中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (11): 208-217.DOI: 10.13304/j.nykjdb.2021.0718
• 生物制造 资源生态 • 上一篇
收稿日期:
2021-08-19
接受日期:
2021-11-22
出版日期:
2022-11-15
发布日期:
2022-11-29
通讯作者:
陶刚
作者简介:
孟玉E-mail:2742400194 @qq.com;
基金资助:
Yu MENG(), Gang TAO(
), Deqi HUANG, Xiajun YAO
Received:
2021-08-19
Accepted:
2021-11-22
Online:
2022-11-15
Published:
2022-11-29
Contact:
Gang TAO
摘要:
溶磷真菌是土壤中广泛存在的一类重要的功能真菌类群,因其独特的溶磷能力和遗传稳定性,在绿色农业生产实践与生态环境修复等方面都有着重要的应用价值,成为当前的研究热点领域。对溶磷真菌资源的类群、溶磷真菌对土壤环境及其植物的影响、作用与机理,以及在农业生产实践与生态环境修复中的应用等方面进行了综述,并对相关研究和实践的发展方向进行了展望。
中图分类号:
孟玉, 陶刚, 黄德棋, 姚遐俊. 溶磷真菌的多样性及其在农业与生态中的应用[J]. 中国农业科技导报, 2022, 24(11): 208-217.
Yu MENG, Gang TAO, Deqi HUANG, Xiajun YAO. Diversity of Phosphate⁃solubilizing Fungi and Their Applications in Agriculture and Ecology[J]. Journal of Agricultural Science and Technology, 2022, 24(11): 208-217.
真菌种类 Fungal species | 宿主植物 Host plant | 功能概述 Functional summary | 文献来源 Literatures |
---|---|---|---|
黑曲霉 A. niger | 牡丹Paeonia suffruticosa Andr. | 显著提高牡丹植株的株高、根长、叶面积和生物量 Significantly increase plant height, root length, leaf area and biomass of peony | [ |
土曲霉 A. terreu | 苦参种子 Sophora flavescens seed | 抑制辣椒疫霉菌和番茄炭疽菌等病原菌的生长 Inhibit the growth of Phytophthora capsici and Colletotrichum atramentarium | [ |
草酸青霉 P. oxalicum | 白刺Nitraria tangutorum Bobr. | 增加番茄的株高、根长、干重及鲜重 Increase the plant height, root length, dry weight and fresh weight of tomato | [ |
棘孢木霉 T. asperellum | 番茄Solanum lycopersicum | 增加番茄的叶片数、叶面积以及茎干重 Increase the number of leaves, leaf area and stem dry weight of tomato | [ |
哈茨木霉 T. harzianum | 水稻 Oryza sativa L. | 通过调节水稻丙二醛、脯氨酸和超氧化物歧化酶的含量,提高水稻对干旱胁迫的抗性 Improve the resistance of rice to drought stress by regulating the contents of malondialdehyde, proline and superoxide dismutase in rice | [ |
金黄篮状菌 T. aurantiacus | 杜鹃 Rhododendron simsii | 提高杜鹃对养分的吸收,并增加其株高与生物量 Improve the nutrient absorption of R. simsii Planch, and increase its plant height and biomass | [ |
丝核菌属、盘多毛孢属Rhizoctonia spp., Pestalotia spp. | 五唇兰Doritis pulcherrima | 分解羧甲基纤维素钠并增加五唇兰的鲜重 Decompose sodium carboxymethyl cellulose and increase the fresh weight of D. pulcherrima | [ |
烧瓶状霉属、枝顶孢属Lecythophora spp., Acremonium spp. | 美花石斛Dendrobium loddigesii | 提高美花石斛的存活率和整体长势 Improve the survival rate and overall growth of D. loddigesii | [ |
印度梨形孢Piriformospora indica | 拟南芥Arabidopsis thaliana | 增加拟南芥幼苗的叶绿素含量与鲜重,并提高其在干旱胁迫下的抗性 Increase the chlorophyll content and fresh weight of A. thaliana, and improve their resistance to drought stress | [ |
撕裂蜡孔菌 Ceriporia lacerata | 蘑菇的担子果Basidiocarp | 促进茄子对磷的吸收并增加果实的产量 Promote the absorption of phosphorus by egg plant and increase the fruit yield | [ |
轮枝镰刀菌 Fusarium verticillioides | 大豆根Glycine max (Linn.) Merr root | 降低大豆的脂质过氧化水平,提高大豆对盐胁迫的抗性 Reduce the level of lipid peroxidation and improve the resistance of soybean to salt stress | [ |
毛霉菌属 Mucor spp. | 党参Codonopsis pilosula (Franch.) Nannf root | 产生吲哚乙酸(IAA)和ACC脱氨酶,促进重金属污染地油菜的生长Produce indoleacetic acid (IAA) and ACC deaminase and promote the growth of rape in polluted areas by heavy metal | [ |
