中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (4): 11-20.DOI: 10.13304/j.nykjdb.2021.0497
收稿日期:
2021-06-17
接受日期:
2021-08-23
出版日期:
2022-04-15
发布日期:
2022-04-19
通讯作者:
张洪亮
作者简介:
杨涛 E-mail:b20203010051@cau.edu.cn;
基金资助:
Tao YANG(), Xiaoqian MA, Quan ZHANG, Hongliang ZHANG(
)
Received:
2021-06-17
Accepted:
2021-08-23
Online:
2022-04-15
Published:
2022-04-19
Contact:
Hongliang ZHANG
摘要:
作为表观遗传学研究的重要内容,组蛋白修饰在维持真核生物基因组稳定性、基因表达调控和染色质结构等方面发挥重要作用。水稻是重要的粮食作物,也是科学研究的模式植物。近年来研究发现,组蛋白修饰参与了水稻生长发育、胁迫应答、产量以及品质形成等重要生物学性状的调控。因此,明确组蛋白修饰在水稻中的遗传和调控机制对于水稻遗传改良具有重要意义。对组蛋白修饰的作用机制以及在水稻中的研究进展进行了综述,并进一步展望了水稻中组蛋白修饰的研究前景,以期为水稻育种提供参考。
中图分类号:
杨涛, 马小倩, 张全, 张洪亮. 组蛋白修饰在水稻中的研究进展[J]. 中国农业科技导报, 2022, 24(4): 11-20.
Tao YANG, Xiaoqian MA, Quan ZHANG, Hongliang ZHANG. Research Progress of Histone Modification in Rice[J]. Journal of Agricultural Science and Technology, 2022, 24(4): 11-20.
组蛋白修饰类型 Histone modification type | 基因 Gene | 功能分析 Functional analysis | 参考文献Reference | |
---|---|---|---|---|
甲基化 Methylation | H3K4甲基化酶 H3K4 methylase | SDG701 | 孢子体生长发育,育性,开花 Spore growth and development, fertility, flowering | [ |
SDG721,SDG705 | GA信号,株高,细胞长度,穗分支 GA signal, plant height, cell length, panicle branch | [ | ||
H3K4去甲基化酶 H3K4 demethylase | JMJ703 | 茎秆,株高,粒型,叶角 Stem, plant height, grain type, leaf angle | [ | |
H3K9甲基化酶 H3K9 methylase | SDG714 | 基因组稳定性,毛状体发育 Genome stability, trichome development | [ | |
SDG710,SDG727 | 抑制逆转座子的转座 Inhibition of transposition of retrotransposons | [ | ||
SDG723 | 抽穗期 Heading date | [ | ||
H3K9去甲基化酶 H3K9 demethylase | JMJ706 | 花器官发育Floral organ development | [ | |
JMJ704 | 细菌枯萎病抗性Bacterial fusarium wilt resistance | [ | ||
H3K27甲基化酶 H3K27 methylase | SDG711 | 花序形状,抽穗期Inflorescence shape, heading date | [ | |
H3K27去甲基化酶 H3K27 demethylase | JMJ705 | 抗病性,茉莉酸信号Disease resistance, Jasmonic acid signal | [ | |
H3K36甲基化酶 H3K36 methylase | SDG708 | 抗旱性,抽穗期Drought resistance, heading date | [ | |
SDG724 | 光周期,抽穗期Photoperiod, heading date | [ | ||
SDG725 | 抽穗期Heading date | [ | ||
乙酰化 Acetylation | 乙酰化酶 Acetylase | HAT1 | 粒重,产量Grain weight, yield | [ |
GCN5 | 不定根,节间发育Adventitious roots, internode development | [ | ||
HDA704 | 株高,旗叶Plant height, flag leaf | [ | ||
HDA710 | 耐盐性,种子萌发,根生长Salt tolerance, seed germination, root growth | [ | ||
HDA716 | 种子萌发,根生长Seed germination, root growth | [ | ||
HDT702 | 叶片和茎发育Leaf and stem development | [ | ||
SRT1 | 氧化胁迫,细胞生长,胚乳发育Oxidative stress, cell growth, endosperm development | [ | ||
HDT1 | 抗病性,抽穗期,耐盐性Disease resistance, heading stage, salt tolerance | [ | ||
HDAC10 | 株高,结实率,耐盐性,发芽率Plant height, seed setting rate, salt tolerance, germination rate | [ | ||
去乙酰化酶 Deacetylase | HDA705 | 非生物胁迫,株高,结实率,发芽率Abiotic stress, plant height, seed setting rate, germination rate | [ | |
HDAC1 | 根长度Root length | [ | ||
HDAC2 | 抽穗期Heading date | [ | ||
HDA703 | 花序梗伸长,育性,抽穗期 Peduncle elongated, fertility,heading date | [ | ||
单泛素化 Mononbiguitination | 单泛素化酶 Monoubiquitinase | HUB1,HUB2 | 株高,分蘖数,育性Plant height, tiller number, fertility | [ |
表1 水稻中部分已克隆的组蛋白修饰基因
Table 1 Part of cloned histone modification genes in rice
