMITRIOU S, et al.. Re-sequencing transgenic plants revealed rearrangements at T-DNA inserts,and integration of a short T-DNA fragment,but no increase of small mutations elsewhere [J]. Plant Cell Rep., 2017, 36(3):493-504. |
[35] | 魏强,奥岩,杨漫漫,等.利用全基因组重测序技术鉴定五指山猪GHR突变体转基因插入位点[J].遗传, 2021,43(12):1149-1158. |
WEI Q, AO Y, YANG M M, et al.. Identification of genomic insertion of dominant-negative GHR mutation transgenes in Wuzhishan pig using whole genome sequencing method [J]. Hereditas, 2021, 43(12):1149-1158. | |
[36] | 徐纪明,胡晗,毛文轩,等.利用重测序技术获取转基因植物T-DNA插入位点[J].遗传,2018,40(8):676-682. |
XU J M, HU H, MAO W X, et al.. Identifying T-DNA insertion site(s) of transgenic plants by whole-genome resequencing [J].Hereditas, 2018, 40(8):676-682. | |
[37] | TIRNAZ S, BATLEY J. DNA methylation:toward crop disease resistance improvement [J]. Trends Plant Sci., 2019,24(12):1137-1150. |
[38] | GALLEGO-BARTOLOMÉ J.DNA methylation in plants:mechanisms and tools for targeted manipulation [J]. New Phytol., 2020, 227(1):38-44. |
[39] | DELERIS A, HALTER T, NAVARRO L. DNA methylation and demethylation in plant immunity [J]. Annu. Rev. Phytopathol., 2016, 54:579-603. |
[40] | PERTEA M, KIM D, PERTEA G M, et al.. Transcript-level expression analysis of RNA-seq experiments with HISAT,StringTie and Ballgown [J]. Nat. Protoc., 2016, 11(9):1650-1667. |
[41] | 孟彩凤,周颖.DNA甲基化对植物生长发育的调控研究[J].安徽农学通报,2015,21(10):29-32. |
MENG C F, ZHOU Y. Regulation effect of DNA methylation on the growth and development of plant [J]. Anhui Agric. Sci. Bull., 2015, 21(10):29-32. | |
[42] | ZHANG X Y, YAZAKI J, SUNDARESAN A, et al.. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis [J]. Cell, 2006, 126(6):1189-1201. |
[43] | 夏兰芹,徐琼芳,郭三堆.抗虫棉生长发育过程中Bt杀虫基因及其表达的变化[J].作物学报,2005,31(2):197-202. |
XIA L Q, XU Q F, GUO S D. Bt insecticidal gene and its temporal expression in transgenic cotton plants [J]. Acta Agron. Sin., 2005, 31(2):197-202. | |
[44] | CHEN Z Y,RIU E, HE C Y, et al.. Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation [J]. Mol. Ther., 2008,16(3):548-556. |
[45] | 朱婷. m6A甲基化修饰调控YS型小麦温敏雄性不育系花药育性的分子机制[D].杨凌:西北农林科技大学, 2023. |
ZHU T. The molecular regulation mechanism of m6A modification on anther fertility of YS-type thermo-sensitive male sterile line in wheat (Triticum aestivum L.) [D]. Yangling: Northwest A&F University, 2023. | |
[46] | AKHTAR J, LUGOBONI M, JUNION G.m~6A RNA modification in transcription regulation [J]. Transcription, 2021, 12(5):266-276. |
[47] | SONG P Z, TAYIER S, CAI Z H, et al.. RNA methylation in mammalian development and cancer [J]. Cell Biol. Toxicol., 2021, 37(6):811-831. |
[1] | 陈媛, 刘震宇, 周明园, 张晨霞, 田巧凤, 张中宁, 张祥, 陈德华. 种植密度对转Bt棉纤维杀虫蛋白表达量及氮代谢的影响[J]. 中国农业科技导报, 2021, 23(7): 45-53. |
[2] | 李琴1,2,陈全家1,孟志刚2,张锐2,梁成真2,孙国清2,孟钊红2,翟红红2,张杰3,郭三堆2*. cry2Ah-M基因杀虫活性研究[J]. 中国农业科技导报, 2017, 19(4): 10-16. |
[3] | 柳小庆,陈茹梅. 增强外源基因在转基因植物中表达的策略[J]. , 2012, 14(1): 76-84. |
[4] | 李俊,郑秀丽,邓平建,刘国振. 商品化转基因植物的外源基因及其检测技术[J]. , 2008, 10(3): 31-39. |
[5] | 张锐 王远 孟志刚 孙国清 郭三堆. 国产转基因抗虫棉研究回顾与展望[J]. , 2007, 9(4): 32-42. |
[6] | 汪若海 李秀兰. 外源基因及异常种质增强棉花杂种优势[J]. , 2001, 3(4): 46-48. |
[7] | 郭三堆 崔洪志. 中国抗虫棉GFM Cry1A杀虫基因的合成及表达载体构建[J]. , 2000, 2(2): 21-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||