中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (8): 239-249.DOI: 10.13304/j.nykjdb.2025.0124
• 方法与技术创新 • 上一篇
马燕勤1,2(), 周玉洁1,2, 龙海成1,2, 李菊1,2, 王海娥1,2, 常伟3, 李志1,2, 钟建1,2, 苗明军1,2, 杨亮1,2(
)
收稿日期:
2025-02-26
接受日期:
2025-06-23
出版日期:
2025-08-15
发布日期:
2025-08-26
通讯作者:
杨亮
作者简介:
马燕勤 E-mail:dora0514@sina.cn;
基金资助:
Yanqin MA1,2(), Yujie ZHOU1,2, Haicheng LONG1,2, Ju LI1,2, Haie WANG1,2, Wei CHANG3, Zhi LI1,2, Jian ZHONG1,2, Mingjun MIAO1,2, Liang YANG1,2(
)
Received:
2025-02-26
Accepted:
2025-06-23
Online:
2025-08-15
Published:
2025-08-26
Contact:
Liang YANG
摘要:
为构建烟草脆裂病毒(tobacco rattle virus,TRV)介导的十字花科植物的病毒诱导的基因沉默(virus-induced gene silencing,VIGS)体系,以十字花科蔬菜上海青和芥菜为研究对象,以内源八氢番茄红素脱氢酶(phytoene desaturase,PDS)基因为标记基因,构建pTRV2-BrPDS、pTRV2-BjuPDS-g和pTRV2-BjuPDS-c载体,并进一步对农杆菌的侵染水平进行优化,构建上海青和芥菜的高效VIGS系统。结果显示,pTRV2-BrPDS、pTRV2-BjuPDS-g和pTRV2-BjuPDS-c载体构建成功。当农杆菌OD600=1.0时,上海青植株白化表型最明显,当农杆菌OD600= 0.8时,芥菜的沉默效果最佳。通过qRT-PCR证实,白化表型是由TRV重组病毒侵染植株后,内源性PDS基因发生沉默而引起的。以上研究结果为利用VIGS技术研究十字花科植物的基因功能提供了理论依据。
中图分类号:
马燕勤, 周玉洁, 龙海成, 李菊, 王海娥, 常伟, 李志, 钟建, 苗明军, 杨亮. TRV介导的上海青和芥菜VIGS体系的构建[J]. 中国农业科技导报, 2025, 27(8): 239-249.
Yanqin MA, Yujie ZHOU, Haicheng LONG, Ju LI, Haie WANG, Wei CHANG, Zhi LI, Jian ZHONG, Mingjun MIAO, Liang YANG. Construction of TRV-mediated VIGS System in Brassica rapa subsp. chinensis and Brassica juncea[J]. Journal of Agricultural Science and Technology, 2025, 27(8): 239-249.
图1 基于TRV的VIGS载体结构注:Replicase—依赖于RNA的RNA聚合酶;16 KD—16 kD富半胱氨酸蛋白;MP—移动蛋白;CP—外壳蛋白;LB 和RB—T-DNA左、右边界;Rz—自剪切核酸酶;MCS—多克隆位点。
Fig. 1 Structure of TRV-based VIGS vectorNote: Replicase—RNA-dependent RNA polymerase; 16 KD—16 kD cysteine-rich protein; MP—Move protein; CP—Coat protein; LB and RB—left and right border of T-DNA; Rz—Ribozyme; MCS—Multiple clone site.
