中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (11): 210-224.DOI: 10.13304/j.nykjdb.2023.0725
• 方法与技术创新 • 上一篇
徐杭1,2(), 宋浩2, 樊高成2, 黄淑坚1(
), 罗玉子2(
), 仇华吉1,2(
)
收稿日期:
2023-10-07
接受日期:
2024-03-04
出版日期:
2024-11-15
发布日期:
2024-11-19
通讯作者:
黄淑坚,罗玉子,仇华吉
作者简介:
徐杭 E-mail: 15284665522@163.com
基金资助:
Hang XU1,2(), Hao SONG2, Gaocheng FAN2, Shujian HUANG1(
), Yuzi LUO2(
), Huaji QIU1,2(
)
Received:
2023-10-07
Accepted:
2024-03-04
Online:
2024-11-15
Published:
2024-11-19
Contact:
Shujian HUANG,Yuzi LUO,Huaji QIU
摘要:
单克隆抗体(monoclonal antibody,mAb)作为一种有效的生物制剂,广泛应用于疾病的诊断和防治中。为解决传统的mAb制备技术存在制备周期长抗体亲和力低等弊端,科研人员在传统杂交瘤技术基础上研发了抗体展示技术、嵌合抗体技术和转基因小鼠技术及单个B细胞技术等抗体制备新策略,从而使mAb制备技术得到较快发展。从应用广泛的mAb制备新技术研究进展出发,对这些技术的原理、优缺点及其在新发和重大传染病防治中的应用现状和前景进行概述,旨在为mAb制备技术研究和疫病防控提供理论参考。
中图分类号:
徐杭, 宋浩, 樊高成, 黄淑坚, 罗玉子, 仇华吉. 单克隆抗体制备技术的研究现状[J]. 中国农业科技导报, 2024, 26(11): 210-224.
Hang XU, Hao SONG, Gaocheng FAN, Shujian HUANG, Yuzi LUO, Huaji QIU. Research Advances of Monoclonal Antibody Production Technologies[J]. Journal of Agricultural Science and Technology, 2024, 26(11): 210-224.
抗体名称 Antibody name | 靶抗原 Target antigen | 应用 Application | 参考文献 Reference |
---|---|---|---|
Rabishield | 狂犬病病毒 Rabies virus | 治疗 Therapeutics | [ |
VRC01 | 人类免疫缺陷病毒-1型 Human immunodeficiency virus-1 | 治疗、预防 Therapeutics and precaution | [ |
REGN10933 | 严重急性呼吸综合征冠状病毒-2型 Severe acute respiratory syndrome coronavirus 2 | 预防 Precaution | [ |
REGN10987 | 严重急性呼吸综合征冠状病毒-2型 Severe acute respiratory syndrome coronavirus 2 | 预防 Precaution | [ |
KZ52 | 埃博拉病毒 Ebola virus | 治疗 Therapeutics | [ |
ewe372-C10,ewe372-D3,ewe372-H1 | 白喉棒状杆菌 Corynebacterium diphtheriae | 治疗 Therapeutics | [ |
Raxibacumab | 炭疽杆菌 Bacillus anthracis | 治疗 Therapeutics | [ |
CR3022 | 严重急性呼吸综合征冠状病毒-2型 Severe acute respiratory syndrome coronavirus 2 | 治疗 Therapeutics | [ |
ZMapp | 埃博拉病毒 Ebola virus | 治疗 Therapeutics | [ |
Adalimumab | 肿瘤坏死因子 Tumour necrosis factor | 治疗 Therapeutics | [ |
表1 利用噬菌体展示技术制备mAb
Table 1 Production of mAb by using phage display technology
抗体名称 Antibody name | 靶抗原 Target antigen | 应用 Application | 参考文献 Reference |
---|---|---|---|
Rabishield | 狂犬病病毒 Rabies virus | 治疗 Therapeutics | [ |
VRC01 | 人类免疫缺陷病毒-1型 Human immunodeficiency virus-1 | 治疗、预防 Therapeutics and precaution | [ |
REGN10933 | 严重急性呼吸综合征冠状病毒-2型 Severe acute respiratory syndrome coronavirus 2 | 预防 Precaution | [ |
REGN10987 | 严重急性呼吸综合征冠状病毒-2型 Severe acute respiratory syndrome coronavirus 2 | 预防 Precaution | [ |
KZ52 | 埃博拉病毒 Ebola virus | 治疗 Therapeutics | [ |
ewe372-C10,ewe372-D3,ewe372-H1 | 白喉棒状杆菌 Corynebacterium diphtheriae | 治疗 Therapeutics | [ |
Raxibacumab | 炭疽杆菌 Bacillus anthracis | 治疗 Therapeutics | [ |
CR3022 | 严重急性呼吸综合征冠状病毒-2型 Severe acute respiratory syndrome coronavirus 2 | 治疗 Therapeutics | [ |
ZMapp | 埃博拉病毒 Ebola virus | 治疗 Therapeutics | [ |
Adalimumab | 肿瘤坏死因子 Tumour necrosis factor | 治疗 Therapeutics | [ |
靶抗原 Target antigen | 潜在应用 Potential application | 研发时间 Research time | 参考文献 Reference |
---|---|---|---|
苛养木杆菌 Xylella fastidiosa | Therapeutics | [ | |
埃博拉病毒 Ebola virus | [ | ||
马尔堡病毒 Marburg virus | 预防 Precaution | [ | |
寨卡病毒 Zika virus | Therapeutics | [ | |
结核分枝杆菌 Mycobacterium tuberculosis | [ | ||
严重急性呼吸综合征冠状病毒-2型 Severe acute respiratory syndrome coronavirus 2 | [ | ||
人类免疫缺陷病毒 Human immunodeficiency virus | Precaution | [ |
表2 利用核糖体展示技术制备mAb
Table 2 Production of mAb by using ribosome display technology
靶抗原 Target antigen | 潜在应用 Potential application | 研发时间 Research time | 参考文献 Reference |
---|---|---|---|
苛养木杆菌 Xylella fastidiosa | Therapeutics | [ | |
埃博拉病毒 Ebola virus | [ | ||
马尔堡病毒 Marburg virus | 预防 Precaution | [ | |
寨卡病毒 Zika virus | Therapeutics | [ | |
结核分枝杆菌 Mycobacterium tuberculosis | [ | ||
严重急性呼吸综合征冠状病毒-2型 Severe acute respiratory syndrome coronavirus 2 | [ | ||
人类免疫缺陷病毒 Human immunodeficiency virus | Precaution | [ |
方法 Method | 优点 Advantage | 缺点 Disadvantage | 参考文献 Reference | |
---|---|---|---|---|
随机分选 Random isolation | 显微操作法 Micromanipulation | 操作简单,设备要求低 Simple operation, low equipment requirements Simple operation | 分离细胞种类有限,分离效率低 Limited types of isolated cells, low efficiency | [ |
激光捕获显微切割法 Laser capture microdissection | 操作简单,定位准确 Simple operation and accurate positing | 制样复杂 Making samples is complicated | [ | |
荧光激活细胞分选法 Fluorescence-activated cell sorting | 自动化程度高,准确度高,高效 High degree of automation, high accuracy and efficiency | 操作复杂,设备要求高 Complicated operation and high equipment requirements | [ | |