组蛋白修饰类型 Histone modification type | 基因 Gene | 功能分析 Functional analysis | 参考文献Reference | |
---|---|---|---|---|
甲基化 Methylation | H3K4甲基化酶 H3K4 methylase | SDG701 | 孢子体生长发育,育性,开花 Spore growth and development, fertility, flowering | [ |
SDG721,SDG705 | GA信号,株高,细胞长度,穗分支 GA signal, plant height, cell length, panicle branch | [ | ||
H3K4去甲基化酶 H3K4 demethylase | JMJ703 | 茎秆,株高,粒型,叶角 Stem, plant height, grain type, leaf angle | [ | |
H3K9甲基化酶 H3K9 methylase | SDG714 | 基因组稳定性,毛状体发育 Genome stability, trichome development | [ | |
SDG710,SDG727 | 抑制逆转座子的转座 Inhibition of transposition of retrotransposons | [ | ||
SDG723 | 抽穗期 Heading date | [ | ||
H3K9去甲基化酶 H3K9 demethylase | JMJ706 | 花器官发育Floral organ development | [ | |
JMJ704 | 细菌枯萎病抗性Bacterial fusarium wilt resistance | [ | ||
H3K27甲基化酶 H3K27 methylase | SDG711 | 花序形状,抽穗期Inflorescence shape, heading date | [ | |
H3K27去甲基化酶 H3K27 demethylase | JMJ705 | 抗病性,茉莉酸信号Disease resistance, Jasmonic acid signal | [ | |
H3K36甲基化酶 H3K36 methylase | SDG708 | 抗旱性,抽穗期Drought resistance, heading date | [ | |
SDG724 | 光周期,抽穗期Photoperiod, heading date | [ | ||
SDG725 | 抽穗期Heading date | [ | ||
乙酰化 Acetylation | 乙酰化酶 Acetylase | HAT1 | 粒重,产量Grain weight, yield | [ |
GCN5 | 不定根,节间发育Adventitious roots, internode development | [ | ||
HDA704 | 株高,旗叶Plant height, flag leaf | [ | ||
HDA710 | 耐盐性,种子萌发,根生长Salt tolerance, seed germination, root growth | [ | ||
HDA716 | 种子萌发,根生长Seed germination, root growth | [ | ||
HDT702 | 叶片和茎发育Leaf and stem development | [ | ||
SRT1 | 氧化胁迫,细胞生长,胚乳发育Oxidative stress, cell growth, endosperm development | [ | ||
HDT1 | 抗病性,抽穗期,耐盐性Disease resistance, heading stage, salt tolerance | [ | ||
HDAC10 | 株高,结实率,耐盐性,发芽率Plant height, seed setting rate, salt tolerance, germination rate | [ | ||
去乙酰化酶 Deacetylase | HDA705 | 非生物胁迫,株高,结实率,发芽率Abiotic stress, plant height, seed setting rate, germination rate | [ | |
HDAC1 | 根长度Root length | [ | ||
HDAC2 | 抽穗期Heading date | [ | ||
HDA703 | 花序梗伸长,育性,抽穗期 Peduncle elongated, fertility,heading date | [ | ||
单泛素化 Mononbiguitination | 单泛素化酶 Monoubiquitinase | HUB1,HUB2 | 株高,分蘖数,育性Plant height, tiller number, fertility | [ |
1 | BERGER S L, KOUZARIDES T, SHIEKHATTAR R, et al.. An operational definition of epigenetics [J]. Genes Dev., 2009, 23(7):781-783. |
2 | KORNBERG R D, LORCH Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome [J]. Cell, 1999, 98(3):285-294. |
3 | LOIDL P. A plant dialect of the histone language [J]. Trends Plant Sci., 2004, 9(2):84-90. |
4 | KOUZARIDES T. Chromatin modifications and their function [J]. Cell, 2007, 128(4):693-705. |
5 | BHAUMIK S R, SMITH E, SHILATIFARD A. Covalent modifications of histones during development and disease pathogenesis [J]. Nat. Struct. Mol. Biol., 2007, 14(11):1008-1016. |
6 | SANTOS-ROSA H, SCHNEIDER R, BANNISTER A J, et al.. Active genes are tri-methylated at K4 of histone H3 [J]. Nature, 2002, 419(6905):407-411. |
7 | GREWAL S I S, MOAZED D. Heterochromatin and epigenetic control of gene expression [J]. Science, 2003, 301(5634):798-802. |
8 | MARTIN C, ZHANG Y. The diverse functions of histone lysine methylation [J]. Nat. Rev. Mol. Cell Biol., 2005, 6(11):838-849. |