引物名称 Primer name | 序列 Sequence (5’-3’) | 备注 Reference |
---|---|---|
BrPDS-F | ATGGTTGTGTTTGGGAATGT | 扩增BrPDS开放阅读框序列 |
BrPDS-R | TCATGTTGATACAGTTGTCTC | Amplify BrPDS open reading frame |
BjuPDS-g-F | ATGGTTGTGTTTGGGAATGT | 扩增BjuPDS-g 开放阅读框序列 |
BjuPDS-g-R | TCATGTTGATACAGTTGTCTC | Amplify BjuPDS-g open reading frame |
BjuPDS-c-F | ATGGTTGTGTTTGGGAATGT | 扩增BjuPDS-c 开放阅读框序列 |
BjuPDS-c-R | TCATGTTGATACAGTTGTCTC | Amplify BjuPDS-g open reading frame |
BrPDS-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2-BrPDS沉默表达载体 Construct TRV2-BrPDS vector |
BrPDS-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
BjuPDS-g-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2-BjuPDS-g沉默表达载体 Construct TRV2-BjuPDS-g vector |
BjuPDS-g-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
BjuPDS-c-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2- BjuPDS-c沉默表达载体 Construct TRV2-BjuPDS-c vector |
BjuPDS-c-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
YL192-F | CTTGAAGAAGAAGACTTTCGAAGTCTC | 鉴定TRV1,约900 bp Identify TRV1, 900 bp |
YL192-R | GTAAAATCATTGATAACAACACAGACAAAC | |
YL156-F | GGTCAAGGTACGTAGTAGAG | 鉴定TRV2,约390 bp Identify TRV1, 390 bp |
YL156-R | CGAGAATGTCAATCTCGTAGG | |
BrPDS-F2 | CCTGATCGCGTGACTGATG | 内源BrPDS表达检测 Detect expression of BrPDS |
BrPDS-R2 | TGTTCAACAATCGGCATGCA | |
BrActin-F | GTCTCCATCTCCTGCTCATAGT | 上海青内参基因 |
BrActin-R | GCTGACCGTATGAGCAAAGA | actin gene of B. rapa subsp. chinensis |
BjuPDS-g-F2 | CTGATCGCGTGACTGATGAG | 内源BjuPDS-g表达检测 |
BjuPDS-g-R2 | CCATGTTTCTCCTGAAGAAACC | Detect expression of BjuPDS-g |
BjuPDS-c-F2 | TATAGCCATGTCAAAGGCGC | 内源BjuPDS-c表达检测 |
BjuPDS-c-R2 | GCTCAATCTTCCTTATCCTTG | Detect expression of BjuPDS-c |
BjuActin-R | GCTGACCGTATGAGCAAAGA | 芥菜内参基因 |
BjuActin-R | GTTGGAAAGTGCTGAGGGAT | actin gene of B. juncea |
表1 载体构建引物
Table 1 Primers for vector construction
引物名称 Primer name | 序列 Sequence (5’-3’) | 备注 Reference |
---|---|---|
BrPDS-F | ATGGTTGTGTTTGGGAATGT | 扩增BrPDS开放阅读框序列 |
BrPDS-R | TCATGTTGATACAGTTGTCTC | Amplify BrPDS open reading frame |
BjuPDS-g-F | ATGGTTGTGTTTGGGAATGT | 扩增BjuPDS-g 开放阅读框序列 |
BjuPDS-g-R | TCATGTTGATACAGTTGTCTC | Amplify BjuPDS-g open reading frame |
BjuPDS-c-F | ATGGTTGTGTTTGGGAATGT | 扩增BjuPDS-c 开放阅读框序列 |
BjuPDS-c-R | TCATGTTGATACAGTTGTCTC | Amplify BjuPDS-g open reading frame |
BrPDS-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2-BrPDS沉默表达载体 Construct TRV2-BrPDS vector |
BrPDS-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
BjuPDS-g-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2-BjuPDS-g沉默表达载体 Construct TRV2-BjuPDS-g vector |
BjuPDS-g-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
BjuPDS-c-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2- BjuPDS-c沉默表达载体 Construct TRV2-BjuPDS-c vector |
BjuPDS-c-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
YL192-F | CTTGAAGAAGAAGACTTTCGAAGTCTC | 鉴定TRV1,约900 bp Identify TRV1, 900 bp |
YL192-R | GTAAAATCATTGATAACAACACAGACAAAC | |
YL156-F | GGTCAAGGTACGTAGTAGAG | 鉴定TRV2,约390 bp Identify TRV1, 390 bp |
YL156-R | CGAGAATGTCAATCTCGTAGG | |