抗原选择性分选 Antigen- selective isolation | 荧光包被抗原多参数细胞分离法 Fluorochrome-labeled antigens via multi-parameter | 高效,准确度高,自动化程度高 High efficiency and accuracy, high degree of automation | 操作复杂,设备要求高 Complicated operation and high equipment requirements | [ |
抗原标记磁珠分选法 Antigen-coated magnetic beads | 纯度高 High purity | 影响细胞生物活性,成本高 Limited bioactivities and high cost | [ | |
微雕法/细胞微阵列芯片法 Microengraving/cell-based micro-array chip systems | 准确度高,高效,成本低,纯度高 High accuracy and efficiency, low cost, high purity | 操作复杂 Complicated operation | [ |
表3 单个B细胞分离方法
Table 3 Methods of isolating single B cell
方法 Method | 优点 Advantage | 缺点 Disadvantage | 参考文献 Reference | |
---|---|---|---|---|
随机分选 Random isolation | 显微操作法 Micromanipulation | 操作简单,设备要求低 Simple operation, low equipment requirements Simple operation | 分离细胞种类有限,分离效率低 Limited types of isolated cells, low efficiency | [ |
激光捕获显微切割法 Laser capture microdissection | 操作简单,定位准确 Simple operation and accurate positing | 制样复杂 Making samples is complicated | [ | |
荧光激活细胞分选法 Fluorescence-activated cell sorting | 自动化程度高,准确度高,高效 High degree of automation, high accuracy and efficiency | 操作复杂,设备要求高 Complicated operation and high equipment requirements | [ | |
抗原选择性分选 Antigen- selective isolation | 荧光包被抗原多参数细胞分离法 Fluorochrome-labeled antigens via multi-parameter | 高效,准确度高,自动化程度高 High efficiency and accuracy, high degree of automation | 操作复杂,设备要求高 Complicated operation and high equipment requirements | [ |
抗原标记磁珠分选法 Antigen-coated magnetic beads | 纯度高 High purity | 影响细胞生物活性,成本高 Limited bioactivities and high cost | [ | |
微雕法/细胞微阵列芯片法 Microengraving/cell-based micro-array chip systems | 准确度高,高效,成本低,纯度高 High accuracy and efficiency, low cost, high purity | 操作复杂 Complicated operation | [ |
方法 Method | 优点 Advantage | 缺点 Disadvantage | 应用 Application | 参考文献 Reference |
---|---|---|---|---|
杂交瘤技术 Hybridoma technology | 操作简单,成本低 Simple operation and low cost | 制备周期长,免疫原性高 Long preparation cycle and high immunogenicity | 非洲猪瘟病毒、猪瘟病毒、猪繁殖与呼吸综合征病毒 ASFV, CSFV, PRRSV | [ |
噬菌体展示技术 Phage display technology | 库容量大、特异性高 Large storage capacity and high specificity accurate positing | 操作复杂 Complicated operation | 口蹄疫病毒 | [ |
酵母展示技术 Yeast display technology | 高效、准确度高 High efficiency and high accuracy | 转化效率较低 Low conversion efficiency | 非洲猪瘟病毒 ASFV | [ |
核糖体展示技术 Ribosome display technology | 转化效率高、库容量大 High conversion efficiency and large storage capacity | 稳定性差 Poor stability | Streptococcus muris | [ |
单个B细胞抗体制备技术 Single B cell antibody technology | 高效、纯度高 High efficiency and high accuracy | 操作复杂、设备要求高 Complicated operation and high requirements | 非洲猪瘟病毒 ASFV | [ |
嵌合抗体展示技术 Chimeric antibody technology | 不受物种限制 Not limited by species | 转化效率低 Low conversion efficiency | 鲤鱼疱疹病毒 Carp herpesvirus | [ |
转基因小鼠技术 Transgenic mouse technology | 亲和力高,免疫原性低 High affinity and low immunogenicity | 操作复杂 Complicated operation | 非洲猪瘟病毒 ASFV | [ |
表4 mAb制备技术的应用
Table 4 Applications of technologies for mAb production
方法 Method | 优点 Advantage | 缺点 Disadvantage | 应用 Application | 参考文献 Reference |
---|---|---|---|---|
杂交瘤技术 Hybridoma technology | 操作简单,成本低 Simple operation and low cost | 制备周期长,免疫原性高 Long preparation cycle and high immunogenicity | 非洲猪瘟病毒、猪瘟病毒、猪繁殖与呼吸综合征病毒 ASFV, CSFV, PRRSV | [ |
噬菌体展示技术 Phage display technology | 库容量大、特异性高 Large storage capacity and high specificity accurate positing | 操作复杂 Complicated operation | 口蹄疫病毒 | [ |
酵母展示技术 Yeast display technology | 高效、准确度高 High efficiency and high accuracy | 转化效率较低 Low conversion efficiency | 非洲猪瘟病毒 ASFV | [ |
核糖体展示技术 Ribosome display technology | 转化效率高、库容量大 High conversion efficiency and large storage capacity | 稳定性差 Poor stability | Streptococcus muris | [ |
单个B细胞抗体制备技术 Single B cell antibody technology | 高效、纯度高 High efficiency and high accuracy | 操作复杂、设备要求高 Complicated operation and high requirements | 非洲猪瘟病毒 ASFV | [ |
嵌合抗体展示技术 Chimeric antibody technology | 不受物种限制 Not limited by species | 转化效率低 Low conversion efficiency | 鲤鱼疱疹病毒 Carp herpesvirus | [ |
转基因小鼠技术 Transgenic mouse technology | 亲和力高,免疫原性低 High affinity and low immunogenicity | 操作复杂 Complicated operation | 非洲猪瘟病毒 ASFV | [ |
病原 Pathogen | 易感动物 Susceptible animal | 靶标蛋白 Target protein | 检测方法 Detection method | 参考文献 Reference |
---|---|---|---|---|
猪细小病毒 Porcine parvovirus | 猪 Porcine | VP2 | 夹心ELISA Sandwich EISA | [ |