9 | KOUZARIDES T. Chromatin modifications and their function [J]. Cell, 2007, 128(4):693-705. |
10 | SHI Y, FEI L, MATSON C, et al.. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 [J]. Cell, 2004, 119(7):941-953. |
11 | SUN Q, ZHOU D X. Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development [J]. Proc. Natl. Acad. Sci. USA, 2008, 105(36):13679-13684. |
12 | MICHAEL F, ZOYA A. ATX1/AtCOMPASS and the H3K4me3 marks: how do they activate Arabidopsis genes? [J]. Curr. Opin. Plant Biol., 2014, 21:75-82. |
13 | QIN F J, SUN Q W, HUANG L M, et al.. Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression [J]. Mol. Plant, 2010, 3(4):773-782. |
14 | LI B, CAREY M, WORKMAN J L. The role of chromatin during transcription [J]. Cell, 2007, 128(4):707-719. |
15 | JIANG D, WANG Y, WANG Y, et al.. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis polycomb repressive complex 2 components [J/OL]. PLoS One, 2008, 3(10): e3404 [2020-06-15]. . |
16 | BLANC R S, RICHARD S. Arginine methylation: the coming of age [J]. Mol. Cell, 2017, 65(1):8-24. |
17 | YANG Y, MCBRIDE K, HENSLEY S, et al.. Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation [J]. Mol. Cell, 2014, 53(3):484-497. |
18 | YANG Y, BEDFORD M T. Protein arginine methyltransferases and cancer [J]. Nat. Rev. Cancer, 2013, 13(1):37-50. |
19 | AHMAD A, YONG Z, CAO X F. Decoding the epigenetic language of plant development [J]. Mol. Plant, 2010, 3(4):719-728. |
20 | AHMAD A, CAO X. Plant PRMTs broaden the scope of arginine methylation [J]. J. Genet. Genomics, 2012, 39(5):195-208. |
21 | PEI Y X, NIU L F, LU F L, et al.. Mutations in the type Ⅱ protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis [J]. Plant Physiol., 2007, 144:1913-1923. |
22 | WANG X, ZHANG Y, MA Q B, et al.. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis [J]. EMBO J., 2007, 26:1934-1941. |
23 | SCHMITZ RJ, SUNG S, AMASINO RM. Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana [J]. Proc. Natl. Acad. Sci. USA, 2008, 105:411-416. |
24 | LIU H, MA X, HAN H N, et al.. AtPRMT5 regulates shoot regeneration through mediating histone H4R3 dimethylation on KRPs and Pre-mRNA splicing of RKP in Arabidopsis [J]. Mol. Plant, 2016(12):1634-1646. |
25 | AHMAD A, DONG Y Z, CAO X F. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation [J/OL]. PLoS One, 2011, 6(8): e22664 [2021-06-15]. |
26 | LEE K K, WORKMAN J L. Histone acetyltransferase complexes: one size doesn't fit all [J]. Nat. Rev. Mol. Cell Biol., 2007, 8:284-295. |
27 | AKATSUKI K, KAZUKO M, MASAMI H. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes [J]. J. Biochem., 2005(6):647-662. |
28 | KLEFF S, ANDRULIS E D, ANDERSON C W, et al.. Identification of a gene encoding a yeast histone H4 acetyltransferase [J]. J. Biol. Chem., 1995, 270(42):24674-24677. |
29 | GRANT P A, DUGGAN L, COTE J, et al.. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex [J]. Genes Dev., 1997, 11(13):1640-1650. |
30 | WANG L, DENT S Y. Functions of SAGA in development and disease [J]. Epigenomics, 2014, 6(3):329-339. |