表1 部分溶磷真菌的种类与功能
Table 1 Types and functions of PSF
真菌种类 Fungal species | 宿主植物 Host plant | 功能概述 Functional summary | 文献来源 Literatures |
---|---|---|---|
黑曲霉 A. niger | 牡丹Paeonia suffruticosa Andr. | 显著提高牡丹植株的株高、根长、叶面积和生物量 Significantly increase plant height, root length, leaf area and biomass of peony | [ |
土曲霉 A. terreu | 苦参种子 Sophora flavescens seed | 抑制辣椒疫霉菌和番茄炭疽菌等病原菌的生长 Inhibit the growth of Phytophthora capsici and Colletotrichum atramentarium | [ |
草酸青霉 P. oxalicum | 白刺Nitraria tangutorum Bobr. | 增加番茄的株高、根长、干重及鲜重 Increase the plant height, root length, dry weight and fresh weight of tomato | [ |
棘孢木霉 T. asperellum | 番茄Solanum lycopersicum | 增加番茄的叶片数、叶面积以及茎干重 Increase the number of leaves, leaf area and stem dry weight of tomato | [ |
哈茨木霉 T. harzianum | 水稻 Oryza sativa L. | 通过调节水稻丙二醛、脯氨酸和超氧化物歧化酶的含量,提高水稻对干旱胁迫的抗性 Improve the resistance of rice to drought stress by regulating the contents of malondialdehyde, proline and superoxide dismutase in rice | [ |
金黄篮状菌 T. aurantiacus | 杜鹃 Rhododendron simsii | 提高杜鹃对养分的吸收,并增加其株高与生物量 Improve the nutrient absorption of R. simsii Planch, and increase its plant height and biomass | [ |
丝核菌属、盘多毛孢属Rhizoctonia spp., Pestalotia spp. | 五唇兰Doritis pulcherrima | 分解羧甲基纤维素钠并增加五唇兰的鲜重 Decompose sodium carboxymethyl cellulose and increase the fresh weight of D. pulcherrima | [ |
烧瓶状霉属、枝顶孢属Lecythophora spp., Acremonium spp. | 美花石斛Dendrobium loddigesii | 提高美花石斛的存活率和整体长势 Improve the survival rate and overall growth of D. loddigesii | [ |
印度梨形孢Piriformospora indica | 拟南芥Arabidopsis thaliana | 增加拟南芥幼苗的叶绿素含量与鲜重,并提高其在干旱胁迫下的抗性 Increase the chlorophyll content and fresh weight of A. thaliana, and improve their resistance to drought stress | [ |
撕裂蜡孔菌 Ceriporia lacerata | 蘑菇的担子果Basidiocarp | 促进茄子对磷的吸收并增加果实的产量 Promote the absorption of phosphorus by egg plant and increase the fruit yield | [ |
轮枝镰刀菌 Fusarium verticillioides | 大豆根Glycine max (Linn.) Merr root | 降低大豆的脂质过氧化水平,提高大豆对盐胁迫的抗性 Reduce the level of lipid peroxidation and improve the resistance of soybean to salt stress | [ |
毛霉菌属 Mucor spp. | 党参Codonopsis pilosula (Franch.) Nannf root | 产生吲哚乙酸(IAA)和ACC脱氨酶,促进重金属污染地油菜的生长Produce indoleacetic acid (IAA) and ACC deaminase and promote the growth of rape in polluted areas by heavy metal | [ |
1 | 魏伟,吴小芹,乔欢.马尾松根际高效解磷真菌的筛选鉴定及其促生效应[J].林业科学,2014,50(9):82-88. |
WEI W, WU X Q, QIAO H. Screening and identification of phosphate-solubilizing fungi of Pinus massoniana rhizosphere and its application [J]. Sci. Silvae Sin., 2014, 50(9):82-88. | |
2 | 朗明.长期施用磷肥土壤微生物的群落结构特征及适应性探究[D].北京:中国农业大学,2018. |
LANG M. Community structure and adaptation of soil microbiome after long-term phosphorus fertilization [D]. Beijing: China Agricultural University, 2018. | |
3 | WANG L J, SHENG M Y, LI S, et al.. Patterns and dynamics of plant diversity and soil physical-chemical properties of the Karst rocky desertification ecosystem, SW China [J]. Polish J. Environ. Studies, 2021, 30(2):1393-1408. |
4 | TALLAPRAGADA P, SESHACHALA U. Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India [J]. Turkish J. Biol., 2014, 36(1):25-35. |