猪流行性腹泻病毒 Porcine epidemic diarrhea virus | 猪 Porcine | N | 阻断ELISA Blocking ELISA | [ |
猪流感病毒 Swine influenza virus | 猪 Porcine | NP | 阻断ELISA Blocking ELISA | [ |
非洲猪瘟病毒 ASFV | 猪 Porcine | p54 | 竞争ELISA Competitive ELISA | [ |
猪圆环病毒2型 Porcine circovirus type 2 | 猪 Porcine | Cap | 竞争ELISA Competitive ELISA | [ |
猪传染性胃肠炎病毒 Transmissible gastroenteritis virus | 猪 Porcine | N | 竞争ELISA Competitive ELISA | [ |
猪繁殖和呼吸障碍综合症病毒 PRRSV | 猪 Porcine | N | 竞争ELISA Competitive ELISA | [ |
禽流感病毒 Avian influenza virus | 禽 Poultry | H9N2 | 竞争ELISA Competitive ELISA | [ |
新城疫病毒 Newcastle disease virus | 禽 Poultry | NP | 竞争ELISA Competitive ELISA | [ |
禽戊型肝炎病毒 Hepatitis E virus | 禽 Poultry | ORF2 | 竞争ELISA Competitive ELISA | [ |
表5 诊断性纳米抗体的应用
Table 5 Application of diagnostic nanobodies
病原 Pathogen | 易感动物 Susceptible animal | 靶标蛋白 Target protein | 检测方法 Detection method | 参考文献 Reference |
---|---|---|---|---|
猪细小病毒 Porcine parvovirus | 猪 Porcine | VP2 | 夹心ELISA Sandwich EISA | [ |
猪流行性腹泻病毒 Porcine epidemic diarrhea virus | 猪 Porcine | N | 阻断ELISA Blocking ELISA | [ |
猪流感病毒 Swine influenza virus | 猪 Porcine | NP | 阻断ELISA Blocking ELISA | [ |
非洲猪瘟病毒 ASFV | 猪 Porcine | p54 | 竞争ELISA Competitive ELISA | [ |
猪圆环病毒2型 Porcine circovirus type 2 | 猪 Porcine | Cap | 竞争ELISA Competitive ELISA | [ |
猪传染性胃肠炎病毒 Transmissible gastroenteritis virus | 猪 Porcine | N | 竞争ELISA Competitive ELISA | [ |
猪繁殖和呼吸障碍综合症病毒 PRRSV | 猪 Porcine | N | 竞争ELISA Competitive ELISA | [ |
禽流感病毒 Avian influenza virus | 禽 Poultry | H9N2 | 竞争ELISA Competitive ELISA | [ |
新城疫病毒 Newcastle disease virus | 禽 Poultry | NP | 竞争ELISA Competitive ELISA | [ |
禽戊型肝炎病毒 Hepatitis E virus | 禽 Poultry | ORF2 | 竞争ELISA Competitive ELISA | [ |
抗体名称 Antibody name | 靶抗原 Target antigen | 应用 Application | 参考文献 Reference |
---|---|---|---|
Caplacizumab、Cablivi ALX0081、ALX0681 | 血管性血友病因子A Von willebrand factor A | 治疗 Therapeutics | [ |
ALX-0171 | 呼吸道合胞病毒 Respiratory syncytial virus (RSV) | 治疗 Therapeutics | [ |
Lulizumab、BMS931699 | 系统性红斑狼疮CD28-B7 Systemic lupus erythematosus CD28-B7 | 预防 Precaution | [ |
前列腺特异性抗原 | 检测 | [ | |
检测 | [ | ||
Nb 1TCE39、Nb 2TCE49 | 犬弓蛔虫排泄/分泌抗原 Toxocara canis excretory/secretory (TES) antigen | 检测 | [ |
表6 利用噬菌体展示技术生产的纳米抗体
Table 6 Nanobodies produced using phage display technology
抗体名称 Antibody name | 靶抗原 Target antigen | 应用 Application | 参考文献 Reference |
---|---|---|---|
Caplacizumab、Cablivi ALX0081、ALX0681 | 血管性血友病因子A Von willebrand factor A | 治疗 Therapeutics | [ |
ALX-0171 | 呼吸道合胞病毒 Respiratory syncytial virus (RSV) | 治疗 Therapeutics | [ |
Lulizumab、BMS931699 | 系统性红斑狼疮CD28-B7 Systemic lupus erythematosus CD28-B7 | 预防 Precaution | [ |
前列腺特异性抗原 | 检测 | [ | |
检测 | [ | ||
Nb 1TCE39、Nb 2TCE49 | 犬弓蛔虫排泄/分泌抗原 Toxocara canis excretory/secretory (TES) antigen | 检测 | [ |
1 | KÖHLER G, MILSTEIN C. Continuous cultures of fused cells secreting antibody of predefined specificity [J]. Nature, 1975,256: 495-497. |
2 | RASO V. Antibodies in diagnosis and therapy. the magic bullet:nearing the century mark [J]. Semin. Cancer Biol., 1990,1(3):227-242. |
3 | ZINN S, VAZQUEZ-LOMBARDI R, ZIMMERMANN C, et al.. Advances in antibody-based therapy in oncology [J]. Nat.Cancer, 2023, 4:165-180. |
4 | ANAND T, VIRMANI N, BERA B C, et al.. Phage display technique as a tool for diagnosis and antibody selection for coronaviruses [J]. Curr. Microbiol., 2021,78(4):1124-1134. |
5 | KAPLON H, CRESCIOLI S, CHENOWETH A, et al.. Antibodies to watch in 2023 [J/OL]. MAbs, 2023, 15(1): 2153410 [2023-09-06]. . |
6 | 黄小容,赵卫,孙九峰.单克隆抗体制备技术及在重大传染病防治中应用进展[J].华南预防医学,2022,48(3):276-280. |
HUANG X R, ZHAO W, SUN J F. Development of monoclonal antibody preparation technology and its application in the prevention and control of major infectious diseases [J]. South China J. Prev. Med., 2022,48(3):276-280. | |
7 | GREIG S L. Obiltoxaximab:first global approval [J]. Drugs,2016,76(7):823-830. |
8 | JULG B, BAROUCH D. Broadly neutralizing antibodies for HIV-1 prevention and therapy [J/OL]. Semin. Immunol., 2021,51:101475 [2023-09-06]. . |
9 | STEPHENSON K E, WAGH K, KORBER B,et al.. Vaccines and broadly neutralizing antibodies for HIV-1 prevention [J]. Annu. Rev. Immunol.,2020,38:673-703. |
10 | KHONGORZUL P, LING C J, KHAN F U, et al.. Antibody-drug conjugates:a comprehensive review [J]. Mol. Cancer Res., 2020,18(1):3-19. |