31 | WEAKE V M, WORKMAN J L. SAGA function in tissue-specific gene expression [J]. Trends Cell Biol., 2012, 22(4):177-184. |
32 | PANDEY R, MÜLLER A, NAPOLI C A, et al.. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes [J]. Nucl. Acids Res., 2002, 30(23):5036-5055. |
33 | LUSSER A, BROSCH G, LOIDL A, et al.. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein [J]. Science, 1997, 277:88-91. |
34 | CIELA J, FRCZYK T, RODE W. Phosphorylation of basic amino acid residues in proteins: important but easily missed [J]. Acta Biochim. Pol., 2011, 58(2):137-148. |
35 | FISCHLEWOLFGANG. Molecular mechanisms of histone modification function [J]. Biochim. Biophys. Acta, 2014, 1839:621-622. |
36 | HAY R T. SUMO: A history of modification [J]. Mol. Cell, 2005, 18(1):1-12. |
37 | MENG X X, BAINE J M, YAN T C, et al.. Comprehensive analysis of lysine lactylation in Rice (Oryza sativa) grains [J/OL]. J. Agric. Food Chem., 2021, 1c00760 [2021-06-15]. . |
38 | LIU K P, YU Y, DONG A W, et al.. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development [J]. New Phytol., 2017, 215(2):609-623. |
39 | JIANG P, WANG S, IKRAM A U, et al.. SDG721 and SDG705 are required for rice growth [J]. J. Integr. Plant Biol., 2018, 60(7):530-535. |
40 | LIU X, ZHOU S, WANG W, et al.. Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem [J]. Plant Cell, 2015, 27(5):1428-1444. |
41 | CUI X K, JIN P, CUI X, et al.. Control of transposon activity by a histone H3K4 demethylase in rice [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(5):1953-1958. |
42 | DING Y, WANG X, SU L, et al.. SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice [J]. Plant Cell, 2007, 19(1):9-22. |
43 | LIU X, ZHOU S, WANG W, et al.. Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem [J]. Plant Cell, 2015, 27(5):1428-1444. |
44 | LUO M, PLATTEN D, CHAUDHURY A, et al.. Expression, imprinting, and evolution of rice homologs of the polycomb group genes [J]. Mol. Plant, 2009, 2(4):711-723. |
45 | CHOI S C, LEE S Y, KIM S R, et al.. Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3 [J]. Plant Physiol., 2014, 164(3):1326-1337. |
46 | JIANG P F, WANG S L, JIANG H Y, et al.. The COMPASS-Like complex promotes flowering and panicle branching in rice [J]. Plant Physiol., 2018,176(4):2761-2771. |
47 | HOU Y X, WANG L Y, WANG L, et al.. JMJ 704 positively regulates rice defense response against Xanthomonas oryzae pv. Oryzae infection via reducing H3K4me2/3 associated with negative disease resistance regulators [J/OL]. BMC Plant Biol., 2015, 15(1):286 [2021-06-15]. . |
48 | LIU X, LUO J, LI T, et al.. SDG711 is involved in rice seed development through regulation of starch metabolism gene expression in coordination with other histone modifications [J]. Rice, 2021,14(1):1-13. |
49 | LIU X, ZHOU C, ZHAO Y, et al.. The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time [J/OL]. Front. Plant Sci., 2014, 5:591 [2021-06-15]. |
50 | LI T, CHEN X, ZHONG X, et al.. Jumonji C domain protein JMJ705-Mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice [J]. Plant Cell, 2013, 25(11):4725-4736. |
