中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (1): 99-109.DOI: 10.13304/j.nykjdb.2022.0815
收稿日期:
2022-09-23
接受日期:
2022-12-08
出版日期:
2024-01-15
发布日期:
2024-01-08
通讯作者:
冯仲科
作者简介:
季文旭 E-mail:wenxuji@126.com;
基金资助:
Wenxu JI1(), Zhongke FENG1,2(
), Hanyue ZHANG3, Yuan WANG1
Received:
2022-09-23
Accepted:
2022-12-08
Online:
2024-01-15
Published:
2024-01-08
Contact:
Zhongke FENG
摘要:
树木生长产生巨大碳汇,对于缓解碳排放带来的全球变暖等环境问题具有重要意义。为准确评估森林碳汇,基于第6至第9次国家森林资源连续清查数据建立北京市13个主要树种(组)4种形式的立木胸径年生长率模型,预测树木胸径变化的未来趋势,从而为生物量转换因子连续函数法计算碳储量提供计算依据,最终获得2050年北京市乔木林碳储量和碳密度。结果表明:8个树种(组)胸径的年生长率模型R2都大于0.900,椴树的R2最高为0.960;除柳树、水胡黄(水曲柳、胡桃楸、黄菠萝)外的11个树种(组)RMSE都小于0.5 cm;除杨树、其他硬阔类和榆树之外,Bias都小于1.0 cm。胸径预测精度验证中整体R2较高,刺槐最高(0.951),其他硬阔类最低(0.766)。预测2050年北京市乔木林碳储量为42.71 TgC,碳密度为43.35 MgC·hm-2。基于胸径年生长率模型的树木生长模拟方法可以有效的提高未来北京市乔木林碳汇潜力评估的整体精度,能够为制定温室气体减排政策、实现2060碳中和目标提供基础。
中图分类号:
季文旭, 冯仲科, 张瀚月, 王媛. 基于立木胸径生长率模型的乔木林碳汇潜力评估[J]. 中国农业科技导报, 2024, 26(1): 99-109.
Wenxu JI, Zhongke FENG, Hanyue ZHANG, Yuan WANG. Assessment of Carbon Sink Potential of Arbor Forests Based on DBH Growth Rate Model for Standing Trees[J]. Journal of Agricultural Science and Technology, 2024, 26(1): 99-109.
树种(组) Tree species (group) | 样木数量 Number of sample trees | 建模样本数量 Number of modeling samples | 胸径范围 DBH range/cm |
---|---|---|---|
柏木Cupressus L. | 1 631 | 120 | 5.0~21.9 |
刺槐Robinia pseudoacacia L. | 186 | 139 | 5.0~36.9 |
椴树Tilia | 1 113 | 181 | 5.0~34.6 |
桦木Betula spp. | 617 | 171 | 5.0~40.7 |
栎类Quercus L. | 3 514 | 266 | 5.0~45.3 |
柳树Salix | 374 | 158 | 5.0~40.2 |
落叶松Larix gmelinii | 148 | 72 | 5.2~22.2 |
其他软阔类Other soft broad-leaved forest | 332 | 130 | 5.0~28.4 |
其他硬阔类Other hard broad-leaved forest | 1 072 | 184 | 5.0~31.3 |
水胡黄Fraxinus manchuria/Juglans mandshurica/Phellodendron amurense | 288 | 133 | 5.0~43.0 |
杨树Populus L. | 671 | 259 | 5.1~62.5 |
油松Pinus tabuliformis | 2 847 | 229 | 5.0~33.7 |
榆树Ulmus pumila | 388 | 139 | 5.0~34.1 |
表1 建模数据基本情况
Table 1 Basic information on modeling data
树种(组) Tree species (group) | 样木数量 Number of sample trees | 建模样本数量 Number of modeling samples | 胸径范围 DBH range/cm |
---|---|---|---|
柏木Cupressus L. | 1 631 | 120 | 5.0~21.9 |
刺槐Robinia pseudoacacia L. | 186 | 139 | 5.0~36.9 |
椴树Tilia | 1 113 | 181 | 5.0~34.6 |
桦木Betula spp. | 617 | 171 | 5.0~40.7 |
栎类Quercus L. | 3 514 | 266 | 5.0~45.3 |
柳树Salix | 374 | 158 | 5.0~40.2 |
落叶松Larix gmelinii | 148 | 72 | 5.2~22.2 |
其他软阔类Other soft broad-leaved forest | 332 | 130 | 5.0~28.4 |
其他硬阔类Other hard broad-leaved forest | 1 072 | 184 | 5.0~31.3 |
水胡黄Fraxinus manchuria/Juglans mandshurica/Phellodendron amurense | 288 | 133 | 5.0~43.0 |