11 | PARRAY H A, SHUKLA S, SAMAL S, et al.. Hybridoma technology a versatile method for isolation of monoclonal antibodies,its applicability across species,limitations,advancement and future perspectives [J/OL]. Int. Immunopharmacol., 2020,85:106639 [2023-09-06]. . |
12 | DE ALMEIDA R, NAKAMURA C N, DE LIMA FONTES M, et al.. Enhanced immunization techniques to obtain highly specific monoclonal antibodies [J]. mAbs, 2018, 10(1):46-54. |
13 | SMITH G P. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface [J]. Science,1985,228(4705):1315-1317. |
14 | SAW P E, SONG E W. Phage display screening of therapeutic peptide for cancer targeting and therapy [J]. Protein Cell, 2019,10(11):787-807. |
15 | MAHDAVI S Z B, OROOJALIAN F, EYVAZI S, et al.. An overview on display systems (phage,bacterial,and yeast display) for production of anticancer antibodies; advantages and disadvantages [J]. Int. J. Biol. Macromol., 2022,208:421-442. |
16 | SIOUD M. Phage display libraries:from binders to targeted drug delivery and human therapeutics [J]. Mol. Biotechnol., 2019,61(4):286-303. |
17 | KARIMI M, MIRSHEKARI H, MOOSAVI BASRI S M, et al.. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos [J]. Adv. Drug Deliv. Rev., 2016,106(A):45-62. |
18 | WANG R, LI H D, CAO Y, et al.. M13 phage:a versatile building block for a highly specific analysis platform [J]. Anal. Bioanal. Chem., 2023,415(18):3927-3944. |
19 | LOPES R S, QUEIROZ M A F, GOMES S T M, et al.. Phage display:an important tool in the discovery of peptides with anti-HIV activity [J]. Biotechnol. Adv., 2018,36(7):1847-1854. |
20 | MCCAFFERTY J, GRIFFITHS A D, WINTER G, et al.. Phage antibodies:filamentous phage displaying antibody variable domains [J]. Nature, 1990,348:552-554. |
21 | NAGANO K, TSUTSUMI Y. Phage display technology as a powerful platform for antibody drug discovery [J/OL]. Viruses,2021,13(2):178 [2023-09-06]. . |
22 | NORRIS M H, BLACKBURN J K. Raxibacumab:a panacea for anthrax disease? [J]. Lancet Infect. Dis., 2020,20(8):886-887. |
23 | MEYER T, STRATMANN-SELKE J, MEENS J, et al.. Isolation of scFv fragments specific to OmpD of Salmonella Typhimurium [J]. Vet. Microbiol., 2011,147(1/2):162-169. |
24 | HENNING L N, CARPENTER S, STARK G V, et al.. Development of protective immunity in New Zealand white rabbits challenged with Bacillus anthracis spores and treated with antibiotics and obiltoxaximab,a monoclonal antibody against protective antigen [J/OL]. Antimicrob. Agents Chemother., 2018,62(2):e01590-17 [2023-09-06]. . |
25 | HÜLSEWEH B, RÜLKER T, PELAT T, et al.. Human-like antibodies neutralizing western equine encephalitis virus [J]. mAbs, 2014,6(3):718-727. |
26 | BERTOGLIO F, FÜHNER V, RUSCHIG M, et al.. A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations [J/OL]. Cell Rep.,2021,36(4):109433 [2023-09-06]. . |
27 | ROTH K D R, WENZEL E V, RUSCHIG M, et al.. Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy [J/OL].Front. Cell. Infect. Microbiol., 2021,11:697876 [2023-09-06]. . |
28 | JAROSZEWICZ W, MORCINEK-ORŁOWSKA J, PIERZYNOWSKA K, et al.. Phage display and other peptide display technologies [J/OL].FEMS Microbiol. Rev., 2022,46(2):fuab052 [2023-09-06]. . |
29 | KAZA V K, NATHAN B. Inclusion of Rabishield in the WHO guidelines for rabies postexposure prophylaxis [J]. Indian J. Pharmacol., 2023,55(2):141-142. |
30 | WALSH S R, SEAMAN M S. Broadly neutralizing antibodies for HIV-1 prevention [J/OL].Front. Immunol., 2021,12:712122 [2023-09-06]. . |
31 | BAUM A, FULTON B O, WLOGA E, et al.. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies [J]. Science, 2020,369(6506):1014-1018. |
32 | HANSEN J, BAUM A, PASCAL K E, et al.. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail [J]. Science, 2020,369(6506):1010-1014. |
33 | SAPHIRE E O, SCHENDEL S L, GUNN B M, et al.. Antibody-mediated protection against Ebola virus [J]. Nat. Immunol., 2018,19:1169-1178. |
34 | WENZEL E V, BOSNAK M, TIERNEY R, et al.. Human antibodies neutralizing diphtheria toxin in vitro and in vivo [J/OL].Sci. Rep., 2020,10(1):571 [2023-09-06].. |
35 | KUMMERFELDT C E. Raxibacumab:potential role in the treatment of inhalational anthrax [J]. Infect. Drug Resist., 2014,7:101-109. |
36 | CAO Y L, WANG J, JIAN F C, et al.. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies [J].Nature, 2022,602:657-663. |