51 | LIU B, WEI G SHI J L, et al.. SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa) [J]. New Phytol., 2016, 210 (2):577-588. |
52 | CHEN K, DU K X, SHI Y C, et al.. H3K36 methyltransferase SDG708 enhances drought tolerance by promoting abscisic acid biosynthesis in rice [J]. New Phytol., 2021, 230(5):1967-1984. |
53 | SUN C H, FANG J, ZHAO T L, et al.. The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and Promotes flowering in rice [J]. Plant Cell, 2012, 24(8):3235-3247. |
54 | LIU B, LIU Y H, WANG B H, et al.. The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment [J/OL]. Nat. Commun., 2019, 10(1):2999[2021-06-15]. . |
55 | SONG X J, KUROHA T, AYANO M, et al.. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice[J]. Proc. Natl. Acad. Sci. USA, 2015, 112(1):76-81. |
56 | ZHOU S L, JIANG W, LONG F, et al.. Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem [J]. Plant Cell, 2017, 29(5):1088-1104. |
57 | HU Y F, QIN F J, HUANG L M, et al.. Rice histone deacetylase genes display specific expression patterns and developmental functions[J]. Biochem. Biophys. Res. Commun., 2009, 388(2):266-271. |
58 | ZHANG H, GUO F, QI P, et al.. OsHDA710-mediated histone deacetylation regulates callus formation of rice mature embryo [J]. Plant Cell Physiol., 2020, 61(9):1646-1660. |
59 | ULLAH F, XU Q, ZHAO Y, et al.. Histone deacetylase HDA710 controls salt tolerance by regulating ABA signaling in rice [J]. J. Intergr. Plant Biol., 2021, 63:451-467. |
60 | ZHANG H, LU Y, YU Z, et al.. OsSRT1 is involved in rice seed development through regulation of starch metabolism gene expression [J]. Plant Sci., 2016, 248:28-36. |
61 | FANG C Y, ZHANG H, WAN J, et al.. Control of leaf senescence by a MeOH-jasmonates cascade that is epigenetically regulated by OsSRT1 in rice [J]. Mol. Plant, 2016, 9(10):1366-1378. |
62 | LI C, HUANG L M, XU C G, et al.. Altered levels of histone deacetylase OsHDT1 affect differential gene expression patterns in hybrid rice [J/OL]. PLoS ONE, 2011, 6(7): e21789 [2021-06-15]. . |
63 | WEI H, WANG X L, HE Y Q, et al.. Clock component OsPRR 73 positively regulates rice salt tolerance by modulating OsHKT2;1 mediated sodium homeostasis [J/OL]. EMBO J., 2020, 40(3):86 [2021-06-15]. . |
64 | XU Q T, LIU Q, CHEN Z T, et al.. Histone deacetylases control lysine acetylation of ribosomal proteins in rice [J]. Nucleic Acids Res., 2021, 49(8):4613-4628. |
65 | ZHAO J H, LI M Z, GU D C, et al.. Involvement of rice histone deacetylase HDA705 in seed germination and in response to ABA and abiotic stresses [J]. Biochem. Biophys. Res. Commun., 2016, 470(2):439-444. |
66 | CHUNG P J, KIM Y S, JIN S J, et al.. The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice [J]. Plant J., 2010, 59(5):764-776. |
67 | GENG Y K, ZHANG P X, LIU Q, et al.. Rice homolog of Sin3-associated polypeptide 30, OsSFL1, mediates histone deacetylation to regulate flowering time during short days [J]. Plant Biotechnol. J., 2020, 18(2):325-327. |