BrPDS-F2 | CCTGATCGCGTGACTGATG | 内源BrPDS表达检测 Detect expression of BrPDS |
BrPDS-R2 | TGTTCAACAATCGGCATGCA | |
BrActin-F | GTCTCCATCTCCTGCTCATAGT | 上海青内参基因 |
BrActin-R | GCTGACCGTATGAGCAAAGA | actin gene of B. rapa subsp. chinensis |
BjuPDS-g-F2 | CTGATCGCGTGACTGATGAG | 内源BjuPDS-g表达检测 |
BjuPDS-g-R2 | CCATGTTTCTCCTGAAGAAACC | Detect expression of BjuPDS-g |
BjuPDS-c-F2 | TATAGCCATGTCAAAGGCGC | 内源BjuPDS-c表达检测 |
BjuPDS-c-R2 | GCTCAATCTTCCTTATCCTTG | Detect expression of BjuPDS-c |
BjuActin-R | GCTGACCGTATGAGCAAAGA | 芥菜内参基因 |
BjuActin-R | GTTGGAAAGTGCTGAGGGAT | actin gene of B. juncea |
图3 VIGS载体的构建A:内源PDS基因扩增片段,-表示阴性对照,1~3分别为BrPDS、BjuPDS-g和BjuPDS-c基因片段;B:重组载体转化大肠杆菌DH5α菌落PCR检测,1~3为pTRV2-BrPDS DH5α菌落PCR 检测,4~6为pTRV2-BjuPDS-g DH5α菌落PCR 检测,7~9为pTRV2-BjuPDS-c DH5α菌落PCR检测;C:重组载体转化根癌农杆菌GV3101菌株菌落PCR检测,1~2为pTRV2-BrPDS GV3101菌落PCR 检测,3~4为pTRV2-BjuPDS-g大GV3101菌落PCR 检测,5~6为pTRV2-BjuPDS-c GV3101菌落PCR 检测。M—DL2000 DNA Marker。
Fig. 3 Construction of VIGS vectorsA: Amplification fragments of Endogenous PDS gene, - indicates negative control; 1~3 are BrPDS, BjuPDS-g and BjuPDS-c gene fragments, respectively; B: PCR detection of recombinant vector-transformed Escherichia coli DH5α colonies, 1~3 are pTRV2-BrPDS DH5αcolonies PCR detection, respectively; 4~6 are pTRV2-BjuPDS-g DH5αcolonies PCR detection, respectively; 7~9 are pTRV2-BjuPDS-c DH5αcolonies PCR detection, respectively; C: PCR detection of recombinant vector-transformed Agrobacterium tumefaciens GV3101 strain colonies, 1~2 are pTRV2-BrPDS GV3101 colonies PCR detection, respectively; 3~4 are pTRV2-BjuPDS-g GV3101 colonies PCR detection, respectively; 5~6 are pTRV2-BjuPDS-c GV3101 colonies PCR detection. M—DL2000 DNA Marker
图4 不同农杆菌水平下植株的白化率注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 4 Albinism rate of plant under different Agrobacterium levelsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图5 上海青BrPDS沉默植株的白化表型A:OD600=0.3;B:OD600=0.5;C:OD600=0.8;D:OD600=1.0。标尺=1 cm
Fig. 5 Albinism phenotype of Chinese cabbage plant with silenced BrPDSA: OD600=0.3; B: OD600=0.5; C: OD600=0.8; D: OD600=1.0. Scale bar=1 cm
图6 芥菜PDS基因下调导致植株叶片白化现象A:抱子芥OD600=0.3;B:抱子芥OD600=0.5;C:抱子芥OD600=0.8;D:抱子芥OD600=1.0; E:结球芥OD600=0.3;F:结球芥OD600=0.5;G:结球芥OD600=0.8;H:结球芥OD600=1.0。标尺=1 cm
Fig. 6 Leaf albinismof B. juncea plant with downregulation of PDSA: B. juncea var. gemmifera with OD600=0.3; B: B. juncea var. gemmifera with OD600=0.5; C: B. juncea var. gemmifera with OD600=0.8; D: B. juncea var. gemmifera with OD600=1.0;E: B. juncea var. capitate with OD600=0.3; F: B. juncea var. capitate with OD600=0.5; G: B. juncea var. capitate with OD600=0.8; H: B. juncea var. capitate with OD600=1.0. Scale bar =1 cm
图7 芥菜内源PDS基因下调导致植株花序白化现象A:抱子芥;B:结球芥。标尺=1 mm
Fig. 7 Inflorescence albinism of B. juncea plant with downregulation of PDSA: B. juncea var. gemmifera; B: B.juncea var. capitata. Scale bar =1 mm
图8 芥菜内源PDS基因下调导致植株花冠白化现象A:抱子芥;B:结球芥。标尺=1 mm
Fig. 8 Corolla albinism of B. juncea plant with downregulation of PDSA: B. juncea var. gemmifera; B: B.juncea var. capitata. Scale bar =1 mm.