杨树Populus L. | 671 | 259 | 5.1~62.5 |
油松Pinus tabuliformis | 2 847 | 229 | 5.0~33.7 |
榆树Ulmus pumila | 388 | 139 | 5.0~34.1 |
树种(组) Tree species (group) | 模型Model | 参数估计值Parameter estimate | 评价指标 Evaluation indicator | ||||||
---|---|---|---|---|---|---|---|---|---|
a | b | R2 | S/cm | RMSE/cm | rRMSE/% | Bias/cm | rBias/% | ||
柏木Cupressus Linn. | 4 | -0.029 | 25.378 | 0.940 | 0.25 | 0.07 | 2.64 | 0.03 | 0.26 |
刺槐Robinia pseudoacacia L. | 1 | 25.705 | -1.044 | 0.937 | 0.25 | 0.17 | 9.01 | 0.06 | 0.36 |
椴树Tilia | 2 | 4.52 | -0.084 | 0.955 | 0.15 | 0.06 | 4.33 | 0.06 | 0.49 |
桦木Betula spp | 3 | -0.213 | 0.073 | 0.924 | 0.36 | 0.19 | 11.80 | -0.01 | -0.07 |
栎类Quercus L. | 1 | 11.828 | -0.763 | 0.938 | 0.17 | 0.05 | 3.05 | 0.01 | 0.08 |
柳树Salix | 4 | -1.401 | 85.645 | 0.924 | 0.98 | 0.71 | 14.60 | 0.05 | 0.29 |
落叶松Larix gmelinii | 3 | -0.104 | 0.041 | 0.868 | 0.76 | 0.44 | 11.61 | -0.02 | -0.13 |
其他软阔类Other soft broad-leaved forest | 3 | -0.169 | 0.076 | 0.824 | 0.40 | 0.24 | 14.40 | 0.78 | 6.20 |
其他硬阔类Other hard broad-leaved forest | 4 | 0.161 | 15.902 | 0.756 | 0.39 | 0.14 | 4.41 | 1.85 | 13.89 |
水胡黄Fraxinus mandshurica/Juglans mandshurica/Phellodendron amurense | 2 | 7.715 | -0.071 | 0.911 | 0.66 | 0.55 | 18.71 | 0.75 | 5.62 |
杨树Populus L. | 3 | 0.046 | 0.018 | 0.843 | 0.32 | 0.16 | 11.70 | 2.93 | 13.63 |
油松Pinus tabuliformis | 1 | 15.74 | -0.817 | 0.917 | 0.23 | 0.07 | 3.57 | 0.12 | 0.83 |
榆树Ulmus pumila | 3 | -0.099 | 0.054 | 0.869 | 0.43 | 0.28 | 13.29 | 1.18 | 9.25 |
表2 北京市立木胸径生长率模型拟合结果
Tab.2 Results of the model fitting for the diameter at breast height growth rate of standing trees in Beijing
树种(组) Tree species (group) | 模型Model | 参数估计值Parameter estimate | 评价指标 Evaluation indicator | ||||||
---|---|---|---|---|---|---|---|---|---|
a | b | R2 | S/cm | RMSE/cm | rRMSE/% | Bias/cm | rBias/% | ||
柏木Cupressus Linn. | 4 | -0.029 | 25.378 | 0.940 | 0.25 | 0.07 | 2.64 | 0.03 | 0.26 |
刺槐Robinia pseudoacacia L. | 1 | 25.705 | -1.044 | 0.937 | 0.25 | 0.17 | 9.01 | 0.06 | 0.36 |
椴树Tilia | 2 | 4.52 | -0.084 | 0.955 | 0.15 | 0.06 | 4.33 | 0.06 | 0.49 |
桦木Betula spp | 3 | -0.213 | 0.073 | 0.924 | 0.36 | 0.19 | 11.80 | -0.01 | -0.07 |
栎类Quercus L. | 1 | 11.828 | -0.763 | 0.938 | 0.17 | 0.05 | 3.05 | 0.01 | 0.08 |
柳树Salix | 4 | -1.401 | 85.645 | 0.924 | 0.98 | 0.71 | 14.60 | 0.05 | 0.29 |
落叶松Larix gmelinii | 3 | -0.104 | 0.041 | 0.868 | 0.76 | 0.44 | 11.61 | -0.02 | -0.13 |
其他软阔类Other soft broad-leaved forest | 3 | -0.169 | 0.076 | 0.824 | 0.40 | 0.24 | 14.40 | 0.78 | 6.20 |