68 | WANG H C, JIAO X M, KONG X Y, et al.. The histone deacetylase HDA703 interacts with OsBZR1 to regulate rice brassinosteroid signaling, growth and heading date through repression of Ghd7 expression [J]. Plant J., 2020, 104(2):447-459. |
69 | CAO H, LI X Y, WANG Z, et al.. Histone H2B monoubiqui-tination mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 is involved in anther development by regulating tapetum degradation-related genes in rice [J]. Plant Physiol., 2015, 168(4):1389-1405. |
70 | WU K, WANG S S, SONG W Z, et al.. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice [J/OL]. Science, 2020, 367(6478):2046 [2021-06-15]. |
71 | YOON J, CHO L H, LEE S, et al.. Chromatin interacting factor OsVIL2 is required for outgrowth of axillary buds in rice [J]. Mol. Cells, 2019, 42(12):858-868. |
72 | JIN J, SHI J L, LIU B, et al.. MORF-RELATED GENE702, a reader protein of trimethylated histone H3 lysine 4 and histone H3 lysine 36, is involved in brassinosteroid-regulated growth and flowering time control in rice [J]. Plant Physiol., 2015,168(4):1275-1285. |
73 | DU Y W, HE W, DENG C W, et al.. Flowering-related RING Protein 1 (FRRP1) regulates flowering time and yield potential by affecting histone H2B monoubiquitination in rice (Oryza Sativa) [J/OL]. PLoS ONE, 2016, 11(3):e0150458 [2021-06-15]. . |
74 | LI Y, XIAO Y, YU X, et al.. Identification of a novel function of a component in the jasmonate signaling pathway for intensive pesticide degradation in rice and environment through an epigenetic mechanism [J/OL]. Environ. Pollut., 2020, 268: 115802 [2021-06-15]. . |
[1] | 唐楠锐, 周勇, 张国忠, 梁方, 柯烩彬. 搅种型孔式水稻穴播排种器的性能模拟与试验[J]. 中国农业科技导报, 2022, 24(4): 107-115. |
[2] | 何振嘉, 范王涛, 杜宜春, 王启龙. 基于土体有机重构的水肥耦合对土壤理化性质和水稻产量的影响[J]. 中国农业科技导报, 2022, 24(3): 176-185. |
[3] | 徐君, 李婷, 胡敏骏, 蒋玉根, 闫慧莉, 许文秀, 虞轶俊, 何振艳. 水稻籽粒镉积累KASP分子标记LCd-38的开发与利用[J]. 中国农业科技导报, 2022, 24(3): 40-47. |
[4] | 闫伟, 王玉涛, 张永浩, 刘海霞, 韩大勇, 朱爱文. 绵羊肌内前体脂肪细胞CNR1和FABP4基因表达研究[J]. 中国农业科技导报, 2022, 24(3): 95-102. |
[5] | 孙华, 郭宁, 郑晓娟, 石洁, 张立荣, 闫红飞. 玉米穗腐病病原菌新知镰孢的鉴定及其生物学特性分析[J]. 中国农业科技导报, 2022, 24(2): 145-151. |
[6] | 马小倩, 杨涛, 张全, 张洪亮. 水稻新型育种技术研究现状与展望[J]. 中国农业科技导报, 2022, 24(1): 24-30. |
[7] | 孙晓春, 黄文静, 李铂. 水杨酸对干旱胁迫下桔梗幼苗生理生化指标及相关基因表达的影响[J]. 中国农业科技导报, 2022, 24(1): 63-70. |
[8] | 习敏, 许有尊, 孙雪原, 吴文革, 周永进. 氮素穗肥对水稻垩白籽粒灌浆影响及与加工品质的关系[J]. 中国农业科技导报, 2021, 23(9): 144-151. |
[9] | 白皓, 李潇凡, 仲黎, 宋倩倩, 刘本帅, 张莘, 张扬, 王志秀, 江勇, 徐琪, 常国斌, 陈国宏, . 润州凤头白鸭不同组织矿物元素沉积及相关基因表达研究[J]. 中国农业科技导报, 2021, 23(8): 63-73. |
[10] | 吴子帅, 李虎, 黄秋要, 陈传华, 罗群昌, 周新明, 吴佳桔, 刘广林. 施氮量和栽插密度对桂育11号产量和稻米品质的影响[J]. 中国农业科技导报, 2021, 23(8): 154-162. |
[11] | 张娜娜§, 李双民§, 温晓蕾, 冯丽娜, 王俊凤, 杨文杰, 霍佳欢, 兰淑慧, 孙伟明, 齐慧霞. 板栗红粉病病原菌鉴定及其生物学特性研究[J]. 中国农业科技导报, 2021, 23(7): 145-152. |
[12] | 罗友谊, 王慰亲, 郑华斌, 刘功义, 巢英, 徐彩, 郑志刚, 李雪倩, 韦银兰, 唐启源. 不同机械有序种植方式对水稻生长特性及产量的影响[J]. 中国农业科技导报, 2021, 23(7): 162-171. |
[13] | 刘源, 张秀妍, 徐妙云, 郑红艳, 邹俊杰, 张兰, 王磊. 水稻干旱胁迫的small RNA转录组分析[J]. 中国农业科技导报, 2021, 23(6): 23-32. |
[14] | 姜树坤, 王立志, 杨贤莉, 迟力勇, 李忠杰, 李明贤, 张喜娟, 赵茜, 李锐, 姜辉, 李文华. 不同生育时期增温对寒地水稻产量和品质的影响[J]. 中国农业科技导报, 2021, 23(6): 130-139. |
[15] | 霍川, 王世全, 沈俊宏, 曾鸿燕. 水稻高节位分蘖的形态特征及遗传行为[J]. 中国农业科技导报, 2021, 23(5): 35-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||