37 | JACOB S T, CROZIER I, FISCHER 2nd W A, et al.. Ebola virus disease [J/OL]. Nat. Rev. Dis. Primers, 2020,6(1):13[2023-09-06]. . |
38 | BURMESTER G R, PANACCIONE R, GORDON K B, et al.. Adalimumab: long-term safety in 23458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease [J]. Ann. Rheum. Dis., 2013,72(4): 517-524. |
39 | GULIY O I, EVSTIGNEEVA S S, DYKMAN L A. Recombinant antibodies by phage display for bioanalytical applications [J/OL]. Biosens. Bioelectron., 2023,222:114909 [2023-09-06].. |
40 | BODER E T, WITTRUP K D. Yeast surface display for screening combinatorial polypeptide libraries [J].Nat. Biotechnol., 1997,15:553-557. |
41 | DENG M. The approval of sintilimab for classical Hodgkin’s lymphoma:views and perspectives of anti-PD-1/PD-L1 antibodies in China [J]. Antib. Ther., 2019,2(2):54-55. |
42 | ROSOWSKI S, BECKER S, TOLEIKIS L, et al.. A novel one-step approach for the construction of yeast surface display Fab antibody libraries [J/OL].Microb. Cell Fact., 2018,17(1):3[2023-09-06]. . |
43 | BAEK D S, PARK S W, ADAMS C, et al.. Yeast mating as a tool for highly effective discovery and engineering of antibodies via display methodologies [J]. Meth. Mol. Biol., 2022, 2491:313-333. |
44 | GRZESCHIK J, YANAKIEVA D, ROTH L, et al.. Yeast surface display in combination with fluorescence-activated cell sorting enables the rapid isolation of antibody fragments derived from immunized chickens [J/OL]. Biotechnol. J., 2019,14(4):e1800466 [2023-09-06]. . |
45 | ROUHA H, BADARAU A, VISRAM Z C, et al.. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody [J]. Mabs, 2015, 7(1): 243-254. |
46 | YANG Z, DU M J, WANG W, et al.. Affinity maturation of an TpoR targeting antibody in full-length IgG form for enhanced agonist activity [J]. Protein Eng. Des. Sel., 2018,31(7/8):233-241. |
47 | SCHRÖTER C, BECK J, KRAH S, et al.. Selection of antibodies with tailored properties by application of high-throughput multiparameter fluorescence-activated cell sorting of yeast-displayed immune libraries [J]. Mol. Biotechnol., 2018,60(10):727-735. |
48 | SUN W, YANG Z N, LIN H, et al.. Improvement in affinity and thermostability of a fully human antibody against interleukin-17A by yeast-display technology and CDR grafting [J]. Acta Pharm. Sin. B, 2019,9(5):960-972. |
49 | MCMAHON C, BAIER A S, PASCOLUTTI R,et al.. Yeast surface display platform for rapid discovery of conformationally selective nanobodies [J]. Nat. Struct. Mol. Biol., 2018,25:289-296. |
50 | VALLDORF B, HINZ S C, RUSSO G, et al.. Antibody display technologies: selecting the cream of the crop [J]. Biol. Chem., 2021, 403(5-6): 455-477. |
51 | FERRARA F, SOLURI M F, SBLATTERO D. Recombinant antibody selections by combining phage and yeast display [J]. Methods Mol. Biol., 2019, 1904:339-352. |
52 | KOVAČEVIĆ G, OSTAFE R, BALAŽ A M, et al..Development of GFP-based high-throughput screening system for directed evolution of glucose oxidase [J]. J. Biosci. Bioeng., 2019,127(1):30-37. |
53 | TEYMENNET-RAMÍREZ K V, MARTÍNEZ-MORALES F, TREJO-HERNÁNDEZ M R. Yeast surface display system:strategies for improvement and biotechnological applications [J/OL].Front. Bioeng. Biotechnol., 2021,9: 794742 [2023-09-06]. . |
54 | HANES J, PLÜCKTHUN A. In vitro selection and evolution of functional proteins by using ribosome display [J]. Micromachines, 1997,94(10):4937-4942. |
55 | AZIZI A, ARORA A, MARKIV A,et al.. Ribosome display of combinatorial antibody libraries derived from mice immunized with heat-killed Xylella fastidiosa and the selection of MopB-specific single-chain antibodies [J]. Appl. Environ. Microbiol., 2012,78(8):2638-2647. |
56 | KUNAMNENI A, OGAUGWU C, BRADFUTE S, et al.. Ribosome display technology: applications in disease diagnosis and control [J]. Antibodies (Basel),2020,9(3):28[2023-09-06].. |
57 | LI R W, KANG G B, HU M, et al.. Ribosome display:a potent display technology used for selecting and evolving specific binders with desired properties [J]. Mol. Biotechnol., 2019,61(1):60-71. |
58 | LAGOUTTE P. Ribosome display: evolution and acellular selection of molecular libraries for high affinity binder generation [J]. Med. Sci. (Paris), 2020,36(8-9): 717-724. |
59 | CHANCE R, KANG A S. Eukaryotic ribosome display for antibody discovery:a review [J]. Hum. Antibodies,2024,32(3):107-120. |