5 | GAUR A C, ARORA D, PRAKASH N. Electron microscopy of some rock phosphate dissolving bacteria and fungi [J]. Folia Microbiol., 1979, 24(4):314-317. |
6 | 薛冬,黄向冬,杨瑞先,等.牡丹根际溶磷真菌的筛选及其促生效应[J].生态环境学报,2018,27(9):1639-1645. |
XUE D, HUANG X D, YANG R X, et al.. Screening and growth-promoting effect of phosphate-solubilizing fungi in the rhizosphere of Paeonia suffruticosa [J]. Ecol. Environ. Sci., 2018, 27(9):1639-1645. | |
7 | 薛应钰,叶巍,杨树,等.一株溶磷菌的分离鉴定及溶磷促生作用[J].干旱地区农业研究,2019,37(4):253-262. |
XUE Y J, YE W, YANG S, et al.. Isolation and identification of P-dissolving fungi strain and its effects on phosphate-solubilizing and plant growth promotion [J]. Agric. Res. Arid Areas, 2019, 37(4):253-262. | |
8 | FRANA C D V, KUPPER C K, MAGRI R M M, et al.. Trichoderma spp. isolates with potential of phosphate solubilization and growth promotion in cherry tomato [J]. Pesqu. Agropecu. Tropical, 2017, 47(4): 360-368. |
9 | WU A Q, ZHANG Y, WAN S Z, et al.. Phosphate solubilizing characteristics of Talaromyces aurantiacus and its growth-promoting effect on Phyllostachys edulis seedlings [J]. J. Appl. Ecol., 2019, 30(1):173-179. |
10 | SHERAMETI I A, TRIPATHI S B, VARMA A B, et al.. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves [J]. Mol. Plant-Microbe Interact., 2008, 21(6):799-807. |
11 | RADHAKRISHNAN R, KHAN A L, KANG S M. A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp. KNU01 under salt stress [J]. Ann. Microbiol., 2015, 65(1):585-593. |
12 | RUANGSANKA S. Identification of phosphate-solubilizing fungi from the Asparagus rhizosphere as antagonists of the root and crown rot pathogen Fusarium oxysporum [J]. Sci. Asia, 2014, 40(1):16-20. |
13 | 陈金花,朱国鹏,宋希强,等.五唇兰非致病真菌的特性及对组培苗生长的影响[J].北方园艺,2010(7):81-85. |
CHEN J H, ZHU G P, SONG X Q, et al.. The characteristic of D. Pulcherrima no-pathogens and effection to seedlings in vitro [J]. Northern Hortic., 2010(7):81-85. | |
14 | ZHANG H S, WU X H, LI G, et al.. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities [J]. Biol. Fert. Soils, 2011, 47(5):543-554. |
15 | MAHWISH Z, MUHAMMAD I, HAZIR R, et al.. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7 [J]. Ecotoxicol. Environ. Safety, 2017, 142(1):139-149. |
16 | 何璐,纪明山,王勇,等.一株苦参内生真菌的抑菌特性及活性成分的结构鉴定[J].中国农业科学,2011,44(15):3127-3133. |
HE L, JI M S, WANG Y, et al.. Antimicrobial action of an endophytic fungus from Sophora flavescens and structure identification of its active constituents [J]. Sci. Agric. Sin., 2011, 44(15):3127-3133. | |
17 | PANDEY V, ANSARI M W, TULA S, et al.. Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes [J]. Planta, 2016, 243(5):1251-1264. |
18 | 陈宝玲.濒危植物美花石斛基于菌根真菌的再引入技术初步研究[D].海口:海南大学,2010. |
CHEN B L. Re-introduction technology based on mycorrhizalfungi in the conservation of an endangered orchid: Dendrobium loddigesii [D]. Haikou: Hainan University, 2010. | |
19 | YIN J, SUI Z M, HUANG J G. Mobilization of soil inorganic phosphorus and stimulation of crop phosphorus uptake and growth induced by Ceriporia lacerate HG2011 [J]. Geoderma, 2021, 383:1-8. |