图9 叶片中TRV RNA的表达分析A:上海青;B:抱子芥;C:结球芥。TRV1为叶片中TRV1的表达量检测,TRV2为叶片中TRV2的表达量检测
Fig. 9 Analysis of TRV RNA expression in leafA: B. rapa subsp. Chinensis; B: B. juncea var. gemmifera; C: B. juncea var. capitata. TRV1 is the detection of TRV1 expression in leaves, TRV2 is the detection of TRV1 expression in leaves
图10 内源PDS基因的相对表达量A~B:上海青;C~D:抱子芥;E~F:结球芥
Fig. 10 Relative expression of endogenous PDS geneA~B: B. rapa subsp. Chinensis; C~D: B. juncea var. gemmifera; E~F: B. juncea var. capitata
[1] | WATERHOUSE P M, WANG M B, LOUGH T. Gene silencing as an adaptive defence against viruses [J]. Nature, 2001, 411(6839): 834-842. |
[2] | LIU Y, SUN W, ZENG S, et al.. Virus-induced gene silencing in two novel functional plants, Lycium barbarum L. and Lycium ruthenicum Murr [J]. Sci. Hortic., 2014, 170: 267-274. |
[3] | ARCE-RODRÍGUEZ M L, OCHOA-ALEJO N. Virus-induced gene silencing (VIGS) in chili pepper (Capsicum spp.) [J]. Methods Mol. Biol., 2020, 2172: 27-38. |
[4] | BACHAN S, DINESH-KUMAR S P. Tobacco rattle virus (TRV)-based virus-induced gene silencing [J]. Methods Mol. Biol., 2012, 894: 83-92. |
[5] | RATCLIFF F, MARTIN-HERNANDEZ A M, BAULCOMBE D C. Technical advance. tobacco rattle virus as a vector for analysis of gene function by silencing [J]. Plant J., 2001, 25(2): 237-245. |
[6] | SINGH A K, GHOSH D, CHAKRABORTY S. Optimization of tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) in tomato [J]. Methods Mol. Biol., 2022, 2408: 133-145. |
[7] | GOULD B, KRAMER E M. Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (Columbine, Ranunculaceae) [J/OL]. Plant Methods, 2007, 3: 6 [2025-01-20]. . |
[8] | ZHANG J, WANG F, ZHANG C, et al.. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response [J]. Plant Cell Rep., 2018, 37(8): 1091-1100. |
[9] | CAI C, WANG X, ZHANG B, et al.. Tobacco rattle virus-induced gene silencing in cotton [J]. Methods Mol. Biol., 2019, 1902: 105-119. |
[10] | YAN H, SHI S, MA N, et al.. Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers [J]. J. Integr. Plant Biol., 2018, 60(1): 34-44. |
[11] | CHEN R, CHEN X, HAGEL J M, et al.. Virus-induced gene silencing to investigate alkaloid biosynthesis in opium poppy [J]. Methods Mol. Biol., 2020, 2172: 75-92. |
[12] | MA Y Q, LI Q, CHENG H, et al.. Alternative splicing variants of IiSEP3 in Isatis indigotica are involved in floral transition and flower development [J/OL]. Plant Physiol. Biochem., 2024, 216: 109153 [2025-01-20]. . |
[13] | SHEN Z, SUN J, YAO J, et al.. High rates of virus-induced gene silencing by tobacco rattle virus in Populus [J]. Tree Physiol., 2015, 35(9): 1016-1029. |
[14] | LI H L, GUO D, WANG Y, et al.. Tobacco rattle virus-induced gene silencing in Hevea brasiliensis Free [J]. Biosci. Biotechnol. Biochem., 2021, 85(3): 562-567. |
[15] | KOUDOUNAS K, THOMOPOULOU M, ANGELI E, et al.. Virus-induced gene silencing in olive tree (Oleaceae) [J]. Methods Mol. Biol., 2020, 2172: 165-182. |
[16] | ZHANG Y, NIU N, LI S, et al.. Virus-induced gene silencing (VIGS) in Chinese jujube [J/OL]. Plants (Basel), 2023, 12(11): 2115 [2025-01-20]. . |