60 | KUNAMNENI A, CLARKE E C, YE C, et al.. Generation and selection of a panel of pan-filovirus single-chain antibodies using cell-free ribosome display [J]. Am. J. Trop. Med. Hyg., 2019,101(1):198-206. |
61 | KUNAMNENI A, YE C, BRADFUTE S B, et al.. Ribosome display for the rapid generation of high-affinity Zika-neutralizing single-chain antibodies [J/OL]. Front. Plant Sci., 2018,13(11):e0205743 [2023-09-06]. . |
62 | AHANGARZADEH S, BANDEHPOUR M, KAZEMI B.Selection of single-chain variable fragments specific for Mycobacterium tuberculosis ESAT-6 antigen using ribosome display [J]. Iran. J. Basic Med. Sci., 2017,20(3):327-333. |
63 | JIANG S B, HILLYER C, DU L Y. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses [J]. Trends Immunol., 2020,41(5):355-359. |
64 | BURTON D R, WEISS R A. AIDS/HIV. A boost for HIV vaccine design [J]. Science, 2010, 329(5993): 770-773. |
65 | HARA S, LIU M, WANG W,et al.. Stabilized ribosome display for in vitro selection [J]. Meth. Mol. Biol., 2012,805:59-73. |
66 | PEDRIOLI A, OXENIUS A. Single B cell technologies for monoclonal antibody discovery [J]. Trends Immunol., 2021,42(12):1143-1158. |
67 | 迟象阳,于长明,陈薇.单个B细胞抗体制备技术及应用[J].生物工程学报,2012,28(6):651-660. |
CHI X Y, YU C M, CHEN W. Single B cell monoclonal antibody technologies and applications [J]. Chin. J. Biotechnol., 2012,28(6):651-660. | |
68 | BUCHELI O T M, SIGVALDADÓTTIR I, EYER K. Measuring single-cell protein secretion in immunology:technologies,advances,and applications [J]. Eur. J. immunol.,2021,51(6):1334-1347. |
69 | GILBERT A E, KARAGIANNIS P, DODEV T, et al.. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies [J/OL]. PLoS One, 2011,6(4):e19330 [2023-09-06]. . |
70 | KÜPPERS R, SCHNEIDER M, HANSMANN M L. Laser-based microdissection of single cells from tissue sections and PCR analysis of rearranged immunoglobulin genes from isolated normal and malignant human B cells [J]. Meth. Mol. Biol., 2013,971:49-63. |
71 | GUO W, HU Y, QIAN J, et al.. Laser capture microdissection for biomedical research:towards high-throughput,multi-omics,and single-cell resolution [J]. J. Genet. Genom., 2023,50(9):641-651. |
72 | WANG Z J, MERKENSCHLAGER J, CHEN S T, et al.. Isolation of single HIV-1 Envelope specific B cells and antibody cloning from immunized rhesus macaques [J/OL]. J. Immunol. Meth., 2020,478:112734 [2023-09-06].. |
73 | MIYAMOTO K, AOKI W, OHTANI Y, et al.. Peptide barcoding for establishment of new types of genotype-phenotype linkages [J/OL]. PLoS One, 2019,14(4):e0215993 [2023-09-06]. . |
74 | FEI C, NIE L, ZHANG J, et al.. Potential applications of fluorescence-activated cell sorting (FACS) and droplet-based microfluidics in promoting the discovery of specific antibodies for characterizations of fish immune cells [J/OL]. Front. Immunol., 2021,12:771231 [2023-09-06]. . |
75 | KISHI H, OZAWA T, HAMANA H, et al.. Isolation of antigen-specific,antibody-secreting cells using a chip-based immunospot array [J]. Meth. Mol. Biol., 2019,1904:147-162. |
76 | YASEN A, AINI A, WANG H, et al.. Progress and applications of single-cell sequencing techniques [J/OL]. Infect Genet. Evol., 2020,80:104198 [2023-09-06]. . |
77 | WANG S, WANG Z C, LI Y, et al.. Generation of whole-porcine neutralizing antibodies of an alphacoronavirus by single B cell antibody technology [J/OL].Antivir. Res., 2023,220:105754 [2023-09-06].. |
78 | WRAMMERT J, KOUTSONANOS D, LI G M, et al.. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection [J].J. Exp. Med., 2011,208(1):181-193. |
79 | MORRISON S L, JOHNSON M J, HERZENBERG L A, et al.. Chimeric human antibody molecules:mouse antigen-binding domains with human constant region domains [J]. Proc. Natl. Acad Sci. USA,1984,81(21):6851-6855. |
80 | VINCENT L, BOURNEAU-MARTIN D, MAURIER A, et al.. Delayed thrombocytopenia following administration of abciximab:Pharmacovigilance survey and literature review [J]. Therapies, 2021,76(6):687-693. |
81 | GKLINOS P, PAPADOPOULOU M, STANULOVIC V, et al.. Monoclonal antibodies as neurological therapeutics [J/OL]. Pharmaceuticals (Basel), 2021,14(2):92 [2023-09-06]. . |
82 | ADEDOKUN O J, XU Z H, GASINK C, et al.. Pharmacokinetics and exposure response relationships of ustekinumab in patients with Crohn’s disease [J]. Gastroenterology, 2018,154(6):1660-1671. |
83 | BRÜGGEMANN M, OSBORN M J, MA B, et al.. Human antibody production in transgenic animals [J]. Arch. Immunol. Ther. Exp., 2015,63(2):101-108. |