20 | KUCEY R M N. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils [J]. Can. J. Soil Sci., 1983, 63(4):671-678. |
21 | 易艳梅,黄为一.不同生态区土壤溶磷微生物的分布特征及影响因子[J].生态与农村环境学报,2010,26(5):448-453. |
YI Y M, HUANG W Y. Distribution of phosphate-solubilizing microbes in soils of different ecological zones and its affecting factors [J]. J. Ecol. Rural Environ., 2010, 26(5):448-453. | |
22 | NARSIAN V T, PATEL H H. Relationship of physicochemical properties of rhizosphere soils with native population of mineral phosphate solubilizing fungi [J]. Ind. J. Microbiol., 2009, 49(1):60-67. |
23 | ZHANG J, FENG L F, HUA R, et al.. Phosphate-solubilizing bacteria and fungi in relation to phosphorus vailability under different land uses for some latosols from Guangdong, China [J]. Catena, 2020, 195:1-7. |
24 | PAUL R, SINGH R D, BISWAS D R, et al.. Phosphorus dynamics and solubilizing microorganisms in acid soils under different land uses of Lesser Himalayas of India [J]. Agroforestry Syst., 2018, 92(2):449-461. |
25 | 赵飞,刘畅,朱昌玲,等.功能微生物与生物炭对海滨锦葵生长及滨海盐土地力的影响[J].中国土壤与肥料,2020(5):161-168. |
ZHAO F, LIU C, ZHU C L, et al.. Effects of functional microorganisms and biochar on the growth of seashore mallow and its rhizosphere soil fertility in coastal saline soil [J]. Soil Fert. Sci. China, 2020(5):161-168. | |
26 | KAUR G, REDDY M S. Improvement of crop yield by phosphate-solubilizing Aspergillus species in organic farming [J]. Arch. Agron. Soil Sci., 2017, 63(1):24-34. |
27 | ALAN E R, ANN M M, CLAIRE P C, et al.. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms [J]. Plant Soil., 2009, 321(1):305-339. |
28 | SCERVINO J M, MESA M P, DELLA MÓNICA I, et al.. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization [J]. Biol. Fert. Soils, 2010, 46(7):755-763. |
29 | 王莉晶,高晓蓉,吕军,等.溶磷真菌C2的分离鉴定及其在土壤中实际解磷效果的研究[J].土壤通报,2009,40(4):771-775. |
WANG L J, GAO X R, LU J, et al.. Phosphate-solubilizing mechanism of C2 and its actual phosphate-solubilizing effect in soil [J]. Chin. J. Soil Sci., 2009, 40(4):771-775. | |
30 | ISLAM M K, SANO A, MAJUMDER M S I, et al.. Evaluation of organic acid production potential of phosphate solubilizing fungi isolated from soils in Okinawa, Japan [J]. Appl. Ecol. Enuiron. Res., 2019, 17(6):15191-15201. |
31 | GAIND S. Phosphate dissolving fungi: mechanism and application in alleviation of salt stress in wheat [J]. Microbiol. Res., 2016, 193:94-102. |
32 | ILLMER P, SCHINNER F. Solubilization of inorganic calcium phosphates- solubilization mechanisms[J]. Soil Biol. Biochem., 1995, 27(3):257-263. |
33 | HAMDALI H, LEBRIHI A, MONJE M C, et al.. A molecule of the viridomycin family originating from a Streptomyces griseus-related strain has the ability to solubilize rock phosphate and to inhibit microbial growth [J]. Antibiotics, 2021, 10(1):1-9. |
34 | YADAV B K, TARAFDAR J C. Penicillium purpurogenum, unique P mobilizers in arid agro-ecosystems [J]. Arid Soil Res. Rehabilit., 2011, 25(1):87-99. |