其他硬阔类Other hard broad-leaved forest | 4 | 0.161 | 15.902 | 0.756 | 0.39 | 0.14 | 4.41 | 1.85 | 13.89 |
水胡黄Fraxinus mandshurica/Juglans mandshurica/Phellodendron amurense | 2 | 7.715 | -0.071 | 0.911 | 0.66 | 0.55 | 18.71 | 0.75 | 5.62 |
杨树Populus L. | 3 | 0.046 | 0.018 | 0.843 | 0.32 | 0.16 | 11.70 | 2.93 | 13.63 |
油松Pinus tabuliformis | 1 | 15.74 | -0.817 | 0.917 | 0.23 | 0.07 | 3.57 | 0.12 | 0.83 |
榆树Ulmus pumila | 3 | -0.099 | 0.054 | 0.869 | 0.43 | 0.28 | 13.29 | 1.18 | 9.25 |
1 | 杨元合,石岳,文娟,等.中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J].中国科学:生命科学, 2022, 52(4):534-574. |
YANG Y H, SHI Y, WEN J, et al.. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality [J]. Sci. Sin. Vitae: 2022, 52(4):534-574. | |
2 | ZHANG H Y, FENG Z K, CHEN P P, et al.. Development of a tree growth difference equation and its application in forecasting the biomass carbon stocks of Chinese forests in 2050 [J/OL]. Forests, 2019, 10(7):582 [2023-10-26]. . |
3 | Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2020 [R]. Rome: FAO, 2020. |
4 | 国家林业局.中国森林资源报告:第九次全国森林资源清查[R],北京:中国林业出版社, 2018. |
5 | 郑春华,高振寰,杨胜涛.黑龙江省小兴安岭北坡林分生长率模型的建立[J].防护林科技, 2014(7):32-33. |
ZHENG C H, GAO Z H, YANG S T. Establishment of stand growth rate model in the northern slope of Xiaoxing’anling in Heilongjiang province [J]. Prot. Forest Sci. Tech., 2014, (7):32-33. | |
6 | 迟少军,张士利.朝阳市主要树种组林分平均胸径生长率模型研究[J].林业调查规划, 2010, 35(5):12-14. |
CHI S J, ZHANG S L. Study on stand average DBH growth rate model of main tree groups in Chaoyang city [J]. Forest Invent. Plan., 2010, 35(5):12-14. | |
7 | 廖志云,曾伟生.西藏自治区主要树种生长率模型的研建[J].林业资源管理, 2006(3):36-38. |
LIAO Z Y, ZENG W S. Establishment of growth-rate models for main tree species in Tibet [J]. Forest Resour. Manage., 2006(3): 36-38. | |
8 | 曾伟生,杨学云,陈新云.北京市主要树种单木和林分生长率模型研建[J].中南林业调查规划, 2022, 41(1):1-8. |
ZENG W S, YANG X Y, CHEN X Y. Developing tree-and stand-level growth rate models for major tree species in Beijing [J]. Central South Forest Invent. Plan., 2022, 41(1):1-8. | |
9 | 张峰,彭祚登.北京市森林碳储量和碳汇经济价值研究[J].林业资源管理, 2021(6):52-58. |
ZHANG F, PENG Z D. Biomass carbon stocks and carbon stock economic value of forests in Beijing [J]. Forest Resour. Manage., 2021 (6):52-58. | |
10 | 朱妍.基于Landsat 8 OLI和ALOS-2 PALSAR-2数据的北京市森林生物量估测研究[D].北京:北京林业大学, 2020. |
ZHU Y. Estimation of forest biomass in Beijing using Landsat 8 OLI and ALOS-2 PALSAR-2 data [D]. Beijing: Beijing Forestry University, 2020. | |
11 | 赵丽琼.北京山区森林碳储量遥感估测技术研究[D].北京:北京林业大学, 2010. |
ZHAO L Q. Remote Sensing estimation of forest carbon stock in Beijing mountain [D]. Beijing: Beijing Forestry University, 2010. | |