84 | RAYAPROLU V, FULTON B O, RAFIQUE A, et al.. Structure of the Inmazeb cocktail and resistance to Ebola virus escape [J]. Cell Host Microbe, 2023,31(2):260-272. |
85 | WANG Z, WANG G Q, LU H Q, et al.. Development of therapeutic antibodies for the treatment of diseases [J/OL]. Mol. Biomed., 2022,3(1):35 [2023-09-06]. . |
86 | ROBERTS R W, SZOSTAK J W. RNA-peptide fusions for the in vitro selection of peptides and proteins [J]. Proc. Natl. Acad. Sci. USA, 1997,94(23):12297-12302. |
87 | NEMOTO N, MIYAMOTO-SATO E, HUSIMI Y, et al.. In vitro virus:bonding of mRNA bearing puromycin at the 3’-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro [J]. FEBS Lett., 1997,414(2):405-408. |
88 | PITT A, NIMS Z. Peptide display technologies [J]. Meth. Mol. Biol., 2019,2001:285-298. |
89 | PANTALEO G, CORREIA B, FENWICK C, et al.. Antibodies to combat viral infections:development strategies and progress [J]. Nat. Rev. Drug Discov., 2022,21:676-696. |
90 | LIBERTI R, COLABELLA C, ANZALONE L, et al.. Expression of a recombinant ASFV P30 protein and production of monoclonal antibodies [J]. Open Vet. J., 2023,13(3):358-364. |
91 | MI S J, WANG L H, LI H W, et al.. Characterization of monoclonal antibodies that specifically differentiate field isolates from vaccine strains of classical swine fever virus [J/OL].Front. Immunol., 2022,13:930631 [2023-09-06].. |
92 | ZHANG Z, ZHAI T, LI M, et al.. A broadly neutralizing monoclonal antibody induces broad protection against heterogeneous PRRSV strains in piglets [J/OL]. Vet. Res., 2021,52(1):45 [2023-09-06].. |
93 | JEONG S, AHN H J, MIN K J, et al..P hage display screening of bovine antibodies to foot-and-mouth disease virus and their application in a competitive ELISA for serodiagnosis [J/OL].Int. J. Mol. Sci., 2021,22(9):4328 [2023-09-06].. |
94 | CHEN C, HUA D P, SHI J X, et al.. Porcine immunoglobulin fc fused P30/P54 protein of African swine fever virus displaying on surface of S.cerevisiae elicit strong antibody production in swine [J]. Virol. Sin., 2021,36(2):207-219. |
95 | GRIMM S, YU F, NYGREN P Å. Ribosome display selection of a murine IgG1 Fab binding affibody molecule allowing species selective recovery of monoclonal antibodies [J]. Mol. Biotechnol., 2011,48(3):263-276. |
96 | ZHAO H, WANG G, DONG H, et al.. Identification of a linear B cell epitope on p54 of African swine fever virus using nanobodies as a novel tool [J/OL].Microbiol. Spectr., 2023,11(3):e0336222 [2023-09-06]. . |
97 | AMETRANO A, COSCIA M R. Production of a chimeric mouse-fish monoclonal antibody by the CRISPR/Cas9 technology [J]. Meth. Mol. Biol., 2022,2498:337-350. |
98 | CORREIA S, VENTURA S, PARKHOUSE R M. Identification and utility of innate immune system evasion mechanisms of ASFV [J]. Virus Res., 2013,173(1):87-100. |
99 | MEI M, LI J, WANG S, et al.. Prompting fab yeast surface display efficiency by ER retention and molecular chaperon co-expression [J/OL]. Front. Bioeng. Biotechnol.,2019,7:362 [2023-09-06]. . |
100 | RAVN U, GUENEAU F, BAERLOCHER L, et al.. By-passing in vitro screening:next generation sequencing technologies applied to antibody display and in silico candidate selection [J/OL]. Nucleic Acids Res., 2010,38(21):e193 [2023-09-06].. |
101 | DUFNER P, JERMUTUS L, MINTER R R. Harnessing phage and ribosome display for antibody optimization [J]. Trends Biotechnol., 2006,24(11):523-529. |
102 | JUMPER J, EVANS R, PRITZEL A, et al.. Highly accurate protein structure prediction with AlphaFold [J]. Nature, 2021,596:583-589. |
103 | BAEK M, DIMAIO F, ANISHCHENKO I, et al.. Accurate prediction of protein structures and interactions using a three-track neural network [J]. Science, 2021,373(6557):871-876. |
104 | RUFFOLO J A, SULAM J, GRAY J J. Antibody structure prediction using interpretable deep learning [J/OL]. Patterns,2022,3(2):100406 [2023-09-06].. |
105 | LU Q, LI X, ZHAO J, et al.. Nanobody‑horseradish peroxidase and -EGFP fusions as reagents to detect porcine parvovirus in the immunoassays [J/OL]. J. Nanobiotechnol., 2020,18(1):7 [2023-09-06]. . |
106 | MA Z Q, WANG T Y, LI Z W, et al.. A novel biotinylated nanobody-based blocking ELISA for the rapid and sensitive clinical detection of porcine epidemic diarrhea virus [J/OL]. J. Nanobiotechnol., 2019,17(1):96 [2023-09-06].. |