35 | SONI S, MAGDUM A, KHIRE J. Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563 [J]. World J. Microbiol. Biotechnol., 2010, 26(11):2009-2018. |
36 | GAIND S, Production SINGH S., purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720 [J]. Int. Biodeterior. Biodegrad., 2015, 99:15-22. |
37 | MUKHAMETZYNOVA A D, AKHMETOVA A I, SHARIPOVA M R. Microorganisms as phytase producers [J]. Microbiology, 2012, 81(3):267-275. |
38 | 高兆建,杨培玲,杨芳,等.构巢曲霉产植酸酶的酶学特性分析[J].食品工业科技,2020, 41(23):57-62, 77. |
GAO Z J, YANG P L, YANG F, et al.. Enzymatic characterization of a novel acid and thermostable phytase from Aspergillus nidulans [J]. Sci. Technol. Food Ind., 2020, 41(23):57-62, 77. | |
39 | NEIRA-VIELMA A A, AGUILAR C N, ILYINA A, et al.. Purification and biochemical characterization of an Aspergillus niger phytase produced by solid-state fermentation using triticale residues as substrate [J]. Biotechnol. Rep., 2018, 17: 49-54. |
40 | SINGH H, REDDY M S. Effect of inoculation with phosphate solubilizing fungus on growth and nutrientuptake of wheat and maize plants fertilized with rock phosphate in alkaline soils [J]. Eur. J. Soil Biol., 2011, 47(1):30-34. |
41 | SHARKEY T D, CORNIC G, BOTA J, et al.. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C-3 plants [J]. Plant Biol., 2004, 6(3):269-279. |
42 | KHOSHMANZAR E, ALIASGHARZAD N, NEYSHABOURI M R, et al.. Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress [J]. Int. J. Environ. Sci. Technol., 2020, 17(2):869-878. |
43 | CHAI B, WU Y, LIU P M, et al.. Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil ofan alum mine [J]. J. Basicmicrobiol., 2011, 51(1):5-14. |
44 | MOHD S, KUSHWAHA A S, SHUKLA J, et al.. Fungal mediated biotransformation reduces toxicity of arsenic to soil dwelling microorganism and plant [J]. Ecotoxicol. Environ. Safety, 2019, 176:108-118. |
45 | LI T, LIU M J, ZHANG X T, et al.. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila [J]. Sci. Total Environ., 2011, 409(6):1069-1074. |
46 | XU R, LI T, SHEN M, et al.. Evidence for a dark septate endophyte (Exophiala pisciphila, H93) enhancing phosphorus absorption by maize seedlings [J]. Plant Soil, 2020, 452(1):249-266. |
47 | 刘非凡,白建峰,顾卫华,等.烟曲霉f4对黑麦草修复电子废物拆解场地土壤重金属的影响[J].环境工程学报,2020,14(7):1886-1893. |
LIU F F, BAI J F, GU W H, et al.. Effects of Aspergillus fumigatus f4 on the soil heavy metal remediation in e-waste dismantling site by ryegrass [J]. Chin. J. Environ. Eng., 2020, 14(7):1886-1893. | |
48 | WANG X H, WANG C D, SUI J K, et al.. Isolation and characterization of phosphorfungi, and screening of their plant growth-promoting activities [J]. AMB Express, 2018, 8(1):1-12. |
49 | KHAN M R, KHAN S M. Biomanagement of Fusarium wilt of tomato by the soil application of certain phosphate-solubilizing microorganisms [J]. Int. J. Pest Manage., 2001, 47(3):227-231. |
50 | BADERA A N, SALERNOA G L, COVACEVICHAB F, et al.. Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.) [J]. J. King Saud Univ-Sci., 2020, 32(1):867-873. |
51 | 彭德良.植物线虫病害:我国粮食安全面临的重大挑战[J].生物技术通报,2021,37(7):1-2. |