[17] | YU J, YANG X D, WANG Q, et al.. Efficient virus-induced gene silencing in Brassica rapa using a turnip yellow mosaic virus vector [J]. Biol. Plant., 2018, 62(4): 826-834. |
[18] | WANG L, WU Y, DU W, et al.. Virus-induced gene silencing (VIGS) analysis shows involvement of the LsSTPK gene in lettuce (Lactuca sativa L.) in high temperature-induced bolting [J/OL]. Plant Signal. Behav., 2021, 16(7): 1913845 [2025-01-20]. . |
[19] | LI G, LI Y, YAO X, et al.. Establishment of a virus-induced gene-silencing (VIGS) system in tea plant and its use in the functional analysis of CsTCS1 [J/OL]. Int. J. Mol. Sci., 2022, 24(1): 392 [2025-01-20]. . |
[20] | PARK H, KREUNEN S S, CUTTRISS A J, et al.. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis [J]. Plant Cell, 2002, 14(2): 321-332. |
[21] | ISAACSON T, RONEN G, ZAMIR D, et al.. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants [J]. Plant Cell, 2002, 14(2): 333-342. |
[22] | KANT R, DASGUPTA I. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus [J]. Plant Cell Rep., 2017, 36(7): 1159-1170. |
[23] | ZHANG J, YU D, ZHANG Y, et al.. Vacuum and co-cultivation agroinfiltration of (germinated) seeds results in tobacco rattle virus (TRV) mediated whole-plant virus-induced gene silencing (VIGS) in wheat and maize [J/OL]. Front. Plant Sci., 2017, 8: 393 [2025-01-20]. . |
[24] | YAMAGISHI N, YOSHIKAWA N. Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with apple latent spherical virus vectors [J]. Plant Mol. Biol., 2009, 71(1-2): 15-24. |
[25] | ROMERO I, TIKUNOV Y, BOVY A. Virus-induced gene silencing in detached tomatoes and biochemical effects of phytoene desaturase gene silencing [J]. J. Plant Physiol., 2011, 168(10): 1129-1135. |
[26] | C-MRYU, ANAND A, KANG L, et al.. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species [J]. Plant J., 2004, 40(2): 322-331. |
[27] | SENTHIL-KUMAR M, MYSORE K S. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato [J]. Plant Biotechnol. J., 2011, 9(7): 797-806. |
[28] | BURCH-SMITH T M, ANDERSON J C, MARTIN G B, et al.. Applications and advantages of virus-induced gene silencing for gene function studies in plants [J]. Plant J., 2004, 39(5): 734-746. |
[29] | BECKER A, LANGE M. VIGS: genomics goes functional [J]. Trends Plant Sci., 2010, 15(1): 1-4. |
[30] | ZHANG F, WEN Y, GUO X. CRISPR/Cas9 for genome editing: progress, implications and challenges [J]. Huuman Mol. Genet., 2014, 23(r1): R40-R46. |
[1] | 翁慧婷, 刘海洋, 郭惠明, 程红梅, 李君, 张超, 苏晓峰. 棉花抗黄萎病相关基因GhERF020功能的初步分析[J]. 中国农业科技导报, 2024, 26(9): 112-121. |
[2] | 王琴琴, 陈修贵, 陆许可, 王帅, 张悦新, 范亚朋, 陈全家, 叶武威. 陆地棉GhPKE1的生物信息学分析及功能验证[J]. 中国农业科技导报, 2022, 24(1): 38-45. |
[3] | 王瑞霞,李小玉,田宏先*. 晋北区芥菜型油菜抗旱性鉴定及综合抗旱指标筛选[J]. 中国农业科技导报, 2020, 22(11): 42-51. |
[4] | 杨笑敏,芮存,张悦新,王德龙,王俊娟,陆许可,陈修贵,郭丽雪,王帅,陈超,叶武威*. 棉花DNA甲基转移酶GhDMT9抗逆性分析[J]. 中国农业科技导报, 2019, 21(10): 12-19. |
[5] | 靳巧春1,于放2,于宗霞1*,冯宝民1*. 利用VIGS技术研究广藿香醇合酶基因PatPTS的功能[J]. 中国农业科技导报, 2018, 20(3): 39-45. |
[6] | 任向辉,崔建新,杨萌,李鹏,牛新月,李文杰. 上海青菜田黄曲条跳甲发生环境因子的随机森林建模分析[J]. 中国农业科技导报, 2017, 19(7): 117-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||