107 | DU T, ZHU G, WU X, et al.. Biotinylated single-domain antibody-based blocking ELISA for detection of antibodies against swine influenza virus [J]. Int. J. Nanomed., 2019,14:9337-9349. |
108 | ZHAO H J, REN J H, WU S Y, et al.. HRP-conjugated-nanobody-based cELISA for rapid and sensitive clinical detection of ASFV antibodies [J].Appl. Microbiol. Biotechnol., 2022,106(11):4269-4285. |
109 | MU Y, JIA C, ZHENG X, et al.. Correction to:a nanobody-horseradish peroxidase fusion protein-based competitive ELISA for rapid detection of antibodies against porcine circovirus type 2 [J/OL]. J. Nanobiotechnol., 2021,19(1):66[2023-09-06]. . |
110 | 樊杰. 猪传染性胃肠炎病毒N蛋白纳米抗体的制备和基于纳米抗体竞争ELISA的建立[D]. 杨凌:西北农林科技大学, 2021. |
FAN J. Preparation of nanobodies against transmissible gastroenteritis virus N protein and development of the nanobody-based competitive ELISA [D]. Yangling:Northwest A&F University, 2021. | |
111 | DUAN H, CHEN X, ZHAO J, et al.. Development of a nanobody-based competitive enzyme-linked immunosorbent assay for efficiently and specifically detecting antibodies against genotype 2 porcine reproductive and respiratory syndrome viruses [J/OL].J. Clin. Microbiol., 2021,59(12):e0158021 [2023-09-06]. . |
112 | JI P P, WANG K, ZHANG L, et al.. A new nanobody-enzyme fusion protein-linked immunoassay for detecting antibodies against influenza A virus in different species [J/OL]. J. Biol. Chem., 2022,298(12):102709 [2023-09-06].. |
113 | SHENG Y M, WANG K, LU Q Z, et al.. Nanobody-horseradish peroxidase fusion protein as an ultrasensitive probe to detect antibodies against Newcastle disease virus in the immunoassay [J/OL]. J. Nanobiotechnol., 2019,17(1):35[2023-09-06]. . |
114 | 陈天祥.禽戊型肝炎病毒ORF2截短蛋白纳米抗体的制备和竞争ELISA检测方法的建立[D].杨凌:西北农林科技大学,2021. |
CHEN T X. Preparation of nanobodies against a truncated protein of avian HEV ORF2 and development of a competitive ELISA [D]. Yangling:Northwest A&F University, 2021. | |
115 | SCULLY M, CATALAND S R, PEYVANDI F, et al.. Caplacizumab treatment for acquired thrombotic thrombocytopenic Purpura [J]. N Engl J. Med., 2019,380(4):335-346. |
116 | TAHAMTAN A, BESTEMAN S, SAMADIZADEH S, et al.. Neutrophils in respiratory syncytial virus infection:from harmful effects to therapeutic opportunities [J]. Br. J. Pharmacol., 2021,178(3):515-530. |
117 | SHI R, HONCZARENKO M, ZHANG S, et al.. Pharmacokinetic,pharmacodynamic,and safety profile of a novel anti-CD28 domain antibody antagonist in healthy subjects [J]. J. Clin. Pharmacol., 2017,57(2):161-172. |
118 | HUANG L, REEKMANS G, SAERENS D, et al.. Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays [J]. Biosens. Bioelectron., 2005,21(3):483-490. |
119 | GELKOP S, SOBARZO A, BRANGEL P,et al.. The development and validation of a novel nanobody-based competitive ELISA for the detection of foot and mouth disease 3ABC antibodies in cattle [J/OL]. Front. Vet. Sci., 2018,5:250[2023-09-06]. . |
120 | MORALES-YANEZ F J, SARIEGO I, VINCKE C, et al.. An innovative approach in the detection of Toxocara canis excretory/secretory antigens using specific nanobodies [J]. Int. J. Parasitol., 2019,49(8):635-645. |
[1] | 蔡阳扬, 陶秀萍, 李同, 尚斌, 宋建超, 刘璐. 天然高分子絮凝剂的制备及应用研究[J]. 中国农业科技导报, 2023, 25(10): 165-172. |
[2] | 张骞,淮贺举*,孙宁,王艾萌,李存军. 信息化引领现代农业园区发展现状与对策研究[J]. 中国农业科技导报, 2019, 21(12): 8-13. |
[3] | 沈红霞. 农业高新技术产业发展现状与趋势——以北京市为例[J]. 中国农业科技导报, 2018, 20(12): 9-15. |
[4] | 常白杨1,王彤彤2,汪建明1*,王敏2*. 烟曲霉素类药物在农业领域的应用研究进展[J]. 中国农业科技导报, 2017, 19(9): 57-62. |
[5] | 刘磊1,王振忠2*,卢兵友2. 技术成熟度应用现状及加快其在我国农业科技创新应用的政策建议[J]. 中国农业科技导报, 2017, 19(10): 1-6. |
[6] | 於少文1,2,孔繁涛2*,张建华2,赵志强1,韩书庆2,刘佳佳2. 可穿戴设备技术在奶牛养殖中的应用及发展趋势[J]. 中国农业科技导报, 2016, 18(5): 102-110. |
[7] | 黄华1,杜天舒2,李强1,王轶南1,李华1. 单克隆抗体在水产病原微生物检测中的应用[J]. , 2012, 14(2): 145-150. |
[8] | 胡小元,张岐蜀,段伟,姜国华,李玲. 用人工合成多肽作为半抗原制备Bt Cry1Ac的单克隆抗体[J]. , 2012, 14(2): 88-94. |
[9] | 戚瑞荣1,李强1,于毅2,李华1. 单克隆抗体在水产无脊椎动物血淋巴细胞研究中的应用[J]. , 2012, 14(1): 146-151. |
[10] | 王亚男1,汪聪慧1,李卫建2. 农药残留分析中准确定性新技术——Massworks[J]. , 2009, 11(S1): 39-42. |
[11] | 王雄,董颖超,果旗,陈冰君. 饲料中黄曲霉毒素B1快速检测试剂盒的研制与应用 [J]. , 2008, 10(S2): 101-105. |
[12] | 黄立洪 柯庆明 林文雄. 高新技术在生态农业中的应用与展望[J]. , 2005, 7(5): 50-54. |
[13] | 任士福 李保会. 河北农业大学农林新品种新技术综合示范基地建设实践与思考[J]. , 2005, 7(4): 72-76. |
[14] | 刘慧娥 徐军宏 王兆华. 用科学发展观统领农业循环经济发展[J]. , 2005, 7(3): 26-28. |
[15] | 朱玉春. 对我国农业高新技术成果知识产权保护的思考[J]. , 2005, 7(3): 71-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||