PENG D L. Plant nematode diseases: serious challenges to China's food security [J]. Biotechnol. Bull., 2021, 37(7):1-2. | |
52 | 李婷,黄文坤,彭德良,等.3株生防真菌发酵液对大豆孢囊线虫的防治效果[J].华中农业大学学报,2017,36(1):42-46. |
LI T, HUANG W K, PENG D L, et al.. Control efficiency of three fungal strains' fermentation broth on soybean cyst nematode (Heterodera glycines) [J]. J. Huazhong Agric.Univ., 2017, 36(1):42-46. | |
53 | ATIA M A M, ABDELDAYM E A, ABDELSATTAR M, et al.. Piriformospora indica promotes cucumber tolerance against root-knot nematode by modulating photosynthesis and innate responsive genes [J]. Saudi J. Biol. Sci., 2020, 27(1):279-287. |
54 | JOGAIAH S, ABDELRAHMAN M, TRAN L S P, et al.. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease [J]. J. Exp. Bot., 2013, 64(12):3829-3842. |
55 | 江红梅,殷中伟,史发超,等.一株耐盐日本曲霉的筛选及其溶磷促生作用[J].微生物学报,2018,58(5):862-881. |
JIANG H M, YIN Z W, SHI F C, et al.. Isolation, identification of a salt-tolerant, phosphate-solubilizing and crop-growth promoting Aspergillus japonicas [J]. Acta Microbiol. Sin., 2018, 58(5):862-881. | |
56 | BABU A G, REDDY M S. Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds [J]. Water Air Soil Pollut., 2011, 219(1-4):3-10. |
57 | 郝振萍,王欢,司逸茹,等.解磷真菌对竹柳扦插苗生长和矿质元素吸收的影响[J].江苏农业科学,2015,43(3):169-171. |
HAO Z P, WANG H, SI Y R, et al.. Effects of phosphate-solubilizing fungi on growth and mineral elements absorption of bamboo willow cutting seedlings [J]. Jiangsu Agric. Sci., 2015, 43(3):169-171. | |
58 | 侯姣姣,布芳芳,余仲东,等.古国槐叶片溶磷内生真菌的筛选及其促生潜力初探[J].西北植物学报,2016,36(7):1456-1463. |
HOU J J, BU F F, YU Z D, et al.. Screening of phosphate-solubilizing endophytic fungi from ancient Sophora japonica leaves and their potential for plant growth-promoting [J]. Acta Bot. Bor-Occid. Sin., 2016, 36(7):1456-1463. | |
59 | MEDINA A, ROLDN A, AZCN R. The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil [J]. J. Environ. Manage., 2010, 91(12):2547-2553. |
60 | KHAN A L, HAMAYUN M, KIM Y H, et al.. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. [J]. Plant Physiol. Biochem., 2011, 49(8):852-861. |
61 | 武美燕,蒿若超,张文英.印度梨形孢真菌对干旱胁迫下紫花苜蓿生长及抗旱性的影响[J].草业学报,2016,25(5):78-86. |
WU M Y, HAO R C, ZHANG W Y. Effects of Piriformospora indica fungus on growth and drought resistance in alfalfa under water deficit stress [J]. Acta Pratac. Sin., 2016, 25(5):78-86. | |
62 | RADHAKRISHNAN R, LEELAPRIYA T, RANJITHAKUMARI B D. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress [J]. Bioelectromagnetics, 2012, 33(8):670-681. |
63 | BILAL S, SHAHZAD R, IMRAN M, et al.. Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: heavy metals, high temperature and drought stress [J]. Ind. Crops Prod., 2020, 143:1-10. |
64 | LI X N, HAN S J, WANG J Y, et al.. The fungus Aspergillus aculeatus enhances salt-stress tolerance, metabolite accumulation, and improves forage quality in perennial ryegrass [J]. Front. Microbiol., 2017, 8:1-13. |
65 | 卢宇浩,程宁,向家荣,等.塔宾曲霉协同磷酸盐钝化土壤有效态重金属[J].环境科技,2018,31(5):1-6. |
LU Y H, CHENG N, XIANG J R, et al.. Passivation of soil available heavy metal by phosphate and EPS excreted from Aspergillus tubingensis [J]. Environ. Sci. Technol., 2018, 31(5):1-6. | |