12 | 王光华.北京森林植被固碳能力研究[D]. 北京:北京林业大学, 2012. |
WANG G H. Carbon sequestration capability of vegetation in Beijing [D]. Beijing: Beijing Forestry University, 2012. | |
13 | 张颖,李晓格.碳达峰碳中和目标下北京市森林碳汇潜力分析[J].资源与产业, 2022, 24(1):15-25. |
ZHANG Y, LI X G. Carbon sink potential of Beijing’s forest under carbon peak and carbon neutrality [J]. Resour. Ind,, 2022, 24(1):15-25. | |
14 | QIU Z X, FENG Z K, SONG Y N, et al.. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: predicting forest vegetation growth based on climate and the environment [J]. J. Cleaner Prod., 2020, 252:119715. |
15 | ZHANG H Y. FENG Z K, SHENC Y, et al.. Relationship between the geographical environment and the forest carbon sink capacity in China based on an individual-tree growth-rate model [J/OL]. Ecol. Indicators, 2022, 138:1008814 [2023-10-26]. . |
16 | CAI W X, HE N P, LI M X, et al.. Carbon sequestration of Chinese forests from 2010 to 2060: spatiotemporal dynamics and its regulatory strategies [J]. Sci. Bull., 2022, 67(8):836-843. |
17 | AKINDELE S O, LEMAY V M. Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria [J]. Forest Ecol. Manage., 2006, 226(1-3):41-48. |
18 | OSEWE E O, DUTCĂ I. The effects of combining the variables in allometric biomass models on biomass estimates over large forest areas: a european beech case study [J/OL]. Forests, 2021, 12(10):1428 [2023-10-26]. . |
19 | 邱梓轩.森林植被观测装备研制与观测方法研究[D].北京:北京林业大学, 2016. |
QIU Z X. Vegetation observation equipment and observation methods research [D]. Beijing: Beijing Forestry University, 2016. | |
20 | 卢婧,冯仲科.运用随机森林模型对北京市林分蓄积生长量的预测[J].东北林业大学学报, 2020, 48(5):7-11. |
LU J, FENG Z K. Forecast of stand volume growth in Beijing by using random forest [J]. J. Northeast Forestry Univ., 2020, 48(5):7-11. | |
21 | 杨立岩,冯仲科,刘迎春,等.量子粒子群优化最小二乘支持向量机的立木材积估算[J].浙江农林大学学报, 2018, 35(5):868-876. |
YANG L Y, FENG Z K, LIU Y C, et al.. Tree volume estimates based on QPSO-LSSVM [J]. J. Zhejiang A & F Univ., 2018, 35(5):868-876. | |
22 | YAO Y T, PIAO S L, WANG T. Future biomass carbon sequestration capacity of Chinese forests [J]. Sci. Bull., 2018, 63(17):1108-1117. |
23 | ZHAO M M, YANG J L, ZHAO N, et al.. Estimation of China’s forest stand biomass carbon sequestration based on the continuous biomass expansion factor model and seven forest inventories from 1977 to 2013 [J]. Forest Ecol. Manage., 2019, 448:528-534. |
24 | FANG J Y, GUO Z D, PIAO S L, et al.. Terrestrial vegetation carbon sinks in China, 1981—2000 [J]. Sci. China Ser. D: Earth Sci., 2007, 50(9):1341-1350. |