66 | 林钰栅,王强,刘景春,等.耐铅解磷真菌联合磷矿粉钝化修复重金属铅[J].厦门大学学报(自然科学版),2020,60(4):767-775. |
LIN Y S, WANG Q, LIU J C, et al.. Immobilization recovery of heavy metal lead by lead-tolerance phosphate-solubilizing fungi combined with phosphate rock [J]. J. Xiamen Univ. (Nat. Sci.), 2020, 60(4):767-775. | |
67 | SALAZAR-RAMÍREZ G, FLORES-VALLEJO R D C, RIVERA-LEYVA J C, et al.. Characterization of fungal endophytes isolated from the metal hyperaccumulator plant Vachellia farnesiana growing in mine tailings [J]. Microorganisms, 2020, 8(2):1-22. |
68 | SUN H Q, WU L R, HAO Y L. Tolerance mechanism of Trichoderma asperellum to Pb2+: response changes of related active ingredients under Pb2+ stress [J]. RSC Adv., 2020, 10(9):5202-5211. |
69 | VARGAS-GARCA M D C, LPEZ M J, SUREZ-ESTRELLA F, et al.. Compost as a source of microbial isolates for the bioremediation of heavy metals: In vitro selection [J]. Sci. Total Environ., 2012, 431:62-67. |
70 | GE W, ZAMRI D, MINEYAMA H, et al.. Bioaccumulation of heavy metals on adapted Aspergillus foetidus [J]. Adsorption, 2011, 17(5):901-910. |
71 | LIAQUAT F, HAROON U, ARIF S, et al.. Efficient recovery of metal tolerant fungi from the soil of industrial area and determination of their biosorption capacity [J]. Environ. Technol. Innovation, 2021, 21:1-11. |
72 | 申光辉,薛泉宏,张晶,等.草莓根腐病拮抗真菌筛选鉴定及其防病促生作用[J].中国农业科学,2012,45(22):4612-4626. |
SHEN G H, XUE Q H, ZHANG J, et al.. Screening, identification and biocontrol potential of antagonistic fungi against strawberry root rot and plant growth promotion [J]. Sci. Agric. Sin., 2012, 45(22):4612-4626. | |
73 | SEGARRA G, CASANOVA E, AVILS M, et al.. Trichoderma asperellum strain T34 controls fusarium wilt disease in tomato plants in soilless culture through competition for iron [J]. Microbiol. Ecol., 2010, 59(1):141-149. |
74 | 鲁海菊,沈云玫,陶宏征,等.内生木霉P3.9菌株的多功能性及其枇杷根腐病的盆栽防效[J].西北农业学报,2017,26(11):1681-1688. |
LU H J, SHEN Y G, TAO H Z, et al.. Multifunction of endophytic Trichoderma P3.9 strain and control effect on loquat root rot [J]. Acta Agric. Bor-Occid. Sin., 2017, 26(11):1681-1688. | |
75 | BLACHOWICZ A, SINGH N K, DEBIEU M, et al.. Draft genome sequences of Aspergillus and Penicillium species isolated from the international space station and crew resupply vehicle capsule [J]. Microbiol. Resour. Announce., 2021, 10(13):1-4. |
76 | SEN D, PAUL K, SAHA C, et al.. A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1-a comparative genomics viewpoint [J]. DNA Res., 2019, 26(2):131-146. |
77 | SINGH R D, BISWAS D R, PAUL R, et al..Phosphorus dynamics and solubilizing microorganisms in acid soils under different land uses of Lesser Himalayas of India [J]. Agrofor. Syst., 2018, 92(2):449-461. |
[1] | 田振祥, 丁伟, 程茁, 戴航宇. 大豆内生细菌的分离及其作用效果研究[J]. 中国农业科技导报, 2022, 24(6): 47-57. |
[2] | 周茂超1,2,黄艳娜2,段赛菲1,2,束仕元1,2,唐雪明2*. 微生物种衣剂的研制及其对玉米苗期生长的影响[J]. 中国农业科技导报, 2021, 23(4): 110-118. |
[3] | 李婷,何来,梁泉峰*. 非豆科植物的根瘤菌促生机制的研究进展[J]. , 2013, 15(2): 97-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||