25 | CHU X, ZHAN J Y, LI Z H, et al.. Assessment on forest carbon sequestration in the Three-North Shelterbelt program region, China [J]. J. Cleaner Prod,, 2019, 215:382-389. |
26 | 陈晓凤.北京市乔木林碳储量及其固碳潜力研究[D].北京:北京林业大学, 2020. |
CHEN X F. Study on carbon storage and carbon sequestration potential of Arbor Forests in Beijing [D]. Beijing: Beijing Forestry University, 2020. | |
27 | 姜健发.森林资源连续清查中样地复位技术探讨[J].绿色科技, 2019, (13):236-238. |
JIANG J F. Discussion on the technology of sample resetting in the continuous inventory of forest resources [J]. J. Green Sci. Technol., 2019, (13):236-238. | |
28 | 初艳波,高香玲,张士利.辽宁东部地区主要树种组林分平均胸径生长率模型的研究[J].辽宁林业科技, 2012(2):7-8. |
CHU Y B, GAO X L, ZHANG S L. Research on the growth rate model of the forest stand average breast diameter of the main tree groups in east area of Liaoning Province [J]. Liaoning Forestry Sci. Technol., 2012(2):7-8. | |
29 | 曾伟生.用生长率推算生长量时应注意的一个问题[J].中南林业调查规划,1993, (4):57-58. |
ZENG W S. One issue to keep in mind when extrapolating growth with growth rates [J]. Central South Forest Invest. Plan., 1993(4):57-58. | |
30 | 冯仲科,熊妮娜,王佳,等.北京市侧柏人工林全林分模型建立与研究[J].北京林业大学学报, 2008, 30(S1):214-217. |
FENG Z K, XIONG N N, WANG J, et al.. Establishment and research of whole stand model of Platycladus orientalis plantation in Beijing [J]. J. Beijing Forestry Univ., 2008, 30(S1): 214-217. | |
31 | 王媛.基于连清样地数据的乔木胸径生长预测研究[D].北京:北京林业大学, 2019. |
WANG Y. The prediction of tree DBH growth based on continuous inventory sample plot data [D]. Beijing: Beijing Forestry University, 2019. | |
32 | 冯仲科,罗旭,石丽萍.森林生物量研究的若干问题及完善途径[J].世界林业研究, 2005, (3):25-28. |
FENG Z K, LUO X, SHI L P. Some problems and perfect approaches of research on forest biomass [J]. World Forestry Res., 2005, (3):25-28. | |
33 | 程文生.森林资源经营管理基础平台设计与实现[D].北京:北京林业大学, 2018. |
CHENG W S. The design and implementation of basic platform for forest resources management [D]. Beijing: Beijing Forestry University, 2018. | |
34 | FANG J Y, CHEN A P, PENG C H, et al.. Changes in forest biomass carbon storage in China between 1949 and 1998 [J]. Science, 2001, 292(5525):2320-2322. |
35 | FANG J Y, OIKAWA T, KATO T, et al.. Biomass carbon accumulation by Japan’s forests from 1947 to 1995 [J/OL]. Global Biogeochem. Cycles, 2005, 19:GB2004 [2023-10-27]. . |
36 | ZHANG C H, JU W M, CHEN J M, et al.. China’s forest biomass carbon sink based on seven inventories from 1973 to 2008 [J]. Climatic Change, 2013, 118(3-4):933-948. |
37 | PAN Y D, LUO T X, BIRDSEY R, et al.. New estimates of carbon storage and sequestration in China’s forests: effects of age-class and method on inventory-based carbon estimation [J]. Climatic Change, 2004, 67(2-3):211-236. |
38 | 国家林业局造林绿化管理司.造林项目碳汇计量与监测指南[M].北京:中国林业出版社, 2008:1-65. |
39 | 邱梓轩.中国陆表森林植被碳汇测计方法与应用研究[D].北京:北京林业大学, 2019. |
QIU Z X. Measurement and statistics of land-surface forest vegetation carbon sink in China [D]. Beijing: Beijing Forestry University, 2019. | |
40 | 黄从德,张健,杨万勤,等.四川省及重庆地区森林植被碳储量动态[J].生态学报, 2008(3):966-975. |
HUANG C D, ZHANG J, YANG W Q, et al.. Dynamics on forest carbon stock in Sichuan province and Chongqing city [J]. Acta Ecol. Sin., 2008(3):966-975. | |
41 | ZHANG H Y, FENG Z K, WANG S, et al.. Disentangling the factors that contribute to the growth of betula sppand cunninghami lanceolata in China based on machine learning algorithms [J]. Sustainability, 2022, 14(14):8346-8346. |
42 | 曾伟生,曹迎春,陈新云,等.河北省主要树种单木和林分生长率模型研建[J].林业资源管理, 2020, (1):30-37. |
ZENG W S, CAO Y C, CHEN X Y, et al.. Developing tree-level and stand-level growth rate models for major tree species in Hebei province [J]. Forest Resour. Manage., 2020, (1):30-37. | |
43 | ZHANG H, WANG K L, ZENG Z X, et al.. Large-scale patterns in forest growth rates are mainly driven by climatic variables and stand characteristics [J]. Forest Ecol. Manage., 2019, 435:120-127. |
44 | JOHNSON S E, ABRAMS M D. Age class, longevity and growth rate relationships: protracted growth increases in old trees in the Eastern United States [J]. Tree Physiol., 2009, 29(11): 1317-1328. |
45 | SCOLFORO H F, SCOLFORO J R S, THIERSCH C R, et al.. A new model of tropical tree diameter growth rate and its application to identify fast-growing native tree species [J]. Forest Ecol. Manage., 2017, 400:578-586. |
46 | PDEERSEN B S, HOWARD J L. The influence of canopy gaps on overstory tree and forest growth rates in a mature mixed-age, mixed-species forest [J]. Forest Ecol. Manage., 2004, 196(2-3):351-366. |
47 | 王玉学,王志杰.白桦胸径和材积生长率相关关系的研究[J].河北林果研究, 1997, (4):29-33. |
WANG Y X, WANG Z J. Study on growth correlation between diameter at breast height and volume of Betula platyphylla [J]. Hebei J. Forestry Orchard Res., 1997, (4):29-33. | |
48 | 国家林业局.全国森林经营规划(2016—2050)[M].北京:中国林业出版社, 2018. |
49 | 石春娜,王立群.我国森林资源质量变化及现状分析[J].林业科学, 2009, 45(11):90-97. |
SHI C N, WANG L Q. Status quo and changes analysis of forest resources quality in China [J]. Scientia Silvae Sin, 2009, 45(11):90-97. | |
50 | 冯仲科,张晓勤.发展我国的数字林业体系[J].北京林业大学学报, 2000, 2000(5):102-103. |
[1] | 王立刚 邱建军. 华北平原高产粮区土壤碳储量与平衡的模拟研究[J]. , 2004, 6(5): 27-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||